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The entanglement of the coupled massive scalar field in the spacetime of a Garfinkle–Horowitz–
Strominger (GHS) dilaton black hole has been investigated. It is found that the entanglement does not
depend on the mass of the particle and the coupling between the scalar field and the gravitational field,
but it decreases as the dilaton parameter D increases. It is interesting to note that in the limit of D → M ,
corresponding to the case of an extreme black hole, the state has no longer distillable entanglement
for any state parameter α, but the mutual information equals to a nonvanishing minimum value, which
indicates that the total correlations consist of classical correlations plus bound entanglement in this limit.

Crown Copyright © 2009 Published by Elsevier B.V. Open access under CC BY license. 
1. Introduction

Quantum entanglement is both the central concept and the
major resource in quantum information tasks such as quantum
teleportation and quantum computation [1–4]. As relativistic field
theory provides not only a more complete theoretical framework
but also many experimental setups, relativistic quantum informa-
tion theory may become an essential theory in the near future
with possible applications to quantum entanglement and quantum
teleportation. Thus, considerable effort has been expended on the
investigation of quantum entanglement in the relativistic frame-
work [4–8]. It has been shown that for scalar and Dirac fields, the
degradation of entanglement will occur from the perspective of a
uniformly accelerated observer, which essentially originates from
the fact that the event horizon appears and Unruh effect results in
a loss of information for the non-inertial observer [9–13].

On the other hand, string theory with an extra space compact-
ified at a larger length scale or lower energy scale than the Planck
scale has been an attractive idea to solve the gauge hierarchy prob-
lem and possibly a candidate for quantum gravity [14]. There is
also a growing interest in dilaton black holes from the string the-
ory in the last few years. Meanwhile, it is generally believed that
the study of quantum entanglement in the background of a dila-
ton black hole may lead to a deeper understanding of black holes

* Corresponding author at: Key Laboratory of Low-dimensional Quantum Struc-
tures and Quantum Control of Ministry of Education, Hunan Normal University,
Changsha, Hunan 410081, PR China.

E-mail address: jljing@hunnu.edu.cn (J. Jing).
0370-2693 Crown Copyright © 2009 Published by Elsevier B.V.
doi:10.1016/j.physletb.2009.05.028

Open access under CC BY lic
and quantum gravity because it is related to the quantum informa-
tion theory, string theory and loop quantum gravity [15,16]. In this
Letter, we will analyze the entanglement for the coupled massive
scalar field in the spacetime of a GHS dilaton black hole, which
was derived from the string theory. In particular, we here choose
the generically entangled state

√
1 − α2|0〉A |1〉B +α|1〉A |0〉B rather

than the maximally entangled state 1√
2
(|0〉A |0〉B + |1〉A |1〉B) in an

inertial reference frame. It seems to be an interesting study to
consider the influences of the dilaton of the black hole, the mass
of the particle and the coupling between the scalar field and the
gravitational field on the quantum entangled states and show how
they will change the properties of the entanglement. We assume
that Alice has a detector which only detects mode |n〉A and Bob
has a detector sensitive only to mode |n〉B , and they share a gener-
ically entangled state at the same initial point in flat Minkowski
spacetime before the black hole is formed. After the coincidence
of Alice and Bob, Alice stays stationary at the asymptotically flat
region, while the other observer, Bob, moves from the flat place
toward the dilaton black hole. This would not change the metric
outside of the black hole and therefore would not change Bob’s
acceleration [17]. Thus, Bob’s detector registers only thermally ex-
cited particles due to the Hawking effect [18].

The outline of this Letter is as follows. In Section 2 we discuss
vacuum structure of coupled massive scalar field in the spacetime.
In Section 3 we analyze the effects of the dilaton parameter D ,
mass of the particle and the coupling between the scalar field and
the gravitational field on the entanglement between the modes for
the different state parameter α. We summarize and discuss our
conclusions in the last section.
ense. 
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2. Vacuum structure of coupled massive scalar field

The metric for a GHS black hole spacetime can be expressed as
[19]

ds2 = −
(

r − 2M

r − 2D

)
dt2 +

(
r − 2M

r − 2D

)−1

dr2 + r(r − 2D)dΩ2, (1)

where M and D are parameters related to mass of the black hole
and dilaton field. The relationship among M , the charge Q and D
is described as D = Q 2/2M . Throughout this Letter we use G =
c = h̄ = κB = 1.

The general perturbation equation for a coupled massive scalar
field in this dilaton spacetime is given by [16]

1√−g
∂μ

(√−g gμν∂ν

)
ψ − (μ + ξ R)ψ = 0, (2)

where μ is the mass of the particle, ψ is the scalar field and R
is the Ricci scalar curvature. The coupling between the scalar field
and the gravitational field is represented by the term ξ Rψ , where
ξ is a numerical coupling factor. After expressing the normal mode
solution as

ψωlm = 1

h(r)
χωl(r)Ylm(θ,ϕ)e−iωt, (3)

where Ylm(θ,ϕ) is a scalar spherical harmonic on the unit two-
sphere and h(r) = √

r(r − 2D), we can easily get the radial equa-
tion

d2χωl

dr2∗
+ [

ω2 − V (r)
]
χωl = 0, (4)

with

V (r) = f (r)

h(r)

d

dr

[
f (r)

dh(r)

dr

]
+ f (r)l(l + 1)

h2(r)

+ f (r)

[
μ2 + 2ξ D2(r − 2M)

r2(r − 2D)3

]
, (5)

where dr∗ = dr/ f (r) is the tortoise coordinates and f (r) = (r −
2M)/(r − 2D).

Solving Eq. (4) near the event horizon, we obtain the incoming
mode which is analytic everywhere in the spacetime manifold

φin,ωlm = e−iωv Ylm(θ,ϕ), (6)

and the outgoing mode for the inside and outside region of the
event horizon

φout,ωlm(r < r+) = eiωu Ylm(θ,ϕ), (7)

φout,ωlm(r > r+) = e−iωu Ylm(θ,ϕ), (8)

where v = t + r∗ and u = t − r∗ . Eqs. (7) and (8) are analytic inside
and outside the event horizon respectively, so they form a com-
plete orthogonal family.

By defining the generalized light-like Kruskal coordinates [6]

u = −4(M − D) ln
[−U/(4M − 4D)

]
,

v = 4(M − D) ln
[
V /(4M − 4D)

]
, if r > r+,

u = −4(M − D) ln
[
U/(4M − 4D)

]
,

v = 4(M − D) ln
[
V /(4M − 4D)

]
, if r < r+, (9)

we can rewrite Eqs. (7) and (8) in the following form

φout,ωlm(r < r+) = e−4(M−D)iω ln[−U/(4M−4D)]Ylm(θ,ϕ), (10)

φout,ωlm(r > r+) = e4(M−D)iω ln[U/(4M−4D)]Ylm(θ,ϕ). (11)
By using the formula −1 = eiπ and making (10) analytic in the
lower half-plane of U , we find a complete basis for positive energy
U modes

φI,ωlm = e2πω(M−D)φout,ωlm(r > r+)

+ e−2πω(M−D)φ∗
out,ωlm(r < r+), (12)

φII,ωlm = e−2πω(M−D)φ∗
out,ωlm(r > r+)

+ e2πω(M−D)φout,ωlm(r < r+). (13)

Eqs. (12) and (13) are complete basis for positive frequency modes
which analytic for all real U and V . Thus, we can also quantize
the quantum field in terms of φI,ωlm and φII,ωlm in the Kruskal
spacetime.

Using the second-quantizing the field in the exterior of this
dilaton black hole [6,12,13], we can obtain the Bogoliubov trans-
formations for the particle annihilation and creation operators in
the dilaton and Kruskal spacetime

aK ,ωlm = bout,ωlm√
1 − e−8πω(M−D)

− b†
in,ωlm√

e8πω(M−D) − 1
,

a†
K ,ωlm = b†

out,ωlm√
1 − e−8πω(M−D)

− bin,ωlm√
e8πω(M−D) − 1

, (14)

where aK ,ωlm and a†
K ,ωlm are the annihilation and creation opera-

tors acting on the Kruskal vacuum of the exterior region, bin,ωlm

and b†
in,ωlm are the annihilation and creation operators acting on

the vacuum of the interior region of the black hole, and bout,ωlm

and b†
out,ωlm are the annihilation and creation operators acting on

the vacuum of the exterior region respectively.
Now the Kruskal vacuum |0〉K outside the event horizon is de-

fined by

aK ,ωlm|0〉K = 0. (15)

After properly normalizing the state vector, we obtain the Kruskal
vacuum which is a maximally entangled two-mode squeezed state
[20,21]

|0〉K =
√

1 − e−8πω(M−D)

∞∑
n=0

e−4nπω(M−D)|n〉in ⊗ |n〉out, (16)

and the first excited state

|1〉K = a†
K ,ωlm|0〉K

= [
1 − e−8πω(M−D)

]
×

∞∑
n=0

√
n + 1e−4nπω(M−D)|n〉in ⊗ |n + 1〉out, (17)

where {|n〉in} and {|n〉out} are the orthonormal bases for the inside
and outside region of the event horizon respectively. For the ob-
server outside the black hole, he needs to trace over the modes
in the interior region since he has no access to the information
in this causally disconnected region. Thus, the Hawking radiation
spectrum can be obtained by

N2
ω = K 〈0|b†

K ,ωlmbK ,ωlm|0〉K = 1

e8πω(M−D) − 1
, (18)

Eq. (18) shows that the observer in the exterior of the GHS dilaton
black hole detects a thermal Bose–Einstein distribution of particles
as he traverses the Kruskal vacuum.
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3. Quantum entanglement in background of GHS dilaton
black hole

We will discuss quantum entanglement with the coupled mas-
sive scalar field in the GHS dilaton black hole spacetime. We as-
sume that Alice has a detector which only detects mode |n〉A

and Bob has a detector sensitive only to mode |n〉B , and they
share a generically entangled state at the same initial point in flat
Minkowski spacetime before the black hole is formed. The initial
entangled state is

|Ψ 〉 =
√

1 − α2|0〉A |1〉B + α|1〉A |0〉B , (19)

where α is some real number which satisfies |α| ∈ (0,1), α and√
1 − α2 are the so-called “normalized partners”. Using Eqs. (16)

and (17), we can rewrite Eq. (19) in terms of Minkowski modes
for Alice and black hole modes for Bob. Since Bob is causally dis-
connected from the interior region of the black hole, we will take
the trace over the states in this region and obtain the mixed den-
sity matrix between Alice and Bob in the exterior region

ρAB = [
1 − e−8πω(M−D)

] ∞∑
n=0

ρne−8nπω(M−D),

ρn = α2|1n〉〈1n| + (n + 1)
(
1 − α2)[1 − e−8πω(M−D)

]
× ∣∣0(n + 1)

〉〈
0(n + 1)

∣∣
+ α

√
(n + 1)

(
1 − α2

)[
1 − e−8πω(M−D)

]|1n〉〈0(n + 1)
∣∣

+ α
√

(n + 1)
(
1 − α2

)[
1 − e−8πω(M−D)

]∣∣0(n + 1)
〉〈1n|,

(20)

where |nm〉 = |n〉A |m〉B,out.
To determine whether this mixed state is entangled or not, we

here use the partial transpose criterion [22]. It states that if the
partial transposed density matrix of a system has at least one neg-
ative eigenvalue, it must be entangled; but a state with positive
partial transpose can still be entangled. It is bound or nondistill-
able entanglement. Interchanging Alice’s qubits, we get the partial
transpose

ρ
T A
AB = [

1 − e−8πω(M−D)
] ∞∑

n=0

ρ ′
ne−8nπω(M−D),

ρ ′
n = α2|1n〉〈1n| + (n + 1)

(
1 − α2)[1 − e−8πω(M−D)

]
× ∣∣0(n + 1)

〉〈
0(n + 1)

∣∣
+ α

√
(n + 1)

(
1 − α2

)[
1 − e−8πω(M−D)

]|0n〉〈1(n + 1)
∣∣

+ α
√

(n + 1)
(
1 − α2

)[
1 − e−8πω(M−D)

]∣∣1(n + 1)
〉〈0n|,

(21)

and the corresponding negative eigenvalues of the partial trans-
pose in the (n,n + 1) block is give by

λn− = e−8nπω(M−D)[1 − e−8πω(M−D)]
2

× [
βn −

√
β2

n + 4α2
(
1 − α2

)[
1 − e−8πω(M−D)

]]
, (22)

where βn = α2e−8πω(M−D) + n(1 − α2)[e−8πω(M−D) − 1]. This
mixed state is always entangled for any finite value of D . The
degree of entanglement for the two observers here can be mea-
sured by using the logarithmic negativity which serves as an upper
Fig. 1. The logarithmic negativity as a function of the dilaton parameter D with the
fixed ω and M for different α.

bound on the entanglement of distillation [23,24]. This entangle-
ment monotone is defined as N(ρAB) = log2‖ρT A

AB‖, where ‖ρT A
AB‖

is the trace norm of the partial transpose ρ
T A
AB . Thus, we obtain the

logarithmic negativity for this case

N(ρAB) = log2

{
α2[1 − e−8πω(M−D)

]

+
∞∑

n=0

e−8nπω(M−D)
[
1 − e−8πω(M−D)

]

×
√

β2
n + 4α2

(
1 − α2

)[
1 − e−8πω(M−D)

]}
. (23)

Note that the logarithmic negativity N(ρAB) is independent of the
mass of the particle μ and the numerical coupling factor ξ . Thus,
we can conclude that the mass of the particle and the coupling
between the scalar field and the gravitational field do not influence
the entanglement. But it is obvious that the dilaton parameter D
has effect on the entanglement.

The trajectories of the logarithmic negativity N(ρAB) versus D
for different α in Fig. 1 show how the dilaton parameter D would
change the properties of the entanglement. The logarithmic neg-
ativity N(ρAB) decreases as the dilaton parameter D increases,
which shows that the monotonous decrease of the entanglement
with increasing D . It is interesting to note that except for the max-
imally entangled state, the same “initial entanglement” for α and√

1 − α2 will be degraded along two different trajectories, which
just shows the inequivalence of the quantization for a scalar field
in the dilaton black hole and Kruskal spacetimes. In the limit of
D → M , corresponding to the case of an extreme black hole, the
logarithmic negativity is exactly zero for any α, which indicates
that the state has no longer distillable entanglement. This is due
to the fact that the observer in the exterior of the GHS dilaton
black hole detects a thermal Bose–Einstein distribution of particles
given by Eqs. (18) as he traverses the Kruskal vacuum. This num-
ber of the particles N2

ω → ∞ in the limit of D → M , which means
that the observer detected a maximally mixed state which contains
no information.

We may also estimate the total correlations between Alice and
Bob by use the mutual information [25]

I(ρAB) = S(ρA) + S(ρB) − S(ρAB), (24)

where S(ρ) = −Tr(ρ log2 ρ) is the entropy of the density ma-
trix ρ . The mutual information quantifies how much information
two correlated observers possess about one another’s state. The
entropy of the joint state is
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Fig. 2. The mutual information as a function of the dilaton parameter D with the
fixed ω and M for different α.

S(ρAB) = −
∞∑

n=0

e−8nπω(M−D)
[
1 − e−8πω(M−D)

]
× {

α2 + (n + 1)
(
1 − α2)[1 − e−8πω(M−D)

]}
× log2 e−8nπω(M−D)

[
1 − e−8πω(M−D)

]
× {

α2 + (n + 1)
(
1 − α2)[1 − e−8πω(M−D)

]}
. (25)

We obtain Bob’s entropy in exterior region of the event horizon by
tracing over Alice’s states for the density matrix ρAB

S(ρB) = −
∞∑

n=0

e−8nπω(M−D)
[
1 − e−8πω(M−D)

]
× {

α2 + n
(
1 − α2)[e8πω(M−D) − 1

]}
× log2 e−8nπω(M−D)

[
1 − e−8πω(M−D)

]
× {

α2 + n
(
1 − α2)[e8πω(M−D) − 1

]}
. (26)

Tracing over Bob’s states, we can also find Alice’s entropy can be
expressed as

S(ρA) = −[
α2 log2 α2 + (

1 − α2) log2
(
1 − α2)]. (27)

Thus, we draw the behaviors of the mutual information I(ρAB) as
a function of the dilaton parameter D for different values of the
state parameter α in Fig. 2.

Fig. 2 shows that as the dilaton parameter D increases, the mu-
tual information becomes smaller. Note that except for the maxi-
mally entangled state, the same “initially mutual information” for
α and

√
1 − α2 will be degraded along two different trajectories.

In the limit of D → M , the mutual information converges to the
same nonvanishing minimum value again. Obviously if the “ini-
tially mutual information” is higher, it is degraded to a higher
degree. Since the distillable entanglement in the limit D → M is
exactly zero for any α, we can say that the total correlations con-
sist of classical correlations plus bound entanglement in this limit.

It is interesting to compare the results of the GHS black hole
with those in the Schwarzschild one. For both the GHS and
Schwarzschild cases, when describing the state (which involves
tracing over the unaccessible modes), the observers find that some
of the correlations are lost [13] due to the exterior region is
causally disconnected from the interior region of the black hole.
However, the entanglement is relevant to both the mass and dila-
ton parameters of the black hole in the GHS case, but it depends
only on the mass of the black hole in the Schwarzschild case.
4. Summary

We have analytically discussed the entanglement between two
modes of a coupled massive scalar field as detected by Alice who
stays stationary at an asymptotically flat region and Bob who lo-
cates near the event horizon in the background of a GHS dilaton
black hole. It is shown that the entanglement does not depend on
the mass of the particle and the coupling between the scalar field
and the gravitational field, but it decreases with increasing dila-
ton parameter D . It is found that the same “initial entanglement”
for the state parameter α and its “normalized partners”

√
1 − α2

will be degraded along two different trajectories as the dilaton in-
creases except for the maximally entangled state α = 1/

√
2, which

just shows the inequivalence of the quantization for a scalar field
in the dilaton black hole and Kruskal spacetimes. In the limit of
D → M , corresponding to the case of an extreme black hole, the
state has no longer distillable entanglement for any α. However,
further analysis shows that the mutual information is degraded to
a nonvanishing minimum value in this limit, which indicates that
the total correlations consist of classical correlations plus bound
entanglement.
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