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Abstract

The problem of consistent Hamiltonian structure é&¢N) nonlinear sigma model in the presence of five different types of
boundary conditions is considered in detail. For the case of Neumann, Dirichlet and the mixture of these two types of boundaries,
the consistent Poisson brackets are constructed explicitly, which may be used, e.g., for the construction of current algebras in the
presence of boundary. While for the mixed boundary conditions and the mixture of mixed and Dirichlet boundary conditions,
we prove that there is no consistent Poisson brackets, showing that the mixed boundary conditions are incompatible with all
nontrivial subgroups 0O (N).
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1. Introduction to distinguish different types of string theories and are
also regarded as the reason for the occurrence of non-
Field theories with boundaries have been attract- commutativity on the D-branes.
ing the attention of theoretical physicists for a num- The introduction of boundary interactions into the
ber of reasons, especially from the quantum point of Lagrangian also causes some problem at the classical
view. For example, the existence of boundaries is re- level, since the boundary conditions would in gen-
sponsible for the Casimir effect and surface phenom- eral spoil the naive Poisson structure. In order to de-
ena, fundamental excitations in the bulk may have in- scribe classical field theories with boundaries as con-
teresting behavior when scattered off the boundaries sistent Hamiltonian systems, many authors prefer to
[1], and sometimes boundary bound state might ap- use the Dirac method for treating constraints [2—4].
pear, etc. Another important aspect of boundaries ap- However, as pointed out in [5], the direct applica-
pear in the study of string theory, where they are used tion of Dirac method in boundary systems has some
problems, mostly due to the fact that boundary con-
T E-mall address Izhao@nwu.edu.cn (L. Zhao). ditions regarded as constraints have functional mea-
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sure 0 in the space of fields. To overcome these prob- cations is string theory. There the model is often used
lems, some authors prefer to use modified versions to describe D-brane dynamics in curved backgrounds
of Dirac method [6], or first turn the field theories [26]. The exact integrability 0® (N) nonlinear sigma
with boundaries into mechanical systems with infi- model on the half line [16,17,27,28] provides more
nite many degrees of freedom by use of either Fourier direct motivations for the mathematical physicists to
mode expansion or lattice approximation and then use study this theory. In this respect, the study of consis-
the Dirac approach [7—-10]. Other methods, including tent Hamiltonian description ad (N) nonlinear sigma
symplectic quantization [11,12] and lightcone quanti- model is quite essential, because the quantum analy-
zation [13], are also used to treat boundary problems. sis on the factorized scattering in the bulk as well
However, none of the above mentioned methods is ap- as off the boundary based on quantum inverse scat-
plicable systematically to all field theories with bound- tering method needs semiclassical support, for which
aries. The approach which works for one particular the classical Hamiltonian description of the model is a
model with ease may become very cumbersome, or starting point. Even from a pure classical integrable
even completely inapplicable to use for another. In [5], system point of view, a consistent Hamiltonian de-
we proposed a novel method for treating the bound- scription is still a key structure because it is needed to
ary constraints. Our method is based on a very sim- prove that the integrals of motion are pairwise in invo-
ple idea, i.e., the principle of locality: since the bound- lution under the correct Poisson brackets. However, to
ary conditions are constraints only at the boundaries, our knowledge, a systematical analysis on the Hamil-
they should modify the naive Poisson structure only at tonian structure of th€ (N) nonlinear sigma model in
the boundaries. By directly modifying the naive Pois- the presence of integrable boundary conditions is still
son brackets at the boundaries with some test oper-not undertaken, at least in the form we shall present.
ators and checking the compatibility with boundary That's why we start our analysis from now on.
constraints, we can obtain conditions to determine the
test operators. This method is used in the subsequent
works [14] and [15] to study the problem of open 2. Themodel on the half-line
string quantization in background NS—MSfield, and
is proven to be very powerful and easy to use. The action forO(N) nonlinear sigma model in

In this Letter, we are aimed at using the method (1+ 1)-spacetime dimensions reads
of [5] to study the problem of consistent Hamiltonian
description forO(N) nonlinear sigma model in the S = —/dzx [0,nT-9"n+w(nT-n—1)], (1)
presence of integrable boundary conditions [16,17].
Besides getting more concrete examples for the ap- Where the fieldn = (n1,n2,n3,....,ny)T obey the
plication of our method, there are more direct mo- O(N) conditionn” - n = 1, thanks to the Lagrangian
tivations to study the Hamiltonian description for multiplier . We use the superscript T to represent
this model. In the literatures) (N) nonlinear sigma  Matrix transpose. The spacetime metric we adopt is
model is often taken as a typical model of field the- (n.v) = diagl, —1), and summation over repeated
ories with certain nice geometrical properties [18], indices is assumed throughout.
it is also a frequently used toy model for stimulat- ~ The variation of (1) with respect to leads to the
ing nonabelian gauge theories [19-22], and a theo- equation of motion
retical laboratory for exploring Poisson—Lie geometry 5 95nT — wnT — 0 @)
and current algebras [23]. In a number of problems in “* o
statistical physics, condensed matter systems [24,25]By use of theO (N) conditionn™ - n =1, (2) can be
and/or high energy physics, e.g., quantum antiferro- rewritten as
magnetism, large&/ behavior and asymptotic freedom
in strong interactionsQ (N) nonlinear sigma model 09" n + (al‘nT ' aﬂn)n =0. ®)
is often found to be a simplified version of the un- In the Hamiltonian description, the fundamental de-
derlying field theoretic description. Another area in pendent variables are the fields (“canonical coordi-
which nonlinear sigma model found important appli- nates”) and their conjugate momenta. The conjugate
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momenta in the bulk are defined as
LB
T = — =
8(9;ni)
Since theO (N) conditionn™ - n =1 is a constraint,
the correct Poisson brackets for the fieldsand the

conjugate momenta; must be obtained by use of the
standard Dirac method. The results read

(4)

aﬂ’li.

{ni).nj(»}=0, (5)
{nix), 7;(M} = (6ij —ninj)d(x — y), (6)
{mi@o). ;) = Grinj —nimj)s(x — y). (7)

This finishes the description of the model in the bulk.
In the presence of a boundary, the form of the La-
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[16,17] contains only onés? block). We shall
refer to this set of boundary conditions as (AM)
(all mixed);

A mixture of mixed and Dirichlet boundary
conditions, i.e.,(0xn; + M;jo:n;)|x—o0 = O for
i,j=1,...,p (p=2K) ando;n; =0 fori =
p+1,...,N,whereM is given as the in (8).
This last set of boundary conditions is denoted
as (MD). It has been mentioned in [16,17] that
the mixture of mixed and Neumann boundary
conditions (MN) is not integrable, at least on the
guantum level. We thus exclude this case from
our consideration.

v)

To put things together, it is useful to introduce

grangian is kept unchanged, but the spatial integration gnother matrix

in (1) is restricted on the half line € [0, c0). Several
types of boundary conditions aokaimed to be inte-
grable in the literatures [16,17]. They are:

(i) Neumann boundary conditions along all target
space directions, i.e,n;|x—0=0,i =1,..., N.

We denote this set of boundary conditions as
(AN) (i.e., all Neumann);

(ii) Dirichlet boundary conditions along all target
space directions, i.ed;n;|x—0=0,i =1,..., N.
This set of boundary conditions is denoted as
(AD) (i.e., all Dirichlet);

(iii) A mixture of Neumann and Dirichlet boundary

conditions, i.e.,0yn;|x—o=0fori=1,...,p

ando;n;ly—o=0fori=p+1,...,N. This set

of boundary conditions is denoted as (ND) (i.e.,

mixed Neumann and Dirichlet);

Mixed boundary conditions along all target space

directions, i.e.(0yn; + M;;d;n)|x—o =0 fori =

1,...,N, whereM is a real invertible antisym-

metric matrix of the form

(v)

M=g1(i0®) ®gic®) @ - ®gricd), (8)

in which o2 is the second Pauli matrixgy
throughgg are free parameters (boundary cou-
pling constants). Notice that this type of bound-
ary conditions is only possible for evéh= 2K,
because otherwis#/ cannot not be invertible.
This set of boundary conditions is actually not
found in [16,17], butis a simple generalization of
the non-diagonal boundary conditions proposed
there (the non-diagonal boundary condition in

w
W = , 9
< ONP) ©)
in whichWW = M1, the inverse of\M. Then the MD
boundary conditions can be written in the following
unified form:
(atni+Wij8xnj)|x=O=0, i=1,...

,N. (10)

Moreover, the form of (10) also contains the other
4 types of boundary conditions mentioned above as
special degenerated cases, if we allow the mawiio
take different forms. Concretely, (10) will be reduced
into AD boundaries fop = 0, into AM boundaries for

p =N =2K andW = M~1; for genericp with W
diagonal and alW;; — oo, (10) will be reduced into
ND boundaries; and fop = N with W diagonal and
all W;; — oo, it will be reduced into AN boundaries.
We therefore will take (10) as the starting point for our
analysis.

It should be remarked that, in the presence of the
boundary conditions (10), there is some ambiguity in
the definition of canonical conjugate momenta, be-
cause the mixed boundary conditions can be realized
via variational principle by adding a boundary term to
the action which containgn;. The additional bound-
ary term makes the canonical momenta defined as vari-
ations of thecomplete Lagrangian £ with respect to
the time derivatives of the fields; differ from those
defined as variations of thaulk Lagrangian £g. For
our purpose, it is more convenient to stick to the bulk
momentar;, because there is already a set of known



254

Poisson brackets (5)—(7) which can be taken as the ba-

sis of our analysis. Using the phase space variahles
and;, we can rewrite the boundary conditions (10) as

(i + Wijoxn;)|,_o=0. (11)

It can be seen that, since the boundary conditions (11)
identify d,n; with some specific linear combination
of 7;, the Poisson brackets (5)—(7) would no longer
hold. In the next section, we shall try to construct
consistent Poisson brackets which are compatible with
(11). However, it will turn out that only for AD, AN
and ND boundaries we can make a success. For AM
and MD boundaries we can find no consistent Poisson
brackets, which indicates that the mixed boundary
conditions are not allowed foP (N) nonlinear sigma
model.

3. Boundary constraintsand general
compatibility conditions

Following the method of [5], the very first step
in getting consistent modifications of the Poisson
brackets (5)—(7) would be introducing ttheundary
constraints

o0
G; = /dxé(x)(n,- + W;jocnj) ~0. (12)
0

This is just another way of writing the boundary
conditions (11), in which thé-function is a slightly
regularized one [5], satisfying)OO dx8(x)=1.

Since the constraint§; are strong zeros beyond
the boundary at = 0, it is tempting to think that there
is no need to modify (5)—(7) except at= 0, and it
was indeed so in the cases of [5,14,15]. However, at
this point, we would prefer to keep things as general as
possible. Therefore, assuming that the consistent bulk
Poisson brackets take the form

{ni(),nj ()} =Aij(n, 1)8(x — y),
{ni(x), 7 (»)} =Bij(n, m)8(x — y),
{mi0), ()} = Cij(n, )3 (x = y),

and adding boundary modifications, the most general
form for the potential consistent Poisson brackets will

(13)
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be
{ni).nj(m iy

=Aj(n, m)8(x —y) + Aijd(x + y), (14)
{ni). ;M }y,

=B;j(n, m)8(x — y) + Bijd(x +y), (15)
{mix). ;M }y

=Cin,m)8(x —y)+Cijd(x +y), (16)

where the suffix M denotes modified Poisson brackets,
2, 9B, ¢ are somenown functions in the phase space
with 2;; and ¢;; antisymmetric ini < j, and.A, B,

C are some operators acting on the variaplhich

are yet to be determined by consistency requirements.
Since the Poisson brackets are antisymmetric, the
operators4;; andC;; must also be antisymmetric in

i< j.

At first sight, it may look strange that we assume
the odd form (13) for the bulk Poisson brackets rather
than use (5)—(7) directly. The reason for this will be
clear in the next section when we try to find solutions
for the compatibility conditions which we now derive.

In order to determine the values df B andC, we
first apply the compatibility conditions

{G,’, n/()’)}M = 0»
{Gi.7j(}y=0.
Straightforward calculations yield

oo

:fdx 8 {i + Wikdueni. nj(n) }y

0
00

=/dx6(x)({m,nj(y)},v| + {Wikden, nj(»)}y)

0
00

(17)
(18)

= / dx 5(x)[—%ji(n, m)8(x —y) —Bjid(x +)
0
+ Wik ds {2k (n, 1)8(x — ¥) + A 8(x + »)}]

=—[@A - ADWdy + (B +B)];603) (19)
{Gi,mjn}y,

oo

=/dx6(x){7‘ri + Wig0xng, ﬂj(Y)}M
0
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dx 8)({mri. m; (M} + {Wik0une. 7150 }yy)

dx §(x)[€ij(n, m)8(x — y) +Cij8(x + y)

[
[

+ Wikdy (Bij (n, 1)8(x — y) + Bij8(x +))]
=[¢+C-W(B - B)ay],'jfs()’), (20)

where r = (w1, w2, 73, ..., mx)". Comparing (19),
(20) to the compatibility conditions (17) and (18),
we get the following equation for the operatods 53
andC,

@& — AWy + (B +B) =0, (21)
¢4+C—W(B—B)d, =0. (22)

The compatibility between the test Poisson brack-
ets and the boundary constraints do not provide the
complete set of compatibility conditions for the oper-
ators.A, B andC. In order that the test Poisson brack-
ets (14)—(16) be fully consistent, they are also required
to satisfy Jacobi identities. For the canonical vari-
ablesn;, n;, there are totally 4 different types of Ja-
cobi identities to check, i.e., the ones faf, n;, ni},
{nj,nj, me}, {ni, mj, m} and{m;, ;, i} respectively.
These identities hold identically beyond the bound-
ary, because the bulk Poisson brackets (13) are al-
ready consistent before implementing the boundary
constraints. Therefore, what we need to check are only
the Jacobi identities at the boundary. Using (14)—(16),
we get from the above mentioned Jacobi identities the
following equations:

M(Q{ + -A)mk _

nm

S+ A)jr
Sny,

S+ A)jr
87T,

N S(RA+ Ay
Sny

S(A+ Ay

11

A+ A)jj
o,

A+ Ami

(B + B)iom

m

+
(sB + B)im
(Q[ + -A)mj

(SB + B)jm = 07 (23)

m

S+ A)jj SR+ A)ij
g(% + B)mk + g(@: + Ok
dnpy, 87Tm
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8B+ B)k
Sny
5(B + B) jx
B ST
3(B + B)ik
B Sny

§(B + B);
+ (5+ )ik

(Q[ + A)mi
(SB + B)im

(B+B)jm=0, (24)

TTm

B+ B ii S(B+B ij
g(% + B)mk + Q(Qt'i‘c)mk
dnpy, S
3(C+0C)jik S(C+0C)jk
4 7 - AR
Sny, o
3 3(B + B)ik
dnpy
3 3(B + B)ik
ST

&+ A — B+ B)im

m

(B + B)mj

(€+C)mj =0, (25)

S(C+0C);j S(C+0C);j
%(%"'B)mk‘k g(e'i'c)mk

m S
3(€+C)jk 3(€+0)jik
Sny, S
n 8(C+ C)ii

dnpy
n 8(C+C)ii
87T,

Once the equations (23)—(26) are satisfied, the Jacobi
identities for any functions on the phase space will
hold consistently, becausg, 7; form a basis for the
phase space of the model. Therefore we conclude that
the system of equations (21)—(26) is the complete set
of conditions which the operator$, 3, C must obey.

As long as a solutiofi4, B, C} to the above system of
operator equations is found, we will get a consistent
Hamiltonian description forO(N) nonlinear sigma
model with the boundary conditions (10). However,
since the system of equations (21)—(26) is over deter-
mined, the existence of a solution is not guaranteed in
general. When no solution to (21)—(26) can be found,
the nonexistence of a solution should be considered
as a signature that the corresponding boundary con-
ditions are incompatible with the bulk dynamics. In
the next section, we shall show that the AM and MD
boundaries belong to this forbidden class of bound-
aries. The other three types of boundaries, i.e., AD,

+ (% + B)mi + (Q: + C)mi

(sB +B)mj

(€ +C)mj =0. (26)
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AN and ND boundaries, will all give rise to consistent
solutions to the compatibility equations (21)—(26).

4, Consistent Poisson brackets

In this section, we shall try to find explicit solutions

W. He, L. Zhao / Physics Letters B 570 (2003) 251-259

in case (b) we have

.A,'j =0, B,-jz(l—n.nT)..,

l./.
and, in case (c), since the first term in (28) is

antisymmetric ini <> j while the second term is
not, we must require both terms to vanish separately,

for the system of equations (21)—(26) under each of the Yielding

five different types of boundary conditions mentioned
earlier. The basic strategy in getting these special
solutions is like this: we shall first try to get solutions
to the relatively simpler equations (21), (22) and then
check that they are consistent with the rest equations
(23)—(26). All solutions to the system of equations
(21)—(26) can in principle be obtained in this manner.

4.1. O(N) symmetric boundaries AD and AN

The first types of boundaries we shall consider
are the AD and AN boundaries, which can be easily
seen to preserve the complet®N) symmetry of
the model. We shall treat both of these two types
of boundary conditions in a unified way by use of
the boundary constraints (12) and requiripgo be
either O or equal tav. Doing so we are seemingly to
be considering the AD, AN and AM boundaries in a
unified manner. However, it will be clear shortly that
the AM case is distinguished from the AD and AN
cases, because AM is actually symmetry breaking.

Now let us look at the equations (21), (22) in
more detail. Since we are now considering symmetry
preserving boundaries, there is no problem to identify
the bulk Poisson brackets (13) with (5)—(7), i.e., to
ChOOSGQl,'j =0, %,‘j = 3,’j —nin; and Q:,'j =minj —
7;n;. Then (21), (22) will become

AimWijdy — (I —=n-nT + B)ij =0, (27)
T T
(r-n'—n-m +C)ij
~ Wim(I —n-nT — B),,;dy =0. (28)

C,’j=—(7t~nT—n-Jt

T)ij’ Bij=(I—n-nT)
It then follows from (27) thatA;; = 2(/ — n -
ND)im (W1),,;(3,)7L, which is not acceptable be-
'cause it is not antisymmetric in< j. Therefore, we
conclude that there is no solution to the equations (27),
(28) with W = M 1. This implies that the AM bound-
aries are not compatible with the buik(N) symme-

try, which has been used to obtain the Poisson brackets
(5)—(7) upon which the equations (27), (28) are based.
Therefore, we shall temporarily restrict ourselves to
the cases (a) and (b).

By use of the equations (23)—(26), we find that,
for the case (a), i.e., AD boundaries, the following
operators constitute a consistent set of solution to
(21)—(26),

tj

]

ij

Ai;j =0,

C,’j=—(7t~nT—n-JtT)

Bij =—([ — n«nT)
i (29)
For the case (b), i.e., AN boundaries, the solution to
(21)—(26) is found to be

A;; =0,

Cijz(n-nT—n.nT)

B,-jz(l—n.nT) "

L
i (30)
Substituting the solutions (29) and (30) back into the
test Poisson brackets (14)-(16), we get the following
Poisson brackets, which are consistent with AD and
AN boundary conditions respectively and satisfy all
Jacobi identities simultaneously,

To solve the last two equations, we need to consider

three different cases, i.e., (a)= 0 or effectivelyW =
0; (b) p = N with W diagonal andV;; — oo for all i;
() p=N =2K andW = M~ with M given in (8).
In case (a) we get from (27) and (28) the result

Bij = _([ —n- nT)ij’
Cij =—(JI 'nT—n'ItT)

]

ij

{nix),nj(mM}y =0,
{nix), T}y,

=(8ij —nin)[8(x —y) = 8(x + )],
{mix). 7, (M}

= (minj —mim)[8(x —y) —8(x +y)]. (31)
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{ni(x),n;m}y, =0,
{ni@), ;M }y

= (ij —ninp)[8(x — y) +8(x +y)],
{mi (). ;)

= (minj —niwp)[8(x —y) +8(x + y)]. (32)

The action (1), together with the consistent Pois-
son brackets (31) (resp. (32)), form a complete Hamil-
tonian description for classic& (N) nonlinear sigma
model in the presence of AD (resp. AN) boundary con-
ditions.

4.2. The symmetry breaking boundary ND

ND boundaries correspondto<dp < N in (9) and
W diagonal withW;; — oo for all i. Since O(N)

transformations cannot transform Neumann bound-

ary conditions into Dirichlet ones, ND boundaries ex-
plicitly break theO (N) symmetry into the subgroup
O(p) x O(N — p). Consequently, while considering
the consistent Hamiltonian description of the model

in the presence of ND boundaries, we need to mod-

ify not only the Poisson brackets at the boundary, but
also in the bulk. In fact, that the ND boundary condi-
tions break not only th& (N) symmetry at the bound-
ary but also in the bulk is an important conclusion of

our study, since it can be seen that the direct substitu-

tion of theO (N) conditions;; =0,B;; =&;; —n;n;
and<;; = m;n; — m;n; together with the matri@ in
(9)—with VW diagonal andV;; — oo for all i—into

the equations (21) and (22) would lead to contradic-
tory results.

For convenience we divide the sufficeg, etc., of
the fields into two disjoint sets, labeled respectively
by Latin and Greek letters. Latin indices b run
from 1 to p and Greek indices, 8 run from p +
1 to N. We also introduce the notations® =
(n1,...,n,)7, N@ = (n,41,...,ny)T and similarly
a®=(m,..., rrp)T, @ = (Tpt1, .- -s 7n)T. Then
the O(p) x O(N — p) symmetric bulk in the presence
of ND boundaries can be described by the fields
n® andn® obeying, respectivelyp®” . n® =y,
n@T . n@ =y, where the constanis and v satisfy
u + v = 1. The bulk Poisson brackets in this case
are characterized by (13) with the following functions
2, B andc,
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Aap =Aap = Ao = Agp =0,
Bup = Sap — NaNp, (’Baﬁ =0, Byp =0,
Bop = Sap — Nahg,
Cap =Tynp — THNg, ¢y =0, Cap =0,
Cop =TogNg — TpNg. (33)

Substituting (33) into (21), (22) and settingy;; =0
fori # j andW;; — oo for all i, we get, from (21)—
(26), the following consistent solution,

Aab =0, Bap = 8ab — nanp,
Cap = mgNp — TpNg,
Agp =0, Bug =ngng — dap,

Caﬁ = —Tong + Tphy,
Aup = Aap = Bag = Bap = Cap = Cap = 0. (34)

The Poisson brackets (13) withi, 5 and ¢ given

in (33) and A, B, C in (34) are nothing but the
union of consistent Poisson brackets for @p)
nonlinear sigma model with AN boundaries and those
of an O(N — p) nonlinear sigma model with AD
boundaries, as they should be.

4.3. The forbidden boundaries AM and MD

That the AM boundaries are not compatible with
the O(N) symmetry in the bulk has already been
mentioned earlier in this section. This fact can also be
seen from another point of view. Following [16] and
with a straightforward generalization, we can see that
the AM boundary conditions (10) wit = M~ can
be realized on the Lagrangian level by adding to the
bulk action (1) with the boundary term

Sp = /dt M;jn;om; (35)

x=0

It can be easily seen that, under the glolsalN)
transformationn; — O;jn;, M will transform as
M;; — OikMklol;. That M does not commute with
the generic elemer® of the groupO (N) is an explicit
signature that the boundary term (35) is not invariant
underO(N). In fact, the maximal subgroup @ (N)
which may leave the boundary term (35) invariant is
0(2)®K, an Abelian subgroup, in which casé must

be given in the form of (8). This explains our choice
of M in (8).
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Since the bulkO(N) symmetry is broken by the
AM boundary conditions int@ (2)®X, we may intro-
duce the fieldn® = (noy_1,n2)" and their conju-
gate momenta to describe the bulk system as a union
of K 0(2) nonlinear sigma models, each obeys -
n® = u,, with the constants, satisfying__; u¢ =
1. Accordingly, the Poisson brackets which are consis-
tent in the bulk are just (13) with the matrix functions
2, B and¢ given, respectively, by

K K
2A=0, %:@*B“), ez@@“, (36)
=1 =1

whereB® ande® are all 2x 2 matrices given as

BO = [y —n® . nOT,

O — 7O nOT _ 1O L OT 37)

Now substituting (36) and (37) into (21) and (22), we
get, at the‘th diagonal block, the following equations:

AimWh)oy = (1 =n®-n®@T4 B) =0, (38)
(x®-nOT —n®.7OT y¢)
{4
— w1 —n®.nOT _ B)mj 3y =0, (39)

wherei, j =2¢ — 1 or %, W is the ¢th diagonal
block of W, which is given in (8) throughv = M1,

It follows that there is no solution to (38) and (39),
since the first term in (38) is diagonal, while the second
term cannot be diagonal. Similarly, the first term in
(39) is anti-diagonal, but the second term cannot be
anti-diagonal.

Now we are forced to answer the following ques-
tions: What happens to the mixed boundary condi-
tions? Why couldn’t we find any consistent Poisson
brackets for theD (N) nonlinear sigma model in the
presence of AM boundaries? Two contradictory an-
swers might be in order, which are (1) the AM bound-
aries are completely incompatible with any orthog-
onal symmetry, i.e., even th@(2)’s cannot survive
after AM boundary conditions are applied; (2) the
method we are using to construct the consistent bound-
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original boundary conditions studied in [16,17]. Ex-
panding the above boundary conditions in component
form, we get

(9xn1 — gdn2)|,_y =0,
(dxn2 + g8,n1)|x=0 =0. (40)

On the other hand, from th@®(2) condition at the
boundary(n? + n3);—o = 1, we can get

(n1d;n1 4 n2dn2)|,_, =0, (41)
(n10,n1 + n2dyn2)| _o=0. (42)
Substituting (40) into (42), it follows that

(n10in2 — n20n1)|,_o=0. (43)

Combining (41) and (43) with the(2) condition
(n? + n3),—0 = 1, we get bothd.n;|,—o = 0 and
orn;|x=0 = 0. In other words, if the mixed boundaries
are applied, the fields; will obey both Neumann and
Dirichlet boundary conditions simultaneously. This is
certainly impossible, so we end up with the surprising
conclusion that the mixed boundaries are actually not
allowed in O (N) nonlinear sigma model, not to say
their integrability. This conclusion removes the AM as
well as MD boundary conditions from the allowed list
of integrable boundaries.

5. Discussions

Using the method proposed in [5] and developed in
[14] and [15], we analyzed the problem of consistent
Poisson brackets for classic@l(N) nonlinear sigma
model in the presence of five different sets of boundary
conditions, i.e., the AD, AN, ND, AM and MD
boundaries. Only in the presence of AD, AN and ND
boundaries we have found consistent Poisson brackets,
while for AM and MD boundaries, no consistent
Poisson brackets can be found, showing that the mixed
boundary conditions are completely incompatible with
any orthogonal symmetry.

Through the analysis of ND boundaries, we find

ary Poisson brackets fails for the mixed boundaries for that the idea underlying our method needs a signifi-
O(N) nonlinear sigma model. Our choice is the an- cant modification. The original statement that in the
swer (1). To support our choice, we now consider the presence of boundary constraints the Poisson brackets
simplest case ok = 1, i.e., a singleO (2) nonlinear need to be modified only at the boundary is only valid
sigma model with mixed boundary conditioftg n; + if the boundary conditions preserve all the bulk sym-

M;jomj)lx=0=0, M = g(%*()l). This is exactly the ~ metries. On the other hand, if the boundary conditions
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are symmetry breaking, they will also affect the bulk
part of the Poisson brackets, so that the final consistent
Poisson brackets have the same symmetry in the bul

and at the boundary.

The result of this Letter not only widens the scope

of applicability of the method of [5], but also has
important applications in the study @ (~N) nonlin-

ear sigma model itself. A straightforward application
might be in the study of current algebra in the presence
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