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Let k be a positive integer and f a multiplicative function with 0 <f(p) < l/k for 
all primes p. Then, for squarefree n, we have 

This improves some recent results of Alladi, ErdBs, and Vaaler. !? 1992 Academic 

Press, Inc. 

1. INTRODUCTION 

In [l], Alladi, Erdiis, and Vaaler proved the following theorem, which 
generalises the well known 

; 1 =F+o(l). 

dCJ;; 

Namely, they proved 

THEOREM 1. Let k be a positive integer and f a multiplicative function 
with 0 <f(p) < l/k for all primes p. Then, for squarefree n, we have 

where o(l)+0 as o(n)=&, 1 -+ co. 

The object of this paper is to improve and extend Theorem 1. The proof 
that we present is also simpler than that of [l]. 
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2. NOTATION 

Here, we explain the notation used. 
Let t B 0 and F, be the set of multiplicative functions F: { 1,2, 3, . ..) --t 

[0, oo), which satisfy F(p) > t for all primes p. Also, we denote by G, the 
set of all multiplicative functions G: ( 1, 2, 3, . 3 -+ [0, cc) which satisfy 
t 3 G(p) > 0 for all primes p. 

For squarefree integers n, we write 

b( t, n) = sup {( z7 Gld))j~G(d))~‘:GEC,J. 

Also we write, 
A(t) = inf (a( t, m) : m squarefree) 

B( t ) = sup (6( t, m) : m squarefree). 

3. STATEMENT OF RESULTS 

Clearly, for all FE F,, we have 

;n F(434t) 1 F(d), 
din 

d> &lra 11 

where n is squarefree. It is obvious that Theorem 1 is equivalent to saying 

A(k)2 l 
2k+2+o(l) 

for integers k > 1. 
Improving this, we prove 

THEOREM 2. For all t 2 0, we have 

A(t) 
A(t+ l)>------ 

A(t)+ 1’ 
In particular 

1 
A(k) 2 - 

k+l 

for non-negative integers k. 

Regarding B(t), we prove 
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THEOREM 3. For all t 3 0, we have 

1 
B(t+ l)<--- 

2-B(t)’ 

In particular, we have 

for positive integers k. 

We, use Theorem 3 to extend Theorem 1 for rational numbers k 2 0. WP 
prove 

THEOREM 4. For all t > 0, we have 

A( l/t) + B(t) = 1. 

Further, $ k >O is rational and [a,, a,, . . . . a,] is the continued fraction 
expansion of k, then we have 

A(k) >, 
1 

l+a,+a,+ ... +a, 

and 

B(k) < 
a, + a, + . . . + a, 

1 +a,+a, + ... +a,’ 

4. PROOF OF THEOREM 2 

Let F be any element of Fz+, (t > 0). We write F(n) = Cdln g(d) where g 
is a multiplicative function. Clearly g E F,. Now 

1 f’(d)= c c g(b) 
din ub = d 

d>,,(‘+I)/(f+2) 

=c c g(b) 
aln blnla 

bg(,+‘+i)/(l+2)/,, 

c g(b) 

641141/Z-8 
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and so A(t+ l)aA(t)/(A(t)+ 1). Now clearly, A(O)= 1 and hence it 
follows that A(k) B l/(k + 1) for all non-negative integers k. This proves 
Theorem 2. 

5. PROOF OF THEOREM 3 

Let G be any element of G,, 1 (t > 0). As before, we write 
G(n) = Cdln h(d) where h is multiplicative and clearly belongs to G,. Now 

=c c h(b)+ 1 c h(b) 4n bin uln blnla o<,,1/11+2) b, (,,i+!)/fl+~lja) u~nliti+2) b>(,,it+i)/(I++) 
<B(t) 1 GWl+ 1 W/a) 

u/n alla 
o<nv(l+21 .>“vlt+2l 

(by the definition of B(t)) 

<I 1 G(a) + c G(u)- 1 G(a) 
oln Qln a/n a>nIr+llilf+zl a>“lr+~M~r+21 

and hence B( t + 1) < l/(2 - B(t)). Clearly B( 1) = l/2, and so B(k) < 
k/(k + 1) for all positive integers k. 

For a fixed positive integer k, consider a squarefree number n having a 
prime factor, p, greater than n kl(k + ‘), Consider the function G’(d) = kocd) 
which belongs to Gk. Clearly 

c km(d)= c k+)+l =k C kw(d) 

din pdln dlnlp 
d 2 &lx + 11 

= k(k + 1 )“‘(“I - ’ 
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and 

1 kwcd) = (k + 1 )w(d), 
din 

whence 

B(k) 2 h(k, n) 3 k/(k + 1). 

From this and our earlier statement B(k) d k/(k + 1) it follows that 
B(k) = k/(k + l), which completes the proof of Theorem 3. 

6. PROOF OF THEOREM 4 

Let G be an element of G, and let H(I) = l/(G(l)) for all squarefree I. 
Then HE F(,,,, (t > 0). Consider, 

From this, it easily follows that 

A( l/t) + B(t) = 1 for t>O. 

To prove the second part of the theorem, it sufhces to consider k in 
(0, 11, by Theorems 2 and 3. We use induction on the denominator of k. 
The theorem is easily seen to be true for all rational numbers with 
denominator 1. Suppose the theorem is true for all rational numbers with 
denominator less than the denominator of k. Let [0, ur, . . . . a,] be the con- 
tinued fraction expansion of k E (0, l] and [a,, . . . . a,] that of l/k. Now l/k 
has a lower denominator than k, and the result follows from the induction 
hypothesis and the fact 

A(k)+B(l/k)=B(k)+A(l/k)=l. 

This proves the theorem. 
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7. CONCLUDING REMARKS 

If t is an irrational number, then by considering a rational approxima- 
tion a/q to t from above, with q’6 m o n and O<a/q-td2/(o(n)), we 

can see (using Theorem 4) that 

a(& n) B 
1 

10&i? 

and 

b( t, n) d 1 - 
1 

10&j’ 

This improves Theorem 2 of [ 1 ] which gives a(t, n) > t/((t + 1) w(n)). 
However, in view of Theorem 4, we would expect bounds for a(?, n) and 
b(t, n) which are independent of w(n). 

ACKNOWLEDGMENTS 

The author is indebted to Professor R. Balasubramanian for suggesting the topic in the first 
place and for encouragement. The author is also extremely grateful to the referee for his 
valuable suggestions. 

REFERENCE 

1. K. ALLADI, P. ERD~S, AND J. D. VAALER, Multiplicative functions and small divisors, II, 
J. Number Theory 31 (1989). 183-190. 


