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Abstract 

In the present paper, by means of a suitable comparison lemma sufficient conditions for uniform Lipschitz stability of 
an arbitrary solution of an impulsive system of differential-difference equations with variable impulsive perturbations are 
obtained. 
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1. Introduction 

The impulsive differential and differential-difference equations are an adequate apparatus for 
mathematical simulation of numerous real processes and phenomena studied in the theory of 
optimal control, physics, chemistry, biology, bioengineering sciences, technology, medicine, etc. 

On the other hand, however, the mathematical theory of the impulsive differential-difference 
equations is much more complicated in comparison with the corresponding theory of the impulsive 
ordinary differential equations (without delay) and the theory of the differential-difference equa- 
tions (without impulses). This is the reason why their theory is developing rather slowly [4]. 

In the present paper the notion of uniform Lipschitz stability of an arbitrary solution of an 
impulsive system of differential-difference equations with variable impulsive perturbations is 
defined. By means of a suitable comparison method sufficient conditions for uniform Lipschitz 
stability of a fixed solution of such a system are found. Since the impulses take place at the 
moments when the integral curves meet some previously fixed hypersurfaces of the extended phase 
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space, then for this type of equations phenomena may appear such as "beating" of the solutions, 
bifurcation, merging of the solutions, loss of the property of autonomy,  etc. This is the reason why 
for such equations one cannot  speak of Lipschitz stability of an arbitrary solution in the classical 
sense [1]. In relation to this, in the present paper the sense in which the notion of uniform Lipschitz 
stability of a given solution of an impulsive differential-difference equation with variable impulsive 
perturbations should be understood is made precise introducing the notion of uniform Lipschitz 
quasistability. 

We shall note that similar investigations for impulsive ordinary differential equations (without 
delay) were carried out I-2, 3]. 

2. Preliminary notions and definitions 

Let R n be the n-dimensional Euclidean space with norm 1. l; f2 be a domain in R", f2 ~ 0; h > 0; 
to e ~, N+ = [0, oo). Consider the initial value problem 

£(t)  = f ( t ,  x( t) ,  x ( t  --  h)), t ¢: Zk(X(t)), t > to, (1) 

x( t )  = ~o ( t ) ,  t e  [to - h, to], (2) 

Ax(t)lt=~,(x(t)) = Ik(X(t)), t > to, k = 1, 2, . . . ,  (3) 

where f :  (to, oo) x f2 x f2 --. Rn; Ik : f2 --} ~ ;  Zk : f2 --* (to, OO), k = 1, 2, ... ; Ax(t) = x ( t  + O) - 

x ( t  - 0); b"o: [to - h, to] ~ N ~. 
Introduce the following notation: ak = {(t, X)e ( to ,  oO)X f2: t = Zk(X)}, i.e., O'k, k = 1, 2, . . . ,  are 

hypersurfaces with equations t = Zk(X(t)); Co = C[[to - h, to], R "] is the class of all continuous 
functions ~ :  [to - h, to] --, R~; II ~ II = maxt~tto-h, to l[~( t ) l  is the norm of the function ~ e C o ;  
x( t )  = x(t;  to, &°o) is the solution of problem (1)-(3); ~--+(to, ~o )  is the maximal interval of type 
[to, fl) in which the solution x(t;  to, ~o)  is defined; )?(t) = x ( t  - h), t > to. 

Let &°o e Co,  Zo(X) -- to for x e O. 
We shall make a description of the solution x( t )  of problem (1)-(3): 
(1) For  to - h ~ t ~ to the solution x( t )  coincides with the function ~o  e Co. 
(2) Let t l ,  t2, ... (to < tl < t2 < ... ) be the moments  at which the integral curve (t, x( t))  of 

problem (1)-(3) meets the hypersurfaces {ak}~= 1, i.e., each of the points t l ,  t2, ... is a solution of 
one of the equations t = Zk(X(t)), k = 1, 2, . . . .  Let tp = h + h, l = 0, 1, 2, . . . .  

Construct  the sequence {zl}~_-o observing the following rules: 

(a) {~,)T=o = {t~}~=oU{t~}F=o. 
(b) to - to. 
(c) The sequence {~i}F=o is monotone  increasing. 
We shall note that in general it is possible that {tk}~=lg3{t~}~°=o ~ O. 
(2.1) For  Zo < t ~< ~1 the solution of problem (1)-(3) coincides with the solution of problem 

(1)-(2). 
(2.2) For  ~ < t ~< z~+ 1, i = 1, 2, . . . ,  one of the following three cases may  occur: 
(a) If z~e {tk}~=~\{t)}~=o, Z~ = tk and jk is the number  of the hypersurface met by the integral 

curve (t, x(t))  at the moment  tk, then the solution x( t )  of problem (1)-(3) coincides with the 
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solution of the problem 

~(t) = f  (t, y(t), x( t  -- h)), (4) 

y(tk) = X(tk) + Ii,(X(tk)). (5) 

(b) If z i6  {t~}~=o\{tk}2= 1, then the solution x(t) coincides with the solution of the problem 

~(t) = f ( t ,  y(t), x( t  - h + 0)), (6) 

y(zi) = x(zi). (7) 

(c) I f z i 6 ~ t  ~o~ ( . .~ f ,h ]  oo "( kfk= 1 )~l ~ t=O and zi = tk, then the solution x(t)  of problem (1)-(3) coincides with the 
solution of problem (6), (5). 

(3) If the point  X(tk) + Ijk(X(tk)) ~ f2, then the solution x(t) of problem (1)-(3) is not  defined for 
t > t k .  

(4) The function x(t) is piecewise cont inuous  in ~--+(to, No), cont inuous  from the left at the 
points  t l ,  t2, ... in J -  +(to, No) and X(tk + O) = X(tk) + Ij~(X(tk)). 

Together  with problem (1)-(3) we shall consider the problem 

2 * ( 0  = f ( t ,  x*(t) ,  x*( t  - h)), t ~ Zk(X*(t)), t > t~, (8) 

x*(t) = N*( t ) ,  t e  I t* - h, t*], (9) 

Ax*(t)[t=,,~x.,)) = Ik(X*(t)), t > tg, k = 1, 2 . . . .  , (10) 

where 

t ~ 6 [ t o ,  ~ ) ,  N * ~ C [ [ t 6  ~ ' - h , t * ] , [ ~ " ] .  

In t roduce  the following notation:  x * ( t ; t ~ , N * )  is the solution of problem (8)-(10); 
x*(t)  = x*(t; to, N*);  t*, t*, ... (t* < t* < t* < ... ) are the moments  at which the integral curve 
(t, x*(t)) meets the hypersurfaces trk, k = 1, 2, ... ; ~* = x* ( t  - h), t > to. 

Remark 1. If t o -  t*, N o ( t ) -  N*( t )  for t 6 [ t o -  h, to], then problem (1)-(3) is equivalent to 
problem (8)-(10). 

In t roduce  the following definition of uniform Lipschitz quasistability: 

Definition 2. The solut ion x(t) = x(t; to, No) of problem (1)-(3) is said to be uniformly Lipschi tz  
quasistable if 

(3M > 0)(V~ > 0)(3~ = ~(~) > 0) 

W N * e C o :  II N *  - No II < ~)(Vtoe ~) 

(Vt > to : I t  -- tkl > t/, k = 1, 2, ... ): 

[x*(t) -- x(t)[ ~< M[[ N *  - No ][. 
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In t roduce  the following conditions: 
(H1) f ~  C[(to, oo) x (2 x Q, ~"] .  
(H2) I f ( t , x ,  Yc)l <<. L , L  > 0 ,  ( t , x ,  YOe(to,  o o ) x O x O .  
(H3) I k e C [ Q ,  R"] ,k  = 1 , 2 , . . . .  
(H4) Zk e C 1 [t2, (to, oo)], k = 1, 2 , . . . .  
(H5) to < TI(X) < T2(x) < . . . .  x e ~ ~ .  
(H6) zk(x) --, oo as k --, oo uniformly in x e O. 
(H7) I + Ik : f2 --* O, k = 1, 2, . . . ,  where I is the identity in O. 
(H8) For  any ( t~ ' ,Se*)e[ to ,  o o ) x C [ [ t * - h , t * ] , R " ]  the solution of the problem without  

impulses (8), (9) does not  leave the domain  f2 for t e A, where 

~'(t*, oo) if tk* are a finite number ,  

A = [U~=  1 ( t *  t, t~'] if t* are infinitely many.  

(H9) J -  + (to, ~ o )  = (to, oo). 
We shall note  that  for the impulsive differential equat ions it is possible that  the so-called 

"beating" of the solutions occurs, i.e., a p h e n o m e n o n  where the integral curve (t, x(t)) meets several 
or infinitely many  times one and the same hypersurface. In the present paper  we shall consider 
problems of the type (1)-(3) for which "beating" of the solutions is absent. 

In t roduce  the following condition: 
(H10) The integral curve of each solution of problem (1)-(3) meets for t > to successively each 

one of the hypersurfaces a~, 0"2, . . .  exactly once. 
For  impulsive functional differential equat ions this p h e n o m e n o n  has been studied in detail. 

Effective sufficient condi t ions were found for the absence of "beating" of the solutions of such 
systems of equat ions [5]. 

3. Comparison lemma 

Since the momen t s  of impulse effect for the solutions x(t)  and x*( t )  of problems (1)-(3) and 
(8)-(10) are different, then in the est imation of the difference of these solutions a number  of 
obstacles appear. In order to overcome these obstacles we shall use a suitable compar ison  lemma. 

Consider  the scalar impulsive differential equat ion 

fi(t) = g(t ,u(t)) ,  t6(_tk, fk), k = 1 2, . . . ,  

U(tk + O) = ¢/k(U(tk)), k = 1, 2, . . . ,  

u(to + O) = Uo, 

(11) 

(12) 

(13) 

where g:( to,  oo)x R--*R; ~bk:N--* N, k = 1,2, ... ; to <_tl ~ tl <_t2 ~ t-2 < " ' "  < [ k  ~ t-k < " ' "  

and limk-.oo tk = 00; Uoe N. 
In t roduce  the following notat ion:  u(t) = u(t; to, Uo) is the solut ion of (11)-(13); ~-- + (to, Uo) is the 

maximal  interval of type (to, o)) in which the solution u(t; to, Uo) is defined. 
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T h e  so lu t ion  u(t; to, Uo) of (11)-(13) is def ined in the  fo l lowing way: 

271 

u(t; to, Uo) = 

Uo(t; to, Uo), to < t <~ _tl, 

U l ( t ; t l , U ~ ) ,  t-1 < l ~ t 2 ,  

. o o  

UR(t;fk, U~), fk < t ~< t_k+l, 
° ° °  

where  Uk(t;tk, U~), k = 1, 2, . . . ,  is the so lu t ion  of Eq. (11) for which  Uk(tk; Fk, U[)= U[ and  
u~ = ~kk(Uk--l(t_k; ?k-l ,U~'- l)) ,  k = 2, 3, . . . ,  and  Uo(t;to, Uo) is the so lu t ion  of  (11) for which  
Uo(t; to, Uo) = Uo and  u~- = ~Ol(Uo(_t~; to, Uo)). 

Defini t ion 3. The  so lu t ion  r : J -  + (to, Uo) ~ R of (11)-(13) (r(t) = r(t; to, Uo)) is said to be a maximal 
solution of (11)-(13) if any  o the r  so lu t ion  u : (to, o5) ~ R of(11)-(13) satisfies the inequal i ty  r(t) > /u  (t) 
for t ~ J -  + (to, Uo)n(to, e3). 

L e m m a  4 ( L a k s h m i k a n t h a m  et al. [3]). Let the following conditions hold: 
(1) The function m:( to ,  oo) --. N is piecewise continuous in (to, ~ )  with points of discontinuity of 

the first kind t = t_k and t = tk at which it is continuous from the left. 
(2) t o < t l ~ < f l < t 2 ~ < [ - 2 <  -.. < t k < ~ f k <  ... 
(3) limk-, o~ tk = ~ .  
(4) For k = 1, 2, ... the followin9 inequalities are valid: 

D+m(t) <<. g(t,m(t)), t6(tk, JR], 

m(tk + O) <<. d/k(m(tk)), 

m(to + O) <<. Uo, 

where y e C[(to ,  oo)x  R, R], ~kk~ C [ ~ ,  ~] ,  ~bk(U) is nondecreasing with respect to u and 

1 
D+m(t) = l im s u p -  [m(t + a) - m(t)].  

a ~ O +  O" 

(5) The maximal solution r(t; to, Uo) o f ( l l ) - ( 1 3 )  is defined in the set Y = (to, ~)\~k~= l(t_k, tk]. 
Then m(t) <<. r(t; to, uo) for t ~ 3-. 

4. Main results 

I n t r o d u c e  the  fo l lowing condi t ions :  
( H l l )  ~-  +(to, Uo) = (to, ~ ) .  
(H12) J - + ( t o , 6  e*) = (to, ~ ) .  
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Theorem 5. Le t  the fol lowin9 conditions hold: 
(1) Conditions (H1)-(H12) are met. 
(2) For (t, x*, Y*), (t, x, x )6 ( to ,  ~ )  × • × ~,  t ~ t~, t ~ tk, k = 1, 2 . . . . .  the inequality 

Ix* - x, f ( t ,  x*, ~*) - f (t, x, ~)]+ ~< 9(t, ix* - x[) 

is valid, where g ~ C [[to, ~ )  x ~ +, R] and 

1 
Ix, y]+ = lim s u p - [ l x + t r y [ - - l x ] ] ,  x , y ~ " .  

a ~ 0  + O" 

(3) For t ~ trk, k = 1, 2, . . . ,  the inequalities 

Jx*(t) - x( t)  + lk(X*(t)) -- Ik(X(t))t <<, 7k(lX*(t) -- x(t)l) 

are valid, where 7k6 C[R+,  N+] and 7k(U) is nondecreasin9 with respect to u, k = 1, 2, . . . .  
(4) For (t, x, Y) ~ (to, oo) x f2 x Q and k = 1, 2, ... the fol lowin9 inequalities are valid: 

(?x f ( t ,  x, Y) <<, O. 

(5) For x*, x ~ £2 and k = 1, 2, ... the inequalities 

I v y ( x * )  - v (x)l fl lx* - xl 
are valid, where 0 < f lk  = const. 

(6) The  funct ions Ok : ~ + ~ ~ + and 

qJk(U) = 7k((1 + Lfl)u) + Lflu, k = 1, 2, . . . .  

(7) There exist  constants M > 0 and 61 > 0 such that for  the solution r(t; to, Uo) of( l l ) - (13)  with 
~k defined in condition (6) o f  Theorem 5 the inequality r(t; to, uo) ~< Muo is valid for  0 <<, uo < ~ ,  

t ~ (to, oo)\Uk~ 1 (_tk, /-k]. 
Then  the solution x(t)  = x(t; to, ~o)  o f  problem (1)-(3) is uniformly Lipschitz  quasistable. 

Proof. Let r />  0. Choose 6 = 6(t/)= min(61, t l /(2Mfl + 1)). Let 5~*~Co,  115"*-5% I[ < 6 and 
x * ( t ) = x * ( t ; t o , 5 " * )  be the solution of problem (8)-(10) for which x * ( t ) = 5 ~ * ( t )  for 
t [ t o  - h, t o ] .  

From condition (H10) it follows that (t, x(t)) meets successively the hypersurfaces tra, o'2, ... 
respectively at the moments  tl ,  t2, . . . .  Since in the interval (tk, tk+l] x(t)  coincides with the 
solution of problem (4), (5) (Jk = k), we conclude that for tk < t <<. tk + 1 the function x(t)  satisfies the 
integral equation 

x(t)  = X(tk) + Ik(X(tk)) + f (s, X(S), X(S -- h))ds. (14) 
k 

Let t~, t~, ... be the moments  at which the integral curve (t, x*(t; to, ~ *)) meets the hypersurfa- 
ces trt, (rE, ... • Analogously to (14) for the solution x*(t)  we obtain 

x*(t)  = x* ( t* )  + Ik(x*( t*))  + f(s, x*(s), x*(s  - h))ds, t* < t <~ t*÷~. (15) 
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In t roduce  the no ta t ion  m ( t ) = l x * ( t ) - x ( t ) l ,  u o = l [ S P * - ~ o l l ,  t _k=min( tk ,  t*) and  tk = 
max(tk, t*). 

F r o m  condi t ion  (2) of  T h e o r e m  5 it follows that  for t ~ (tk, t-k], k = 1, 2, . . . ,  the following 
inequali t ies are valid: 

1 
D +re(t) = lim sup - [m(t  + 17) - m(t)] 

a ~ O  + (7 

1 
= lim s u p -  [ l x* ( t  + 17)-  x( t  + 17)1 - I x * ( t ) -  x( t ) l ]  

a_ . ,0  + 17 

~<l im sup ( l ' ] [ ( x * ( t + 1 7 ) - x ( t + 1 7 ) ) - ( x * ( t ) - x ( t ) ) ]  
a - * O  + \ o /  

- I f ( t ,  x*( t ) ,  x * ( t  - h)) - f ( t ,  x( t ) ,  x ( t  - h))] 

+ lim sup 1 {[ [x*( t )  - x(t)]  + 17[f(t ,  x*(t),  x*( t  - h)) - f ( t ,  x(t), x ( t  - h))]J 
a_,O + 17 

- I x * ( t )  - x(t) l} 
= [x*(t) -- x(t), f ( t ,  x*(t),  x*( t  -- h)) - f ( t ,  x(t), x ( t  - h))]+ 

<<, 9(t, [x*(t) - x( t ) l )  = 9(t, re(t)). (16) 

We shall es t imate  the expression m(tk + O)=  Ix*(tk + O ) -  X(tk + 0)1 for an a rb i t ra ry  positive 
integer  k. 

In  the case t-k = t* and  tk = tk f rom condi t ions  (H1), (H2), condi t ion  (3) of  T h e o r e m  5 and  (14) we 
obta in  

rn(ik + 0) = [ x*(t-k) + Ik(X*(tk)) -- X(tk)[ 

~< Ix*(ik) - x(!k) + Ik(x*(gk)) -- Ik(x(_tk))l + i f ( s ,  x(s), X(S -- h))l ds 
k 

O n  the o ther  hand,  for the expression I x*(t-k) --x(t_k)l we obtain  the es t imate  

I x*(fk) - x(tk)l  

f f~ ~< I x*(tk) - x(_tk)[ + i f ( s ,  x*(s), x*(s  - h))lds ~< m(_tk) + L(fk -- _tk). 
_k 

F r o m  condi t ion  (4) of  T h e o r e m  5 it follows tha t  

~ (x* ( f~ ) )  ~< ~(x*(t_~)). 

T h e n  f rom condi t ion  (5) of  T h e o r e m  5 we obtain  

0 ~ f~ - _t~ = ~k(x*(f~)) - ~ ( x ( t ~ ) )  

~< ~(x*(_t~))  - ~k(x(_tk)) ~< fll x*(_t~) --  x(_tk)l = flm(t_~). (17) 
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Hence  

m(tk + 0) ~< ?k(1 + Lfl)m(tk) + Lflm(tk) = ~kk(m(t,)). (18) 

In  the case when  tk = tk and  t ,  = t~' we again use (HI),  (H2), condi t ion  (3) of  T h e o r e m  5 and  (15) 
and  obta in  

m(tk q- 0) ~< [x*(tk) -- X(tk) "-[- Ik(X*(tk)) -- Ik(X(tk))l q- If(s, X*(S), X*(S -- h))l ds 
k 

<<. ?k(lX*(t_k) -- x(t-k)]) + L(tk -- t_k). 

O n  the o ther  hand,  

[X*(_tk) -- x(t-k)] ~< m(t_k) + L(tk -- tk), 

and  f rom condi t ions  (4) and  (5) of  T h e o r e m  5 we obta in  the est imate 

0 ~< fk - t~ = ~ ( x f f ~ ) )  - ~k(x*( t~) )  

72k(X( t_ k)) --  q2k(X*( t_k)) ~ fl l x (  t_k ) --  X*(_tk) [ = f lm(  tk). (19)  

Hence  

m(tk + O) <. yk(1 + Lf l )m(t , )  + Lflm(tk) = ~bk(m(tk)). (20) 

F r o m  inequali t ies (18) and  (20) there  follows the est imate 

m(tk + O) <~ d/k(m(tk)), k = 1, 2, . . . .  (21) 

We est imate  the expression re(to + 0): 

re(to + 0) = ]x*(to + 0) - X(to + 0)[ = ]x*(to) - x(t)l <~ II ~ *  - ~ o  II -- Uo. (22) 

Inequali t ies  (16), (21) and  (22) show that  the condi t ions  of L e m m a  4 are satisfied. T h e n  

]x*(t) - x(t)] = m(t) <<. r(t; to, [] S '~* -- SPo ][), 

for t~(to,  OV)\Ok~l (tk, tk], where  r(t; to, [] S p* -- ~ o  [[) is 

II ~ *  - ~ o  II. 
F r o m  (23) and  condi t ion  (7) of  T h e o r e m  5 it follows that  

Ix*(t) - x(t)l <. M II ~ *  - ~ o  II for tS( to,  ~ ) \  ~ (tk, tk]. 
k = l  

Moreover ,  f rom (17), (19) and  the choice of 6 we obtain  

0 ~ / -~  - tk  ~< f l l x * ( t k )  - x ( t ~ ) l  

<~ tiM II ~ *  -- ~ o  II ~< Mfl6 < ½rl. 

F r o m  the above  es t imate  it follows tha t  

{t re(to, ~ ) : l t  - tk I > tl} c (to, ~)\ U (t~, ~]. 
k = l  

(23) 

the solut ion of (11)-(13) for Uo = 
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Hence  

[ x * ( t ) - x ( t ) l < ~ M l l 6 e * - S ~ o l l  f o r l l 6 e * - ~ o l l < 5 ,  t > t o ,  [ t - & l > r / ,  k = l ,  2 , . . . .  

T h e o r e m  5 is p roved .  [ ]  

Coro l la ry  6. Let  the following conditions hold: 
(1) Conditions (H1) - (H12)  are met. 
(2) For ( t , x , £ ) e ( t o ,  OO)X,.Qxf2 and ( t , x * , ~ * ) e S ( x , ~ , p ) =  {(t ,x*,~2*)e(to,  OO)xf2xf2:  

Ix* - xl < p, Ix* - ~cl < p}, p > O, t ~ tk, t ~ t* ,  k = 1 ,2 ,  . . . ,  the following inequality is valid: 

Ix* -- x, f ( t ,  x*, ~*) - - f ( t ,  x, ~)] + ~< 0. 

(3) For x* e S(p) = Urn(to, ~ ){x*e f2 :  [x*(t) - x(t)[ < p} and k = 1, 2, ... , the following inequali- 
ties are valid: 

Ix*( t*)  - X(tk) + I , (x*( t*))  -- Ik(X(tk))l <. 7klx*tt~) -- x t t , ) l ;  II*(x*)I 

where ~k >>- 0 are constants. 
(4) For (t, x*, ~* )e  S(x, "2, p) and k = 1, 2, . . . ,  the following inequalities are valid: 

OTk(x*) , ,) 
Ox* f ( t , x  , ~  <<.0. 

(5) For x*, y* e S(p) and k = 1, 2 . . . .  , the inequalities 

IZk(X*)-  ~k(Y*)I ~< f l lx* -- y*[ 

are valid, where 0 < fl = const .  
(6) I-I~= 1 [Y* + (1 + yk)Lfl] < ~ .  
Then the solution x(t) = x(t; to, 6ao) o f  problem (1)-(3) is uniformly Lipschitz quasistable. 

T h e o r e m  7. Let  the following conditions hold: 
(1) Conditions (1)-(3) of  Theorem 5 are satisfied. 
(2) For x, x* e f2 and k = 1, 2, ... the following inequalities are valid: 

I T , (x*)  - r , ( x )  l f l ,  Ix* - x I, 

where flk >1 0 are constants. 
(3) For k = 1, 2, ... the inequalities 

Lflk < 1, 

ilk(1 - -  L f l , ) -  ' <~ fl 

are valid, where 0 < fl = const .  
(4) There exist constants M > 0 and 51 > 0 such that for  any solution u(t; to, uo) of  ( l l ) - (13)  for  

which 

Ok(U) = 7k(1 -- Lflk)-  lU + Lfl,(1 - Lf lk)-  lu, 
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the inequality 

u(t; to, Uo) <<. Muo 

is valid for 0 ~< Uo < t~l, tE(to, ~ ) \Uk=l ( tk ,  tk]. 
Then the solution x(t) = x(t; to, 5%) of problem (1)-(3) is uniformly Lipschitz stable. 

The proof of Theorem 7 is analogous to the proof of Theorem 5. 

C o r o l l a r y  8. Let the following conditions hold: 
(1) Conditions (1)-(3) of Corollary 6 are met. 
(2) Conditions (2) and (3) of Theorem 7 are satisfied. 
(3) [Iff=l (Tk + Lflk)(1 -- Lflk) -~ < ~ .  
Then the solution x(t) = x(t; to, 5¢o) of problem (1)-(3) is uniformly Lipschitz quasistable. 

T h e o r e m  9. Let the conditions of Theorem 5 hold, condition (2) being replaced by the following 
condition: 

(2a) For (t, x*, ~*), (t, x, ~) e (to, ~ )  x £2 x ~, t ~ t*, t ~ tk, k = 1, 2, . . . ,  the following inequality 
is valid: 

Ix* - x + a( f ( t ,  x*, 2c*) - f ( t ,  x, :~))l ~< Ix*  - x l  + ag(t, Ix*  - x l )  + e(a),  

where a > 0 is small enough and e(a)/a -~ 0 as a ~ O. 
Then the solution x(t) = x(t; to, S¢o) of problem (1)-(3) is uniformly Lipschitz quasistable. 

The proof of Theorem 9 is analogous to the proof of Theorem 5. The fact is used that from 
condition (2a) there follow the inequalities 

1 
D+m(t) = lim s u p -  [ I x * ( t  + ~) - x ( t  + ~)1 - Ix*( t )  - x ( t ) l ]  

a_~O + (7 

1 
lim s u p -  [ I x * ( t  + ~) - x ( t  + ~)t + e(a)  

a_~O + O" 

- I x*(t) - x(t) - a ( f ( t ,  x*( t ) ,  x * ( t  - h)) - f ( t ,  x( t ) ,  x ( t  - h)))12 

~< l im sup 
a - ~ O  + 

e(a) 1 
+ lim s u p -  [x*(t + a) - x*(t) - x(t + a) + x(t) 

O" a ~ O  ÷ O" 

- f (t, x*(t), x*(t - h)) + f (t, x(t), x(t - h))l 

= O. (24)  

C o r o l l a r y  10. Let the conditions of Corollary 6 hold, condition (2) being replaced by the condition: 
(2b) For ( t ,x ,~)~(to ,  ~ ) x O x Q  and (t ,x*,~*)~S(x,~2, p), t v ~ tk, t ~ t~', k = 1,2, . . . ,  the fol- 

lowing inequality is valid: 

Ix* -- x + a( f ( t ,  x*, Y*) - - f ( t ,  x, 2))[ ~< Ix* - x[ + e(o-), 
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where a > 0 is small enough and e(tr)/tr -~ 0 as tr -~ O. 
Then the solution x(t) = x(t; to, 6eo) of problem (1)-(3) is uniformly Lipschitz quasistable. 

Theorem 11. Let the conditions of Theorem 7 hold, condition (2) of Theorem 5 being replaced by 
condition (2a). 

Then the solution x(t) = x(t; to, ~9°o) of problem (1)-(3) is uniformly Lipschitz quasistable. 

The proof of Theorem 11 is analogous to the proof of Theorem 5. Inequalities (24) are used. 

Corollary 12. Let the conditions of Corollary 8 hold, condition (2) of Corollary 6 being replaced by 
condition (2b). 

Then the solution x(t) = x(t; to, 6¢o) of problem (1)-(3) is uniformly Lipschitz quasistable. 
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