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Abstract

The problem of consistent Hamiltonian structure forO(N) nonlinear sigma model in the presence of five different type
boundary conditions is considered in detail. For the case of Neumann, Dirichlet and the mixture of these two types of bo
the consistent Poisson brackets are constructed explicitly, which may be used, e.g., for the construction of current alge
presence of boundary. While for the mixed boundary conditions and the mixture of mixed and Dirichlet boundary con
we prove that there is no consistent Poisson brackets, showing that the mixed boundary conditions are incompatibl
nontrivial subgroups ofO(N).
 2003 Published by Elsevier B.V.
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1. Introduction

Field theories with boundaries have been attra
ing the attention of theoretical physicists for a nu
ber of reasons, especially from the quantum poin
view. For example, the existence of boundaries is
sponsible for the Casimir effect and surface pheno
ena, fundamental excitations in the bulk may have
teresting behavior when scattered off the bounda
[1], and sometimes boundary bound state might
pear, etc. Another important aspect of boundaries
pear in the study of string theory, where they are u
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to distinguish different types of string theories and
also regarded as the reason for the occurrence of
commutativity on the D-branes.

The introduction of boundary interactions into t
Lagrangian also causes some problem at the clas
level, since the boundary conditions would in ge
eral spoil the naive Poisson structure. In order to
scribe classical field theories with boundaries as c
sistent Hamiltonian systems, many authors prefe
use the Dirac method for treating constraints [2–
However, as pointed out in [5], the direct applic
tion of Dirac method in boundary systems has so
problems, mostly due to the fact that boundary c
ditions regarded as constraints have functional m
nse.
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sure 0 in the space of fields. To overcome these p
lems, some authors prefer to use modified versi
of Dirac method [6], or first turn the field theorie
with boundaries into mechanical systems with in
nite many degrees of freedom by use of either Fou
mode expansion or lattice approximation and then
the Dirac approach [7–10]. Other methods, includ
symplectic quantization [11,12] and lightcone quan
zation [13], are also used to treat boundary proble
However, none of the above mentioned methods is
plicable systematically to all field theories with boun
aries. The approach which works for one particu
model with ease may become very cumbersome
even completely inapplicable to use for another. In
we proposed a novel method for treating the bou
ary constraints. Our method is based on a very s
ple idea, i.e., the principle of locality: since the boun
ary conditions are constraints only at the boundar
they should modify the naive Poisson structure onl
the boundaries. By directly modifying the naive Po
son brackets at the boundaries with some test o
ators and checking the compatibility with bounda
constraints, we can obtain conditions to determine
test operators. This method is used in the subseq
works [14] and [15] to study the problem of ope
string quantization in background NS–NSB-field, and
is proven to be very powerful and easy to use.

In this Letter, we are aimed at using the meth
of [5] to study the problem of consistent Hamiltoni
description forO(N) nonlinear sigma model in th
presence of integrable boundary conditions [16,1
Besides getting more concrete examples for the
plication of our method, there are more direct m
tivations to study the Hamiltonian description f
this model. In the literatures,O(N) nonlinear sigma
model is often taken as a typical model of field th
ories with certain nice geometrical properties [1
it is also a frequently used toy model for stimula
ing nonabelian gauge theories [19–22], and a th
retical laboratory for exploring Poisson–Lie geome
and current algebras [23]. In a number of problem
statistical physics, condensed matter systems [24
and/or high energy physics, e.g., quantum antife
magnetism, largeN behavior and asymptotic freedo
in strong interactions,O(N) nonlinear sigma mode
is often found to be a simplified version of the u
derlying field theoretic description. Another area
which nonlinear sigma model found important app
t

cations is string theory. There the model is often u
to describe D-brane dynamics in curved backgrou
[26]. The exact integrability ofO(N) nonlinear sigma
model on the half line [16,17,27,28] provides mo
direct motivations for the mathematical physicists
study this theory. In this respect, the study of con
tent Hamiltonian description ofO(N) nonlinear sigma
model is quite essential, because the quantum an
sis on the factorized scattering in the bulk as w
as off the boundary based on quantum inverse s
tering method needs semiclassical support, for wh
the classical Hamiltonian description of the model i
starting point. Even from a pure classical integra
system point of view, a consistent Hamiltonian d
scription is still a key structure because it is neede
prove that the integrals of motion are pairwise in inv
lution under the correct Poisson brackets. Howeve
our knowledge, a systematical analysis on the Ha
tonian structure of theO(N) nonlinear sigma model in
the presence of integrable boundary conditions is
not undertaken, at least in the form we shall pres
That’s why we start our analysis from now on.

2. The model on the half-line

The action forO(N) nonlinear sigma model in
(1+ 1)-spacetime dimensions reads

(1)S = 1

2

∫
d2x

[
∂µnT · ∂µn + ω

(
nT · n − 1

)]
,

where the fieldn = (n1, n2, n3, . . . , nN)T obey the
O(N) conditionnT · n = 1, thanks to the Lagrangia
multiplier ω. We use the superscript T to repres
matrix transpose. The spacetime metric we adop
(ηµν) = diag(1,−1), and summation over repeat
indices is assumed throughout.

The variation of (1) with respect ton leads to the
equation of motion

(2)∂µ∂
µnT −ωnT = 0.

By use of theO(N) conditionnT · n = 1, (2) can be
rewritten as

(3)∂µ∂
µn + (

∂µnT · ∂µn
)
n = 0.

In the Hamiltonian description, the fundamental d
pendent variables are the fields (“canonical coo
nates”) and their conjugate momenta. The conjug
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momenta in the bulk are defined as

(4)πi ≡ δLB

δ(∂tni)
= ∂tni.

Since theO(N) conditionnT · n = 1 is a constraint
the correct Poisson brackets for the fieldsni and the
conjugate momentaπi must be obtained by use of th
standard Dirac method. The results read

(5)
{
ni(x), nj (y)

} = 0,

(6)
{
ni(x),πj (y)

} = (δij − ninj )δ(x − y),

(7)
{
πi(x),πj (y)

} = (πinj − niπj )δ(x − y).

This finishes the description of the model in the bu
In the presence of a boundary, the form of the L

grangian is kept unchanged, but the spatial integra
in (1) is restricted on the half linex ∈ [0,∞). Several
types of boundary conditions areclaimed to be inte-
grable in the literatures [16,17]. They are:

(i) Neumann boundary conditions along all targ
space directions, i.e.,∂xni |x=0 = 0, i = 1, . . . ,N .
We denote this set of boundary conditions
(AN) (i.e., all Neumann);

(ii) Dirichlet boundary conditions along all targ
space directions, i.e.,∂tni |x=0 = 0, i = 1, . . . ,N .
This set of boundary conditions is denoted
(AD) (i.e., all Dirichlet);

(iii) A mixture of Neumann and Dirichlet boundar
conditions, i.e.,∂xni |x=0 = 0 for i = 1, . . . , p
and∂tni |x=0 = 0 for i = p + 1, . . . ,N . This set
of boundary conditions is denoted as (ND) (i.
mixed Neumann and Dirichlet);

(iv) Mixed boundary conditions along all target spa
directions, i.e.,(∂xni +Mij ∂tnj )|x=0 = 0 for i =
1, . . . ,N , whereM is a real invertible antisym
metric matrix of the form

(8)M = g1(iσ
2) ⊕ g2(iσ

2) ⊕ · · · ⊕ gK(iσ 2),

in which σ 2 is the second Pauli matrix,g1
throughgK are free parameters (boundary co
pling constants). Notice that this type of boun
ary conditions is only possible for evenN = 2K,
because otherwiseM cannot not be invertible
This set of boundary conditions is actually n
found in [16,17], but is a simple generalization
the non-diagonal boundary conditions propos
there (the non-diagonal boundary condition
[16,17] contains only oneiσ 2 block). We shall
refer to this set of boundary conditions as (AM
(all mixed);

(v) A mixture of mixed and Dirichlet boundar
conditions, i.e.,(∂xni + Mij ∂tnj )|x=0 = 0 for
i, j = 1, . . . , p (p = 2K) and ∂tni = 0 for i =
p + 1, . . . ,N , whereM is given as theM in (8).
This last set of boundary conditions is deno
as (MD). It has been mentioned in [16,17] th
the mixture of mixed and Neumann bounda
conditions (MN) is not integrable, at least on t
quantum level. We thus exclude this case fr
our consideration.

To put things together, it is useful to introdu
another matrix

(9)W =
(
W

0N−p

)
,

in whichW =M−1, the inverse ofM. Then the MD
boundary conditions can be written in the followin
unified form:

(10)(∂tni + Wij ∂xnj )
∣∣
x=0 = 0, i = 1, . . . ,N.

Moreover, the form of (10) also contains the oth
4 types of boundary conditions mentioned above
special degenerated cases, if we allow the matrixW to
take different forms. Concretely, (10) will be reduc
into AD boundaries forp = 0, into AM boundaries for
p = N = 2K andW = M−1; for genericp with W
diagonal and allWii → ∞, (10) will be reduced into
ND boundaries; and forp = N with W diagonal and
all Wii → ∞, it will be reduced into AN boundaries
We therefore will take (10) as the starting point for o
analysis.

It should be remarked that, in the presence of
boundary conditions (10), there is some ambiguity
the definition of canonical conjugate momenta,
cause the mixed boundary conditions can be real
via variational principle by adding a boundary term
the action which contains∂tni . The additional bound
ary term makes the canonical momenta defined as
ations of thecomplete Lagrangian L with respect to
the time derivatives of the fieldsnj differ from those
defined as variations of thebulk Lagrangian LB. For
our purpose, it is more convenient to stick to the b
momentaπi , because there is already a set of kno
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Poisson brackets (5)–(7) which can be taken as the
sis of our analysis. Using the phase space variableni

andπi , we can rewrite the boundary conditions (10)

(11)(πi + Wij ∂xnj )
∣∣
x=0 = 0.

It can be seen that, since the boundary conditions
identify ∂xni with some specific linear combinatio
of πi , the Poisson brackets (5)–(7) would no long
hold. In the next section, we shall try to constru
consistent Poisson brackets which are compatible
(11). However, it will turn out that only for AD, AN
and ND boundaries we can make a success. For
and MD boundaries we can find no consistent Pois
brackets, which indicates that the mixed bound
conditions are not allowed forO(N) nonlinear sigma
model.

3. Boundary constraints and general
compatibility conditions

Following the method of [5], the very first ste
in getting consistent modifications of the Poiss
brackets (5)–(7) would be introducing theboundary
constraints

(12)Gi ≡
∞∫

0

dx δ(x)(πi + Wij ∂xnj ) � 0.

This is just another way of writing the bounda
conditions (11), in which theδ-function is a slightly
regularized one [5], satisfying

∫ ∞
0 dx δ(x) = 1.

Since the constraintsGi are strong zeros beyon
the boundary atx = 0, it is tempting to think that ther
is no need to modify (5)–(7) except atx = 0, and it
was indeed so in the cases of [5,14,15]. Howeve
this point, we would prefer to keep things as genera
possible. Therefore, assuming that the consistent
Poisson brackets take the form

{
ni(x), nj (y)

} = Aij (n,π)δ(x − y),{
ni(x),πj (y)

} = Bij (n,π)δ(x − y),

(13)
{
πi(x),πj (y)

} = Cij (n,π)δ(x − y),

and adding boundary modifications, the most gen
form for the potential consistent Poisson brackets
be{
ni(x), nj (y)

}
M

(14)= Aij (n,π)δ(x − y) +Aij δ(x + y),{
ni(x),πj (y)

}
M

(15)= Bij (n,π)δ(x − y)+Bij δ(x + y),{
πi(x),πj (y)

}
M

(16)= Cij (n,π)δ(x − y) + Cij δ(x + y),

where the suffix M denotes modified Poisson brack
A,B,C are someknown functions in the phase spac
with Aij andCij antisymmetric ini ↔ j , andA, B,
C are some operators acting on the variabley which
are yet to be determined by consistency requireme
Since the Poisson brackets are antisymmetric,
operatorsAij andCij must alsobe antisymmetric in
i ↔ j .

At first sight, it may look strange that we assum
the odd form (13) for the bulk Poisson brackets rat
than use (5)–(7) directly. The reason for this will
clear in the next section when we try to find solutio
for the compatibility conditions which we now deriv

In order to determine the values ofA, B andC, we
first apply the compatibility conditions

(17)
{
Gi,nj (y)

}
M = 0,

(18)
{
Gi,πj (y)

}
M = 0.

Straightforward calculations yield{
Gi,nj (y)

}
M

=
∞∫

0

dx δ(x)
{
πi + Wik∂xnk, nj (y)

}
M

=
∞∫

0

dx δ(x)
({

πi, nj (y)
}

M + {
Wik∂xnk, nj (y)

}
M

)

=
∞∫

0

dx δ(x)
[−Bji(n,π)δ(x − y) −Bjiδ(x + y)

+ Wik∂x
{
Akj (n,π)δ(x − y)+Akj δ(x + y)

}]
(19)= −[

(A −A)W∂y + (B +B)
]
ji
δ(y),

{
Gi,πj (y)

}
M

=
∞∫

0

dx δ(x)
{
πi + Wik∂xnk,πj (y)

}
M



W. He, L. Zhao / Physics Letters B 570 (2003) 251–259 255

),

ck-
the
r-
k-
ired
ri-

a-

d-
al-

ary
only
6),
the

cobi
will

that
set

f
ent

er,
ter-
d in
nd,
red

con-
In
D

nd-
D,
=
∞∫

0

dx δ(x)
({

πi,πj (y)
}

M + {
Wik∂xnk,πj (y)

}
M

)

=
∞∫

0

dx δ(x)
[
Cij (n,π)δ(x − y) + Cij δ(x + y)

+ Wik∂x
(
Bij (n,π)δ(x − y)+Bij δ(x + y)

)]
(20)= [

C + C − W(B −B)∂y
]
ij
δ(y),

where π = (π1,π2,π3, . . . , πN)T. Comparing (19),
(20) to the compatibility conditions (17) and (18
we get the following equation for the operatorsA, B
andC,

(21)(A −A)W∂y + (B +B) = 0,

(22)C + C − W(B −B)∂y = 0.

The compatibility between the test Poisson bra
ets and the boundary constraints do not provide
complete set of compatibility conditions for the ope
atorsA, B andC. In order that the test Poisson brac
ets (14)–(16) be fully consistent, they are also requ
to satisfy Jacobi identities. For the canonical va
ablesni,πj , there are totally 4 different types of J
cobi identities to check, i.e., the ones for{ni, nj , nk},
{ni, nj ,πk}, {ni,πj ,πk} and{πi,πj ,πk} respectively.
These identities hold identically beyond the boun
ary, because the bulk Poisson brackets (13) are
ready consistent before implementing the bound
constraints. Therefore, what we need to check are
the Jacobi identities at the boundary. Using (14)–(1
we get from the above mentioned Jacobi identities
following equations:

δ(A +A)ij

δnm

(A +A)mk − δ(A +A)ij

δπm

(B +B)km

+ δ(A +A)jk

δnm

(A +A)mi

− δ(A +A)jk

δπm

(B +B)im

+ δ(A +A)ki

δnm

(A +A)mj

(23)− δ(A +A)ki

δπm
(B +B)jm = 0,

δ(A +A)ij

δnm

(B +B)mk + δ(A +A)ij

δπm

(C + C)mk
+ δ(B +B)jk

δnm

(A +A)mi

− δ(B +B)jk

δπm

(B +B)im

− δ(B +B)ik

δnm

(A +A)mj

(24)+ δ(B +B)ik

δπm

(B +B)jm = 0,

δ(B +B)ij

δnm

(B +B)mk + δ(B +B)ij

δπm

(C + C)mk

+ δ(C + C)jk
δnm

(A +A)mi − δ(C + C)jk
δπm

(B +B)im

− δ(B +B)ik

δnm

(B +B)mj

(25)− δ(B +B)ik

δπm

(C + C)mj = 0,

δ(C + C)ij
δnm

(B +B)mk + δ(C + C)ij
δπm

(C + C)mk

+ δ(C + C)jk
δnm

(B +B)mi + δ(C + C)jk
δπm

(C + C)mi

+ δ(C + C)ki
δnm

(B +B)mj

(26)+ δ(C + C)ki
δπm

(C + C)mj = 0.

Once the equations (23)–(26) are satisfied, the Ja
identities for any functions on the phase space
hold consistently, becauseni,πj form a basis for the
phase space of the model. Therefore we conclude
the system of equations (21)–(26) is the complete
of conditions which the operatorsA, B, C must obey.
As long as a solution{A,B,C} to the above system o
operator equations is found, we will get a consist
Hamiltonian description forO(N) nonlinear sigma
model with the boundary conditions (10). Howev
since the system of equations (21)–(26) is over de
mined, the existence of a solution is not guarantee
general. When no solution to (21)–(26) can be fou
the nonexistence of a solution should be conside
as a signature that the corresponding boundary
ditions are incompatible with the bulk dynamics.
the next section, we shall show that the AM and M
boundaries belong to this forbidden class of bou
aries. The other three types of boundaries, i.e., A
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AN and ND boundaries, will all give rise to consiste
solutions to the compatibility equations (21)–(26).

4. Consistent Poisson brackets

In this section, we shall try to find explicit solution
for the system of equations (21)–(26) under each of
five different types of boundary conditions mention
earlier. The basic strategy in getting these spe
solutions is like this: we shall first try to get solutio
to the relatively simpler equations (21), (22) and th
check that they are consistent with the rest equati
(23)–(26). All solutions to the system of equatio
(21)–(26) can in principle be obtained in this mann

4.1. O(N) symmetric boundaries AD and AN

The first types of boundaries we shall consid
are the AD and AN boundaries, which can be ea
seen to preserve the completeO(N) symmetry of
the model. We shall treat both of these two typ
of boundary conditions in a unified way by use
the boundary constraints (12) and requiringp to be
either 0 or equal toN . Doing so we are seemingly t
be considering the AD, AN and AM boundaries in
unified manner. However, it will be clear shortly th
the AM case is distinguished from the AD and A
cases, because AM is actually symmetry breaking

Now let us look at the equations (21), (22)
more detail. Since we are now considering symme
preserving boundaries, there is no problem to iden
the bulk Poisson brackets (13) with (5)–(7), i.e.,
chooseAij = 0,Bij = δij − ninj andCij = πinj −
πjni . Then (21), (22) will become

(27)AimWmj ∂y − (
I − n · nT +B

)
ij

= 0,(
π · nT − n · πT + C

)
ij

(28)−Wim

(
I − n · nT −B

)
mj

∂y = 0.

To solve the last two equations, we need to cons
three different cases, i.e., (a)p = 0 or effectivelyW =
0; (b)p = N with W diagonal andWii → ∞ for all i;
(c) p = N = 2K andW = M−1 with M given in (8).
In case (a) we get from (27) and (28) the result

Bij = −(
I − n · nT)

ij
,

Cij = −(
π · nT − n · πT)

ij
;

in case (b) we have

Aij = 0, Bij = (
I − n · nT)

ij
;

and, in case (c), since the first term in (28)
antisymmetric ini ↔ j while the second term i
not, we must require both terms to vanish separa
yielding

Cij = −(
π · nT − n · πT)

ij
, Bij = (

I − n · nT)
ij
.

It then follows from (27) thatAij = 2(I − n ·
nT)im(W−1)mj (∂y)

−1, which is not acceptable be
cause it is not antisymmetric ini ↔ j . Therefore, we
conclude that there is no solution to the equations (
(28) withW = M−1. This implies that the AM bound
aries are not compatible with the bulkO(N) symme-
try, which has been used to obtain the Poisson brac
(5)–(7) upon which the equations (27), (28) are bas
Therefore, we shall temporarily restrict ourselves
the cases (a) and (b).

By use of the equations (23)–(26), we find th
for the case (a), i.e., AD boundaries, the followi
operators constitute a consistent set of solution
(21)–(26),

Aij = 0, Bij = −(
I − n · nT)

ij
,

(29)Cij = −(
π · nT − n · πT)

ij
.

For the case (b), i.e., AN boundaries, the solution
(21)–(26) is found to be

Aij = 0, Bij = (
I − n · nT)

ij
,

(30)Cij = (
π · nT − n · πT)

ij
.

Substituting the solutions (29) and (30) back into
test Poisson brackets (14)–(16), we get the follow
Poisson brackets, which are consistent with AD a
AN boundary conditions respectively and satisfy
Jacobi identities simultaneously,

{
ni(x), nj (y)

}
M = 0,{

ni(x),πj (y)
}

M

= (δij − ninj )
[
δ(x − y)− δ(x + y)

]
,{

πi(x),πj (y)
}

M

(31)= (πinj − niπj )
[
δ(x − y) − δ(x + y)

]
,
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{
ni(x), nj (y)

}
M = 0,{

ni(x),πj (y)
}

M

= (δij − ninj )
[
δ(x − y) + δ(x + y)

]
,{

πi(x),πj (y)
}

M

(32)= (πinj − niπj )
[
δ(x − y) + δ(x + y)

]
.

The action (1), together with the consistent Po
son brackets (31) (resp. (32)), form a complete Ham
tonian description for classicalO(N) nonlinear sigma
model in the presence of AD (resp. AN) boundary co
ditions.

4.2. The symmetry breaking boundary ND

ND boundaries correspond to 1< p < N in (9) and
W diagonal withWii → ∞ for all i. SinceO(N)

transformations cannot transform Neumann bou
ary conditions into Dirichlet ones, ND boundaries e
plicitly break theO(N) symmetry into the subgrou
O(p) × O(N − p). Consequently, while considerin
the consistent Hamiltonian description of the mo
in the presence of ND boundaries, we need to m
ify not only the Poisson brackets at the boundary,
also in the bulk. In fact, that the ND boundary con
tions break not only theO(N) symmetry at the bound
ary but also in the bulk is an important conclusion
our study, since it can be seen that the direct subs
tion of theO(N) conditionsAij = 0,Bij = δij −ninj

andCij = πinj − πjni together with the matrixW in
(9)—with W diagonal andWii → ∞ for all i—into
the equations (21) and (22) would lead to contrad
tory results.

For convenience we divide the sufficesi, j , etc., of
the fields into two disjoint sets, labeled respectiv
by Latin and Greek letters. Latin indicesa, b run
from 1 to p and Greek indicesα,β run from p +
1 to N. We also introduce the notationsn(1) =
(n1, . . . , np)

T, n(2) = (np+1, . . . , nN)T and similarly
π (1) = (π1, . . . , πp)

T, π (2) = (πp+1, . . . , πN)T. Then
theO(p)×O(N −p) symmetric bulk in the presenc
of ND boundaries can be described by the fie
n(1) and n(2) obeying, respectively,n(1)T · n(1) = u,
n(2)T · n(2) = v, where the constantsu andv satisfy
u + v = 1. The bulk Poisson brackets in this ca
are characterized by (13) with the following functio
A,B andC,
Aab = Aaβ = Aαb = Aαβ = 0,

Bab = δab − nanb, Baβ = 0, Bαb = 0,

Bαβ = δαβ − nαnβ,

Cab = πanb − πbna, Caβ = 0, Cαb = 0,

(33)Cαβ = παnβ − πβnα.

Substituting (33) into (21), (22) and settingWij = 0
for i �= j andWii → ∞ for all i, we get, from (21)–
(26), the following consistent solution,

Aab = 0, Bab = δab − nanb,

Cab = πanb − πbna,

Aαβ = 0, Bαβ = nαnβ − δαβ,

Cαβ = −παnβ + πβnα,

(34)Aaβ =Aαb = Baβ = Bαb = Caβ = Cαb = 0.

The Poisson brackets (13) withA,B and C given
in (33) and A, B, C in (34) are nothing but the
union of consistent Poisson brackets for anO(p)

nonlinear sigma model with AN boundaries and tho
of an O(N − p) nonlinear sigma model with AD
boundaries, as they should be.

4.3. The forbidden boundaries AM and MD

That the AM boundaries are not compatible w
the O(N) symmetry in the bulk has already be
mentioned earlier in this section. This fact can also
seen from another point of view. Following [16] an
with a straightforward generalization, we can see
the AM boundary conditions (10) withW = M−1 can
be realized on the Lagrangian level by adding to
bulk action (1) with the boundary term

(35)Sb =
∫

dt Mij ni∂tnj

∣∣∣∣
x=0

.

It can be easily seen that, under the globalO(N)

transformationni → Oijnj , M will transform as
Mij → OikMklO

T
lj . ThatM does not commute with

the generic elementO of the groupO(N) is an explicit
signature that the boundary term (35) is not invari
underO(N). In fact, the maximal subgroup ofO(N)

which may leave the boundary term (35) invarian
O(2)⊗K , an Abelian subgroup, in which caseM must
be given in the form of (8). This explains our choi
of M in (8).
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Since the bulkO(N) symmetry is broken by th
AM boundary conditions intoO(2)⊗K , we may intro-
duce the fieldsn(*) = (n2*−1, n2*)

T and their conju-
gate momenta to describe the bulk system as a u
of K O(2) nonlinear sigma models, each obeysn(*)T ·
n(*) = u*, with the constantsu* satisfying

∑K
*=1u* =

1. Accordingly, the Poisson brackets which are con
tent in the bulk are just (13) with the matrix functio
A, B andC given, respectively, by

(36)A = 0, B =
K⊕

*=1

B(*), C =
K⊕

*=1

C(*),

whereB(*) andC(*) are all 2× 2 matrices given as

B
(*) = I2×2 − n(*) · n(*)T,

(37)C
(*) = π (*) · n(*)T − n(*) · π (*)T.

Now substituting (36) and (37) into (21) and (22), w
get, at the*th diagonal block, the following equation

(38)AimW
(*)
mj ∂y − (

I − n(*) · n(*)T +B
)
ij

= 0,(
π (*) · n(*)T − n(*) · π (*)T + C

)
ij

(39)−W
(*)
im

(
I − n(*) · n(*)T −B

)
mj

∂y = 0,

where i, j = 2* − 1 or 2*, W(*) is the *th diagonal
block ofW , which is given in (8) throughW = M−1.
It follows that there is no solution to (38) and (39
since the first term in (38) is diagonal, while the seco
term cannot be diagonal. Similarly, the first term
(39) is anti-diagonal, but the second term cannot
anti-diagonal.

Now we are forced to answer the following que
tions: What happens to the mixed boundary con
tions? Why couldn’t we find any consistent Poiss
brackets for theO(N) nonlinear sigma model in th
presence of AM boundaries? Two contradictory
swers might be in order, which are (1) the AM boun
aries are completely incompatible with any ortho
onal symmetry, i.e., even theO(2)’s cannot survive
after AM boundary conditions are applied; (2) t
method we are using to construct the consistent bou
ary Poisson brackets fails for the mixed boundaries
O(N) nonlinear sigma model. Our choice is the a
swer (1). To support our choice, we now consider
simplest case ofK = 1, i.e., a singleO(2) nonlinear
sigma model with mixed boundary conditions(∂xni +
Mij ∂tnj )|x=0 = 0, M = g

(0 −1
1 0

)
. This is exactly the
original boundary conditions studied in [16,17]. E
panding the above boundary conditions in compon
form, we get

(∂xn1 − g∂tn2)
∣∣
x=0 = 0,

(40)(∂xn2 + g∂tn1)
∣∣
x=0 = 0.

On the other hand, from theO(2) condition at the
boundary,(n2

1 + n2
2)x=0 = 1, we can get

(41)(n1∂tn1 + n2∂tn2)
∣∣
x=0 = 0,

(42)(n1∂xn1 + n2∂xn2)
∣∣
x=0 = 0.

Substituting (40) into (42), it follows that

(43)(n1∂tn2 − n2∂tn1)
∣∣
x=0 = 0.

Combining (41) and (43) with theO(2) condition
(n2

1 + n2
2)x=0 = 1, we get both∂xni |x=0 = 0 and

∂tni |x=0 = 0. In other words, if the mixed boundarie
are applied, the fieldsni will obey both Neumann an
Dirichlet boundary conditions simultaneously. This
certainly impossible, so we end up with the surpris
conclusion that the mixed boundaries are actually
allowed inO(N) nonlinear sigma model, not to sa
their integrability. This conclusion removes the AM
well as MD boundary conditions from the allowed l
of integrable boundaries.

5. Discussions

Using the method proposed in [5] and developed
[14] and [15], we analyzed the problem of consist
Poisson brackets for classicalO(N) nonlinear sigma
model in the presence of five different sets of bound
conditions, i.e., the AD, AN, ND, AM and MD
boundaries. Only in the presence of AD, AN and N
boundaries we have found consistent Poisson brac
while for AM and MD boundaries, no consiste
Poisson brackets can be found, showing that the m
boundary conditions are completely incompatible w
any orthogonal symmetry.

Through the analysis of ND boundaries, we fi
that the idea underlying our method needs a sign
cant modification. The original statement that in
presence of boundary constraints the Poisson brac
need to be modified only at the boundary is only va
if the boundary conditions preserve all the bulk sy
metries. On the other hand, if the boundary conditi
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25,
are symmetry breaking, they will also affect the bu
part of the Poisson brackets, so that the final consis
Poisson brackets have the same symmetry in the
and at the boundary.

The result of this Letter not only widens the sco
of applicability of the method of [5], but also ha
important applications in the study ofO(N) nonlin-
ear sigma model itself. A straightforward applicati
might be in the study of current algebra in the prese
of boundary conditions, which is an important ingr
dient in the classical integrable structure of the mod
For instance, the Poisson algebra calculations mad
[29] should be reexamined using our result (32),
cause the bulk Poisson brackets (5)–(7) are no lon
consistent in the presence of Neumann boundarie
used in [29].
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