
Science of Computer Programming 64 (2007) 205–222
www.elsevier.com/locate/scico

Coordination with multicapabilities

Nur Izura Udzir∗,1, Alan M. Wood, Jeremy L. Jacob

Department of Computer Science, University of York, York YO10 5DD, UK

Received 15 September 2005; received in revised form 15 March 2006; accepted 15 June 2006
Available online 26 September 2006

Abstract

In the context of open distributed systems, the ability to coordinate agents coupled with the possibility to control the actions
they perform is important. As open systems need to be scalable, capabilities may provide the best-fit solution to overcome the
problems caused by the loosely controlled coordination of tuple-space systems. Acting as a ‘ticket’, capabilities can be given to
the chosen agents, granting them different privileges over different kinds of data—thus providing the system with a finer control
on objects’ visibility to agents. One drawback of capabilities is that they can only refer to named objects—something that is not
universally applicable since, unlike tuple-spaces, tuples are nameless. This paper demonstrates how the advantages of capabilities
can be extended to tuples, with the introduction of multicapabilities, which generalise capabilities to collections of objects. We
also present discussions on implementation and application examples to illustrate the use of capabilities and multicapabilities in
tuple-space systems.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Tuple-space coordination; Capabilities; Multicapabilities

1. Introduction

Coordination is essential in open systems, where agents and active objects are free to join and leave the system
at any time, i.e. they need not be defined prior to starting the infrastructure. The discussion in this paper is based on
the tuple-space, or LINDA model [10,5,9] as an open distributed system. LINDA promotes generative communication
where agents interact by ‘generating’ data (an ordered collection of typed values called a tuple), using the primitive
out into a shared data space known as a tuple-space (TS). A tuple can be retrieved, destructively (using in) or non-
destructively (using rd), from the tuple-space by specifying a template whose pattern matches the tuple. Both rd and
in block if no matching tuple is available. Non-blocking versions of these primitives, inp and rdp were originally
introduced. However, the definition of these primitives was ill-formed, until the proposal of a principled semantics of
inp [12], based on a deadlock-breaking mechanism, which the work reported here enhances. The associative matching
retrieval is non-deterministic: a retrieving agent may get any tuple that matches its template; and a tuple may be given
to any agent specifying a matching template.

∗ Corresponding author.
E-mail addresses: izura@fsktm.upm.edu.my (N.I. Udzir), wood@cs.york.ac.uk (A.M. Wood), Jeremy.Jacob@cs.york.ac.uk (J.L. Jacob).

1 The author’s other affiliation is the Department of Computer Science, Universiti Putra Malaysia.

0167-6423/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2006.06.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82579077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico
mailto:izura@fsktm.upm.edu.my
mailto:wood@cs.york.ac.uk
mailto:Jeremy.Jacob@cs.york.ac.uk
http://dx.doi.org/10.1016/j.scico.2006.06.005


206 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

A popular alternative to the conventional point-to-point communication approaches, LINDA is distinguished
by its temporal and spatial separation properties, as well as its independence from any computation language or
machine architecture—which are essential properties for coordination in open systems. Now a mature technology,
research in tuple-space based coordination is providing general-purpose data spaces to create efficient large-scale
implementations of open distributed multi-component systems.

LINDA’s power for coordination in an open, heterogeneous environment is well known. However, in order to benefit
from the advantages of open and flexible coordination mechanisms, a number of challenging practical problems need
to be addressed. These have been noted by many authors in the past, and several solutions have been proposed, all
imposing varying degrees of additional control by the system. Unfortunately, getting the optimum balance between
flexibility and tighter control is difficult, and many of the proposed solutions lose the principal advantages that LINDA-
like systems have over many other models.

It is useful, however, to provide a finer control over the agents’ interactions and coordination, than is available
in the ‘classic’ LINDA model. This is particularly challenging in a decentralised, and distributed environment, while
at the same time maintaining the flexibility inherent in open systems. One aspect of having a finer control is to be
able to restrict what methods an agent is allowed to invoke on an object. Earlier work on coordination using object
attributes [29] demonstrated a simple solution to control agents’ access on objects in the system without resorting
to any complex cryptographic security approach. Together with access control lists (ACLs), this earlier paper also
discussed the advantages of capability-based control [8,14] in distributed environments. A capability [19] is an
unforgeable ‘ticket’ given to an agent that specifies which kind of actions on a certain object are permitted to the
holder of the capability. We can define capabilities in a more general way: as ‘visibility’ filters to create a more refined
control over agents’ actions on objects in the system.

Capabilities are particularly suitable for open distributed systems as they themselves are distributed in the sense
that the controlling attributes are held by the agents, rather than being attached to objects; and they are transferable,
where any agent can pass a copy of a capability it holds to another. In addition, a capability mechanism also supports
the flexibility inherent in distributed systems: it accommodates user-defined rights, not restricted to those pre-defined
by the system, thus allowing them to be dynamically changed; and its ‘domain flexibility’ feature allows agents to join
and leave the system simply by requesting (and possessing) appropriate capabilities to access the objects, as opposed
to having to modify numerous lists attached to each object relevant to the agents’ execution.

While various capability systems have been developed over the years, and is still an active research in some areas
such as in object-based systems, it does not enjoy the same popularity in the tuple-space based systems.2 Despite
the works of Chung and McDonald [7] and Gorla and Pugliese [11], for instance, it seems that capability-based
coordination has yet to demonstrate a significant impact to improve LINDA-like coordination in the open distributed
environment.

Although capabilities have their drawbacks, mainly related to their management, it has also been established
that capabilities offer more flexibility than access control lists [29,7,24], thus making them more attractive for
open systems. However, unlike access control lists, capabilities must refer to single named objects. In the LINDA

context, tuple-spaces are uniquely identifiable—therefore, they can be referenced by capabilities—whereas tuples are
anonymous: they can only be referred to using associative matching. We propose a solution to this problem by using
multicapabilities, as will be elaborated in the next section.

2. Multicapabilities

Multicapabilities extend capabilities for a collection of objects, rather than the traditional notion of a unicapability
referring to a single named object. Whereas a unicapability allows its holder to operate in a certain way on the
object it refers to, a permission in a multicapability allows the operation on any element within the group, not on the
entire group referred to by the multicapability. In the LINDA context, multicapabilities extend capabilities to apply to
nameless tuples without jeopardising the associative matching and the non-deterministic properties of the tuple-space
model. This enables various operations to be performed on the tuples, since they can now be referenced.

Tuples are classified by their multicapabilities. Two tuples with the same pattern (possibly having the same, or
different values) may be referred to by two different multicapabilities, while the same multicapability can refer to

2 At least, none have been proposed as a ‘pure’ capability system, as capabilities are combined with other security techniques.



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 207

Fig. 1. TS operations using multicapabilities.

(a collection of) many different tuples (with any value). To illustrate this, let us consider a simple example where an
agent, A, wishes to out a tuple of an integer and a character, <?int,?char>. Before referring to a class of tuples,
either for output or retrieval, it must first request an appropriate multicapability from the kernel.3 It will be given a
multicapability4 for the template with a unique multicapability name, e.g. α:

c1 = [α, 〈?int, ?char〉, P]

where P is the set of all permissions, granting the agent full rights to perform all operations on tuples which match the
template. For the purpose of this discussion, let us assume that P = {i, r, o}, where i , r and o represent permissions
to perform the operations in, rd, and out, respectively.

If A makes another request for a multicapability, c2 for a similar template from the kernel, it will receive a new
multicapability, different from c1, i.e. [β, 〈?int, ?char〉, P], where α 6= β.

Now assume another agent, B, requests a multicapability for a similar template from the kernel, and receives a
multicapability which it stores in c3: [γ, 〈?int, ?char〉, P], where γ 6= α 6= β.

Using the multicapabilities they possess, the agents can perform operations (within those permitted by P), e.g.
writing tuples into a tuple-space (Fig. 1).

Even though the templates are identical, they are distinguished by the multicapabilities used to create (out) them.
The result of any input operation performed by the agents will be limited to only the tuple(s) within the specified
multicapability group. For example, a rd operation for <?int,?char> performed by A using c1 will retrieve tuple
<1,‘a’> or <2,‘b’>, but not any of those in other groups. Likewise, if B performs an input operation

ts.in( c3<?int,‘a’> );

the operation will block—there is no matching tuple in the group identified by γ . The template <?int,‘a’> of
multicapability c3 cannot match tuple <?int,‘a’> of multicapability c1, even though they are of the same pattern.

Therefore, multicapabilities provide a partitioning of a tuple-space, thus enabling certain operations to be
performed on tuples of a specific group, but not on those of another group, even though both groups have the same
template.

2.1. Basic structure

A multicapability refers to a group of objects of a certain template, or pattern. In the LINDA context, a template is
defined as a sequence of types and/or scalars. We define a multicapability as a structure consisting of three parts: u, a
unique tag or identifier which acts as a reference to a collection of objects; t , a template of the objects; and p which
denotes the set of actions permitted on elements of the collection. In object-oriented terms, this set corresponds to a
sub-interface of the methods in the objects’ class. Hence, a multicapability c can be written as [u, t, p]. In the case of
unicapabilities, the capability for a single object o is also the ‘handle’ to the object, with permission p attached, [o, p].
We shall use the term ‘capability’ to refer to capabilities in general, and the terms ‘unicapability’ or ‘multicapability’
accordingly when referring to a specific class.

3 The term ‘kernel’ in this paper refers to the underlying distributed coordination mechanism that controls all operations in the system. It
represents the totality of the LINDA ‘middleware’.

4 A more formal definition of the multicapability structure will be given in Section 2.1.



208 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

The appropriate capability must be presented to the kernel for verification before an action is allowed to be realized.
Having the required permission would mean that the action is valid for the target object. If an agent attempts to perform
an action, a on object o, using capability c = [o, p], it will be allowed to take place (succeed) if a ∈ p. Likewise,
in the case of multicapability, c = [u, t, p]: an action a with a value v is allowed to take place if a is within the
permission set p of c, and v matches the template t of the multicapability group identified by u. Therefore, we define
a function allowed where

allowed([u, t, p]) = {a.v|a ∈ p ∧ v match 〈u, t〉}.

It should be reiterated that we view the permissions in a capability as a set of names of methods that the holder
is allowed to invoke, and so are not limited to access control, but represent a more general concept: visibility—an
agent cannot see a method that is not listed in the capability it holds. As the term ‘object’ can refer to anything that is
appropriate to the system, the set of rights may well include any appropriate, even user-defined, operations.

The structure of our model is based on the following rules:

(1) Every tuple-space and tuple operation requires a capability. Our model requires that each agent performing an
operation on a tuple must obtain a unicapability to access the tuple-space where the tuple resides (or to be written
to), as well as the multicapability to operate on the tuple. Therefore, prior to performing an operation, all agents
must first hold:
(a) a unicapability for the target tuple-space, and
(b) a multicapability for a specified template.

(2) Every request for a new capability returns a new, unique capability (even for identical patterns), with full rights.
(3) All agents have the full capability (with full rights >) for the universal tuple-space (UTS), i.e. a default space that

exists throughout the life-span of the system, and that is (publicly) accessible by all agents in the system. This
unicapability only represents the permission to perform operations on the contents of the universal tuple-space in
general, but multicapabilities for tuples within the universal tuple-space are required in order to operate on these
tuples (See Rule 1).

(4) Each agent has a default universal capability for capabilities, cc[〈?cap〉] with ‘the least’ rights, where cap is
a capability type, to enable capabilities to be passed among the agents. For the purpose of the discussions in
this paper, we assume cc to be [ℵ, 〈?cap〉, {r, o}] which allows non-destructive read and write permissions on
capability type tuples.

The capability data (unique identifier, reference/template, and permissions) are assumed to be securely
encapsulated in the capability and only interpretable by the kernel when the capability is presented for verification.
To avoid confusion, it is important not to see multicapabilities as ‘tagging’ tuples—this leads to an ACL-like view.
Rather, it is better to view tuples being grouped into regions specified by the multicapabilities referring to them. Each
region then exists (virtually) in every tuple-space.

2.2. Operations on multicapabilities

A multicapability may be copied to be given to other agents. Each copy would have the same unique tag as
the original, thus referring to the same group of objects. However, the template and permissions in a (copy of
a) multicapability can be reduced to allow agents more control over the visibility of the objects they created to
other agents. The permissions p2 in the reduced copy of a multicapability should not exceed those in the original
multicapability (p1), i.e. p2 ⊆ p1; whereas its template can be the exact copy of the original template, or specialised
to a sub-type of the same pattern.

We define two operators for this purpose: − and @, where c − s is capability c without the permissions in s, and
c@s is c with only the permissions in s that c also possesses. Let c = [u, t, p] be a multicapability, and s a set of
permissions where s ⊆ p, then

− ∈ Mulc × P(P) −→ Mulc @ ∈ Mulc × P(P) −→ Mulc
[u, t, p] − s = [u, t, p\s] [u, t, p]@s = [u, t, p ∩ s]

Even though the two operators serve similar purposes, they are separately defined for convenience, for instance, it is
easier to express a sub-multicapability with only two (out of ten) permissions granted using @, rather than using −.



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 209

It should be emphasised that there is no way of adding permissions to a multicapability, nor to expand the scope of
the template in the multicapability. For instance, if the template in the original multicapability is <?int,‘x’>, then
a copy of it can never have a template with the second element set to ?char as this will generalise the template, and
would defeat the purpose of the use of capabilities. Therefore, a derived-from � relation can be defined as:

[u, t, p] � [v, s, q] ≡ u = v ∧ t ≤ s ∧ p ⊆ q

where t ≤ s means ∀i ∈ 1..n • ti ∈ si ∨ ti = si , and i is the index of an element in a template; n is the length of the
template, i.e. the maximum number of fields in a template allowed by the system.5

Derivation contributes to finer control over the objects in the system as it provides a means to have different versions
of a multicapability (with different restrictions) referring to tuples of the same template.

2.2.1. Example: Reader–Writer
Consider a simple example of Reader–Writer, assuming that there are only two agents in the system: one reader

and one writer. Suppose that the Writer agent intends to out a tuple <1,2>. Requesting, and consequently receiving
the appropriate multicapability from the kernel, the Writer may then make a modified copy of the multicapability if
necessary, by ‘reducing’ the template and the list of rights, before writing the tuple (using the derived multicapability)
into the universal tuple-space.

The Reader agent wants to read a tuple that matches the template <?int,2>. If it requests a new multicapability
for the template, it will receive a unique multicapability, different from the one given to Writer. This means that
it can never retrieve any tuple produced by Writer (or any other producer, for that matter) with its newly acquired
multicapability. If Reader wishes to read the tuple out’ed by Writer, it must use the same multicapability (or a
derivation) as the tuple’s. One way of doing so is to obtain it from Writer: since every agent automatically gets the
default cc, Writer can pass the tuple containing the said multicapability to Reader via the universal tuple-space (UTS).

The following code excerpts illustrate the agents’ operations where Writer outs the tuple <1,2> and the restricted
multicapability [α, 〈?int, ?int〉, {r, o}]; and Reader retrieves the necessary multicapability before reading a two-integer
tuple using the multicapability.

Writer:
// Request new multicapability
c1 = newcap( <?int,?int> );
// c1 now is [α,<?int,?int>,{i,r,o}]
UTS.out( c1<1,2> ); // write tuple into UTS
c1 1 = c1 - {i}; // reduce permission
// c1 1 holds [α,<?int,?int>, {r,o}]
UTS.out( cc<c1 1> ); // write capability for the tuple

Reader:
// Retrieve the multicapability
cap1 = UTS.in( cc<?cap> );
// Assuming cap1 now holds [α,<?int,?int>,{r,o}]
data = UTS.rd( cap1<?int,2> );

Prior to performing an action, the kernel will verify that the intended action is valid based on the multicapability
presented by the agent. To out a tuple, Writer has to present the multicapability c1 for verification, and since the out
permission in its set of rights verifies that the action is valid, the action is allowed to proceed. Note that Writer can
out a tuple of c1 or c1 1: both multicapabilities refer to the same collection of tuples.

After obtaining c1 1, Reader can specialise the values (in the template) to suit its need. As c1 1 is a sub-capability
of c1, it still refers to the same object(s) as c1, but with restricted permissions.

Note that we are assuming they are the only agents in the system. In real systems with a large number of
agents, however—due to the non-deterministic property of LINDA—there is no guarantee which agent might read

5 Note that a more general and expressive condition based on sub-typing is possible. However, for simplicity we only consider the relation based
on templates here.



210 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

the capability tuple c1 1, hence gaining access to the tuple produced by the Writer. Should the two agents wish to
eliminate interference, they can establish private channels for secure conversation, as described in [27].

2.3. Combining multicapabilities

In this paper, we also present preliminary work on combining multicapabilities: operations which take one or two
multicapabilities and produce a new multicapability. For example, three obvious operations that might be performed
on two multicapabilities are the union, intersection, and relative negation. Naturally it is sensible to only allow the
combination of those multicapabilities with a similar pattern that belong to the same agent. The multicapability
produced as a result of these operations may be stored in another capability variable.

2.3.1. Union
Assuming the function allowed given in Section 2.1, the union of two multicapabilities c and d can be defined by

allowed(c ∪ d) = allowed(c) ∪ allowed(d).

The expression produces a multicapability referring to the templates of either c or d, and represents permissions if
either c or d (or both) grants that permission. If both multicapabilities refer to the same collection of tuples, i.e.
cu = du ,6 then

c ∪ d = [cu, ct , (cp ∪ dp)].

To further elaborate on this operation, let us consider the following multicapabilities:

c1 = [α, 〈?int, ?char〉, {i, r, o}]

c2 = [β, 〈3, ?char〉, {r, o}]

If c1 and c2 refer to the same group, i.e. if α = β, writing a combined tuple of these multicapabilities, e.g.

ts.out( (c1 ∪ c2)<3,‘a’> );

produces the tuple into the group referred to by both multicapabilities. It should be emphasised that the semantics
allow the tuple to be of either templates—which is reasonable as the agent does possess these multicapabilities. The
union operation merely gives it an added advantage. The produced tuple can be retrieved by any agent possessing
either c1 or c2, and not necessarily both multicapabilities. However, as the tuples are written using multicapabilities
of different rights, then any agent who has c1 (or both multicapabilities) can in or rd the tuple, while those with c2
can only rd it.

Holding a capability resulting from a union of two capabilities—received as a ‘package’ from some agent—is
different from holding each of the two capabilities separately: firstly, a retrieval using the union must search both
groups; the holder cannot choose which component individually. Secondly, the holder cannot ‘extract’ one capability
from the ‘union capability’ to give to another agent.

A read operation using the union of c1 and c2, would operate on the tuples that match the templates <3,‘a’> or
<?int,?char> from the region of c1 or c2.

If the multicapabilities refer to different collections of objects, then the operation should be a disjoint union. Uniting
(conjoining) the templates and the permission sets would be semantically incorrect, as the permission sets cannot be
merged—even though they contain method(s) with the same name, these methods are of different signatures, e.g.
method m in (signature) c is not the same as method m in d: they are applicable to different collections of objects.
Therefore, a disjoint union of multicapabilities referring to two different groups is defined as

c ∪ d = [cu, ct , cp] ] [du, dt , dp].

This means that the intended action will be performed on either group non-deterministically chosen by the kernel.
Performing a disjoint union on c and d , where cu 6= du , would mean that the system will (non-deterministically)

choose one of the groups, before performing the action a on an object in the said group. Assuming the group selected

6 We shall use cu , ct , and cp hereafter to refer to the unique tag u, the template t , and the permission set p of multicapability c.



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 211

is cu , the action succeeds if a ∈ cp, and fails otherwise. In LINDA, however, there is another (richer) possibility: if
a /∈ cp, instead of failing, the action blocks (on cu), but the system may allow the action to be performed on the other
group, i.e. du . If the action succeeds this time around, upon completion, the previously blocked action will be broken.

This is useful when an agent is looking for a particular tuple, but does not know which group the tuple belongs
to. Since the agent has multicapabilities to both groups, it can simply perform a read from (a disjoint union of) cu or
du . Without the union operation, the agent needs to attempt to read from one group, before the other, and risks being
blocked on the first attempt, before it has the chance to try reading from the second group. With union, the probability
of being blocked can be reduced. Indeed, what is more, possible deadlocks can be avoided—a sequence of two input
operations may deadlock, whereas the union (which is equivalent to a parallel combination of two input operations)
will only block until a tuple becomes available in either group.

The union operation allows actions permitted by any of the two multicapabilities to be performed on either of the
two templates for the same collection of tuples. However, if the union involves different collections of tuples, the
action will only be permitted if it is allowed by the permission set of the group non-deterministically selected by the
kernel.

Example. Consider a problem where an agent wishes to produce a tuple containing an arbitrary capability <prodCap>
which is removable by the producer agent itself, but can only be read by others. We know that a capability tuple can
be accessed using the universal cc which does not allow destructive read. For explicit garbage collection, the producer
must request another capability (for a capability type), e.g. cc1, which grants full rights, including in. As sketched
in the code excerpts below, it can then write the tuple <prodCap> using the union of the new capability and cc
(assuming + is the ASCII representation for union). Since the other agents do not have a copy of cc1, they can only
read <prodCap> using cc. The tuple can later be removed by the producer using cc1.

Producer: Other(s):

cc1 = newcap( <?cap> ); ts.rd( cc<?cap> );
ts.out( (cc+cc1)<prodCap> ); // in is not allowed
... ...
ts.in( cc1<?cap> );

2.3.2. Intersection
Generally, an intersection of two multicapabilities c and d is defined by

allowed(c ∩ d) = allowed(c) ∩ allowed(d)

which is a multicapability referring to the ‘lesser’ (i.e. the less generic) template of the two, and represents permissions
only if both c and d grant that permission. If c and d refer to the same group of objects, (cu = du), then

c ∩ d = [cu, (ct ∩ dt ), (cp ∩ dp)].

Otherwise, if c and d refer to different groups, then

c ∩ d = [(cu, du), (ct ∩ dt ), (cp ∩ dp)].

As the permission sets are intersected, an action a will always be valid for both regions, except, of course, if
a /∈ (cp ∩ dp) or if (cp ∩ dp) = ∅. (cu, du) implies that the action will be performed on both regions simultaneously.

Using the multicapabilities c1 and c2 defined in the previous section, an out operation using (c1 ∩ c2) will write
a tuple which can only be of the template <3,?char> which is ‘less’ than <?int,?char>. The tuple is written into
the region referred to by both multicapabilities, if α = β; otherwise, if the multicapabilities refer to different regions,
then it is written into the ‘shared’ (i.e. intersecting) section of the two multicapabilities, which is tagged with (α, β).
This tuple can only be retrieved by an agent that possesses both multicapabilities. In the previous example of c1 and
c2, the kernel will only allow the tuple to be rd—the only permission granted by both multicapabilities. The read
operation using (c1 ∩ c2) will operate on tuples of the more restricted version of the two templates that exist in both
groups, which can be regarded as the shared region of α and β.



212 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

Therefore, intersecting two multicapabilities allows actions limited to only those permitted by both
multicapabilities to be performed on the less generic of the two templates.

Example. One way of modelling the ‘shared’ section is by attaching special ‘shared’ tags to virtual copies of the
tuple. ‘Virtual copies’ implies that there exists only one tuple that should be accounted for: a removal of one of these
copies would result in all the others being deleted. This would be useful in the case of data caching (see 4.3), where
the producer can write the tuple into different partitions (represented by different multicapability regions) of the tuple-
space using the intersection of the capabilities for these partitions. Whenever a tuple is in’ed, all virtual copies of the
tuple (with the same ‘shared’ tags) can automatically be deleted.

2.3.3. Negation
Another conceivable operation is the relative negation of multicapabilities, which is defined by

allowed(c − d) = allowed(c) − allowed(d).

The produced multicapability has a permission only if c grants that permission, but d does not, and operates on tuples
of the template of c, except those of the d template.

c − d = [cu, (ct ∩ ¬dt ), (cp\dp)].

For example, let c3 be another multicapability as an addition to the previously defined c1 and c2,

c3 = [γ, 〈3, ?char〉, {i}].

An output operation using the negation expression (c1 − c3) will write a tuple of template <?int,?char>,
excluding any tuple whose first element is 3. This tuple will be written in the c1 region, and can only be retrieved by
agents holding a copy of c1; it is not accessible with c3.

Similarly, an input operation using the expression (c1 – c3) will operate on tuples in the c1 region, while selectively
disregarding any tuple that matches the template of c3. This provides further filtering mechanism for agents who wish
to retrieve a certain template of data, except those with certain values.

The relative negation allows actions permitted by the multicapability on the left-hand side of the operator, except
those in the right-side multicapability to be performed on any tuple that matches the left-side template, but not the
other.

Example. Consider an administrative application agent which processes student records. To access all the student
records, the agent has been given a capability call, for example. If the agent wants to retrieve records of all students
except the first year students, it can produce a restricted copy of call, specialize the Year field to ‘1’ (assuming Year
is one of the fields in the tuple), and perform the negation operation (call − cy1) in its rd operation.

The combinatorial operations of capability expressions offer richer possibilities for capabilities to be manipulated to
provide a finer control on objects, visibility to agents in open systems. The above operations (union, intersection, and
relative negation) are the most obviously applicable given the fundamental properties of a multicapability. There may
be others that might usefully be defined—a possible future work—to identify a sufficient set of operations. This paper
focuses on identifying conceivably useful operations which can be performed on multicapabilities (and capabilities),
and work on the feasible implementation is ongoing.

3. Implementation overview

Every LINDA implementation assumes different characteristics. In this paper, our LINDA-like capability-based
system Lindacap assumes an implementation having the following main characteristics:

• There is a public universal tuple-space (UTS) accessible by all.
• All agent communications are done solely in terms of tuple-space operations.
• Every tuple-space, with the exception of the universal tuple-space, is explicitly created by agents in the system.
• tuple-spaces in the kernel are flat structured. Every tuple-space is created at the same level, that is, tuple-spaces

cannot be created inside others.
• Capabilities (handles/references) for tuple-spaces are first class objects.



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 213

Fig. 2. Creating an object in capability system.

3.1. Implementing unicapabilities

Like many regular capability-based implementations, when an object is created, a capability for the object is
returned to the creator [26,25,7]. Our view is that a capability itself is an object, just like other objects. This view
differs from that of some authors (e.g. Peterson [20]) who believe that capabilities should be distinguished from
other kinds of objects, and interpreted by an abstract machine on which higher-level programs run. Therefore, being
an object, a capability has methods associated with it that define the operations allowed on the capability itself, as
depicted in Fig. 2(b).

When a request to create a tuple-space is sent to the kernel, the kernel will call the necessary functions to create
a new tuple-space and a unique capability, which will then be used as the tuple-space handle. The capability consists
of a unique identifier, which is the identifier of the tuple-space itself, and the access rights. Naturally, by default,
the capability grants full rights to access the tuple-space. For simplicity, we define three rights associated with a TS-
capability: the right to out a tuple into the said tuple-space, and the rights to in and rd a tuple from the tuple-space.
This capability is then returned to the requestor, who may later produce a modified, or an exact, copy of the capability
to be given to another agent.

Tuple-spaces have unique handles: in a non-capability based system, a tuple-space handle contains a unique
identifier pointing to the actual tuple-space. In a capability-based system, capabilities can be used as the handle to
the tuple-space—containing the tuple-space identifier with some extra internal states and a set of rights that defines
how the tuple-space will be ‘viewed’ by an agent holding the handle. These handles can be passed between agents via
tuple-spaces in a tuple.

3.2. Implementing multicapabilities

In a non-capability system, each tuple-space can be seen as associated with a single tuplecontainer, a data
structure used to store the tuples; in Lindacap, a tuple-space may have more than one tuplecontainer, each
tuplecontainer represents a unique multicapability group. Multicapability groups are implemented as regions in
any tuple-space, and one multicapability region is not restricted to one particular tuple-space. Just as tuple-spaces are
distributed over multiple hosts, multicapability regions are distributed over tuple-spaces.

A multicapability object is created via a newcap call to the kernel, which returns a unique multicapability object
with full rights (Fig. 3(a)). Whereas a unicapability object (e.g. a TS-capability) is returned for the newly created
object (following a request), as shown in Fig. 2(b), requesting for a multicapability would return a new multicapability
object for the specified pattern of objects (say a group of tuples), but the referred region is not yet created. The region



214 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

Fig. 3. Requesting a multicapability and creating the region.

will only be created when the first tuple is outed using the multicapability (Fig. 3(b)). The reason for this is that a
multicapability region is not associated with any tuple-space, therefore, its location cannot be determined prior to an
out, which specifies the destination tuple-space.

3.3. Passing capabilities

In order for information to be shared among agents, capabilities may be passed between them, via tuple-spaces,
copies of capabilities being restricted if needed before being disseminated to other agents. Capabilities, like any first
class objects, may be elements of tuples and thus stored within tuple-spaces. With the universal primordial capability,
cc, these tuples may be retrieved by another agent, which will then be able to access the object referred to by the
capability.

Our implementation also incorporates tuple monitoring [15] for the kernel to maintain some information on the
capabilities being passed as tuple elements, which will be essential for garbage collection and deadlock detection
(see 4).

3.4. Descriptions of the primitives

Capabilities in Lindacap are created via calls to the kernel. The methods in capabilities, such as restriction,7 are
invoked in a similar way. The primitives to create and restrict capabilities in Lindacap are:

TScap TupleSpaceC (): This call creates a tuple-space in the server, and a unique capability object, TScap with
full rights, acting as the handle to the tuple-space, is returned. Capabilities are first class objects.

TScap restrictTScap (TScap ts, Bool p out, Bool p rd, Bool p in): This method creates and returns
a new instance of a capability object for ts , with the set of rights as specified in the parameter list.

Multicap newcap (Template tmp): This call to the kernel creates a new instance of a multicapability object for
template tmp, and returns the multicapability with unique identifier and a full set of rights to the caller.

Multicap restrictMcap (Multicap mcap, Template tmp, Bool p out, Bool p rd, Bool p in): This
call creates and returns a new instance of a multicapability object for mcap, with the same identifier, but the
template and the set of rights of this new Multicap object may be overridden, as specified in the parameter
list.

7 We do not discuss the other methods of capabilities as they are not relevant to the discussion in this paper, but they include duplication,
restriction, transitivity, revocation, and combination.



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 215

The basic input/output primitives in Lindacap extends the basic primitives of LINDA with multicapabilities as
additional parameters. The primitives are:

void out (TScap ts, Multicap mcap, Tuple tup ): Given that the TScap and Multicap grants the out

permission, this method stores a Tuple in the region specified by Multicap, creating a new region if none
exists for that multicapability.

Tuple rd (TScap ts, Multicap mcap, Template tmp ): If both the TScap and Multicap grants the rd

permission, this method searches for a Tuple matching the template tmp within the region specified by
Multicap in the tuple-space ts . If a matching tuple is found, it is returned; otherwise, the method blocks
until one becomes available.

Tuple in (TScap ts, Multicap mcap, Template tmp ): This method executes in a similar way to rd , except
that the matching tuple is removed from the mcap region and returned.

Lindacap also provides predicated primitives inp and rdp [12,22,23], which are similar to the descriptions of in
and rd above, except for their unblocking properties.

3.5. Implementation issues

As mentioned earlier, capabilities represent the validity of actions attempted by agents on objects, without which
the action will not be allowed to take place. In LINDA, there are three possibilities if the agent does not possess a valid
right for an action: the action either blocks, throws an exception, or fails. We now discuss the benefits and problems
of each choice. For the purpose of the discussion, we assume a system where it is not possible to statically check the
capabilities due to the openness of the tuple-space paradigm.

Blocked input/output operations affect the system differently. As discussed in [29], superficially, the agent cannot
detect whether an input operation is blocked because of either (1) the unavailability of a matching tuple, or (2) the
permission being denied due to an invalid capability. Thus, from the user’s point of view, there is no difference in
the behaviour of the system. A blocked output operation, however, would be noticeable as a fundamental alteration
in the semantics of out has been forced—out never blocks in the standard LINDA model. In both input and output
operations, if the operation blocks due to an invalid capability—which essentially means that it “blocks until the agent
possesses the required capability”, and it is obvious that it cannot ‘possess’ the capability simply by waiting there—it
will block forever. In order to obtain the capability, the operation must first return to the agent, who will send a request
(and wait) for the appropriate capability before retrying the operation.

If the implementation has an exception handling mechanism, then an exception is raised and the agent can resume
its execution. Unfortunately, the implication of this is that the orthogonality of the coordination and computational
language is broken [6]. Nevertheless, it would be sensible and practical to implement the system in such a way for the
operation to simply throw an exception, to enable the agent to continue—possibly proceeding to obtain the necessary
capability, or perhaps to look for a tuple (matching the template it requires for its execution) elsewhere. This is where
the combination expressions can become useful: an agent (a lazy one at that) can simply present all capabilities it holds,
and let the kernel choose which capability to use to suit the agent’s attempted action—one that has the permission to
perform the action on the specified template.

However, all these possibilities result in semantics for out which differ from classical LINDA.

4. Application examples

This section discusses three examples of applications in open distributed systems which now become possible,
or are improved, using multicapabilities: extending the garbage collection mechanism to handle unusable tuples,
providing a finer control for deadlock breaking mechanism, and replication of data. Garbage collecting tuples has not
been possible before in the tuple-space model: only tuple-spaces can be garbage collected using Ligia [16]. As for
deadlock detection and data replication, multicapabilities provide means to improve these applications.



216 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

4.1. Garbage collection on tuples

Resource management is vital in distributed systems that involve ubiquitous and persistent computing. One
resource that needs to be managed is memory, which is limited and can be reclaimed through garbage collection.
Garbage collection (Ligia [16]) has already been proposed for standard LINDA with multiple tuple-spaces to avoid
memory exhaustion. The implementation, however, was restricted to garbage collection of tuple-spaces, but not tuples:
the main problem in introducing garbage collection for tuples is the lack of sufficient information about their ‘usage’.
This information can be maintained if we can reference a particular tuple, or a group of tuples—something that is
not possible in LINDA. While tuple-spaces have unique identities, tuples (and templates) do not: they are referred
to by values instead of names. Thus it is difficult to employ garbage collection on tuples without modifying the
model: giving unique names to tuples will certainly break one of the fundamental characteristics of LINDA: associative
retrieval. However, this can be avoided with multicapabilities as the kernel can now reference a collection of nameless
tuples to perform garbage collection on them, by garbage collecting the multicapability regions themselves.

In Menezes’s Ligia, the universal tuple-space (including its contents) can never be garbage collected, therefore any
tuple put into it will persist in the system forever until explicitly removed, or the system terminates [16]. The number
of tuples in the universal tuple-space may grow, thus consuming valuable memory space. With multicapabilities it
becomes possible to garbage collect some of these tuples as we can specify region(s) in the universal tuple-space to
be garbage collected, without having to remove the whole universal tuple-space—thus providing a finer control over
the system.

A simple and naive strategy for implementing garbage collection is to run garbage collection when and every time
the reference to an object has been decreased to zero/nil; and one reason for a reference to be deleted is when the
agent holding the reference dies. However, it is not practical to run a garbage collection every time an agent dies,
as an essential part of the tuple-space communication is temporal separation—data produced by an agent can be
consumed by another, long after the agent dies. We also know that performing garbage collection can be an expensive
operation (in terms of kernel load). Therefore, it is more efficient to garbage collect only when needed, i.e. when there
is insufficient memory space available. Even though this strategy involves a larger amount of work to be carried out
at one time compared to the former, garbage collection is likely to be performed less often.

Experiments have been carried out to demonstrate our claim. These experiments compared two capability systems
for memory exhaustion: one incorporates the garbage collection mechanism for tuples, whereas the other does not.
The characteristics for the systems are:

(1) Both systems have garbage collection for tuple-spaces, based on Ligia.
(2) All interactions are via the universal tuple-space, which is not being garbage collected—the TS garbage collection

mechanism [16] cannot be performed on the universal tuple-space. Therefore, we can be certain that these
experiments only concern garbage collection on tuples, and not on tuple-spaces.

(3) Each agent requests their own multicapability with no capabilities being passed among the agents, which implies
that all the agents used different multicapability regions. Thus, these regions cannot be referenced by any other
agents, and are considered garbage when the agents creating them die.

The experiments involved running a group of agents in limited memory space, where each agent requests a new
multicapability, outs a number of tuples into the universal tuple-space using the newly acquired multicapability, and
then dies after explicitly deleting the multicapability. The agents’ code snippet is given below.

cap = newcap( <int,int> );
for (t = 0; t < 10000; t++)

UTS.out( cap<1,t> );
del cap;

As expected, the server with no tuple-garbage collection eventually ran out of memory, whereas the server with
garbage collection did not encounter the same problem, in fact it was able run indefinitely.

For the purpose of these experiments, we used the following strategy: perform garbage collection every time a
reference to a multicapability region is removed (i.e. when a multicapability is deleted or revoked), or when an agent
dies, in which case all the capabilities (representing references) it holds is removed.



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 217

Although this is, again, a costly strategy, it demonstrates how these additions can improve tuple-space based
coordination. Even though the garbage collection mechanism has not been fully implemented, we have shown that
it works successfully—with capabilities, we can now garbage collect groups of tuples within tuple-spaces, without
garbage collecting the whole tuple-space. A better, more complex, strategy is presented in the work of Menezes [16].

4.1.1. Keeping track of capabilities
We know that for garbage collection the kernel must maintain some kind of information regarding the references—

which agent knows about which object. There are three ways for an agent to acquire a capability (either for a tuple-
space or a group of tuples), and how the kernel may keep the information it needs:

(1) The agent creates a tuple-space (therefore obtaining the TS-capability in return), or requests a new multicapability
for some template of tuples. The kernel can simply record the agent’s identity against the newly created capability.

(2) The agent has retrieved a tuple containing a capability for the object, as discussed in Section 3.3. To obtain this
information, it is necessary for the kernel to implement tuple monitoring [15]—which we have also extended to
monitor tuples containing multicapabilities—which enables the kernel to keep track of capabilities being passed
as tuple elements.

(3) The agent has been spawned by a parent agent, and the capability has been passed from the parent. As discussed
in [12], this is a rather complicated case, and the solution relies on process registration and ‘deregistration’ [15],
which have been incorporated in our implementation—all newly spawned agents must register themselves and the
capabilities they hold, and must ‘unregister’ with the kernel before terminating.

Termination ordering [16] should also be observed to avoid race conditions. Agent termination is an operation that
can generate garbage, as capabilities may be deleted, which would result in the loss of references to some objects.

4.2. Deadlock breaking

Managing deadlocks is also a part of resource management. A deadlock is a permanent blocking of a set of agents
competing for the system’s resources, such as processors and memory space, as part of their communication with each
other. A deadlock breaking mechanism was proposed in earlier work related to inp [12]. The idea is that when the
kernel detects that a group of agents are deadlocked, then it can return ‘false’ to one or more of the agent’s inps, since
the existence of deadlock ‘proves’ that the inp can never return a tuple.

A multicapability is a triple consisting of a template, a set of rights and a unique tag. We have demonstrated that
the reference part is useful for garbage collecting tuples of that template. The permission part of a multicapability can
be used to refine deadlock detection. For instance, if an agent has a multicapability to perform an input operation on a
tuple which does not (yet) exist, the operation would consequently block. If the kernel knows that the agent is the only
one having the multicapability; and no other copies of the multicapability lying around in the system for some agent
to retrieve it later; and no other agent in the system holds the right (multicapability) to out such a tuple (which means
that the operation will block indefinitely), the kernel can immediately employ the deadlock breaking mechanism.

Based on the deadlock breaking mechanism using inp discussed in [12], we have also implemented the deadlock
breaking on multicapability groups, and therefore demonstrated that multicapabilities provide the means to perform
deadlock breakings to a more fine-grained level: that is, to break deadlocks within a group of tuples of the same
pattern.

Deadlocks do not normally ‘announce’ themselves: the system needs to be reactive and perform deadlock detection
routines from time to time, sensibly at times when deadlocks are likely to occur. The common ways (though not
necessarily a good design) to check for deadlocks are when either of these situations arises:

• every time an operation blocks (when no matching tuple is available), or
• every time a TS-capability or a multicapability is removed.

In Lindacap, a deadlock occurs when the following conditions hold:

(1) When a group of agents are blocked on a multicapability region, on a tuple-space, and
(2) There is no tuple containing the capability anywhere in the tuple-space, and there is no other agent outside the

blocked clique (i.e. the group of agents) can out the tuple, or



218 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

(3) There is one such tuple containing the multicapability in the tuple-space, but no other agent outside the blocked
clique (i.e. the group of agents) can get the tuple, or

(4) There is one such tuple (containing the multicapability) but it is in a different tuple-space which no agent outside
the clique has the (tuple-space) capability for.

The universal tuple-space and the region for the primordial capability, cc cannot be deadlocked, as all agents have
the capabilities/references to them. When a deadlock is detected, the kernel would go through the list of blocked
agents, and, as proposed in [12], any predicated operation (inp/rdp) in the list is randomly unblocked.

Checking for deadlocks every time an operation blocks is the least efficient strategy and can be costly. A better
strategy is to detect one when it occurs, or better still, to be able to predict one. Capabilities provide the information
needed to achieve this. For garbage collection, the kernel need only maintain information on which agent knows about
which object; whereas for deadlock detection purposes, it also need to know which agent has what rights for which
object. This information can be obtained as described in Section 4.1.1.

Consider two agents possessing references to a template, and only one of them has the permission to out a
tuple. Suppose that this agent with out permission is blocked on an input operation, while the other (without out
permission) is still running. No deadlock transpires at this point—and in the non-capability system, the kernel has no
way of predicting one—until the running agent performs an input operation and blocks, too. With capabilities, the
kernel would know in advance that there is an impending deadlock—as the running agent can only perform input
operations—and can proceed to unblock the blocked agent without having to wait until the deadlock actually occurs.

Without capabilities, there is no way of knowing in advance what operation an agent might perform. Therefore, any
deadlock can only be detected when one occurs. With capabilities, in some circumstances we have a better strategy:
detect a deadlock before it happens. The kernel could know that an agent cannot perform an operation. Consequently
a deadlock could be predicted and broken as soon as the inp (or rdp) is executed. Moreover, without capabilities,
the kernel can break the deadlock by choosing a process doing an inp to be unblocked; whereas with capabilities, if
none of the blocked processes is blocked on an inp, there is another choice: to unblock a process which has an out
permission.

4.2.1. Example: Stable marriages
The goal of the stable marriages problem [13] in its simplest form, is to pair up n men and n women such that all

marriages are stable. Each person rates their prospective partners in strict order of preference. A marriage is stable
if all the women that a man ranks higher than his wife prefer their husbands to him, and all the men that a woman
ranks higher than her husband prefer their wives to her. In the simplest LINDA implementation of the algorithm, a
‘stable’ marriage assignment is reached when a deadlock occurs. A much simpler implementation of the algorithm
has demonstrated in [12] using the deadlock-breaking mechanism (using inp), with the participants, rather than an
additional ‘broker’ agent, distributively decide when a stable assignment has been reached.

The solution in [12] was implemented in a non-capability system. Adapting the algorithm, we have implemented
the solution in the capability-based system. To enable data sharing among the participants, the capabilities for the
working tuple-space and the multicapability for the relevant data need to be passed among them. In Lindacap, these
references need only to be written once, as the tuple containing the capability for the tuple-space will not be in any
danger of being removed by any agent—the primordial capability cc does not allow removal.

We have also run two completely separate programs—each solving a separate instance of the stable marriages
problem—within the same tuple-space on the server, and they do not interfere with one another. Assuming the working
tuple-space, wts, has been created, and the capability for it has been written into the universal tuple-space (UTS) using
cc:

wts = TupleSpaceC();
UTS.out( cc<wts> );

Each program begins by requesting their own multicapability (region) to work in, and writes the multicapability into
the UTS:

c1 = newcap( <?str,?str,?str> );
UTS.out( cc<c1> );



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 219

All participants obtain the TS-capability and the multicapability they would be working in:

wts = UTS.rd( cc<?ts> )[0];
c1 = UTS.rd( cc<?cap> )[0];

The algorithms for agents modelling ‘men’ and ‘women’ are sketched below:
men, mi :

fiancee = FirstChoice();
while(true){

wts.out( c1<’propose’, myname, fiancee> );
if !(wts.inp( c1<’reject’, myname, ?fiancee> ))

break;
fiancee = NextChoice();

}

women, wi :

fiance = null;
while(true) {

if !(wts.inp( c1<’propose’, ?suitor, myname> ))
break;

fiance = BestOf(fiance, suitor);
reject = WorstOf(fiance, suitor);
wts.out( c1<’reject’, reject, myname> );

}

Since the list of participants, names are exactly the same for both programs, a man mi in both programs
would be looking for the same tuple, i.e. 〈‘reject′, mi , ?fiancee〉, whereas a woman wi would be waiting for
〈‘propose′, wi , ?suitor〉. As each program uses different multicapability regions, the tuples and queries in both
programs are independent of each other, as their capabilities do not match. They are isolated programs, effectively
partitioned into different multicapability regions. We can even have several stable marriages programs running
separately within the same tuple-space, oblivious to each other’s existence.

4.3. Replication and caching

A final example of an application that is aided by information derived from multicapabilities is replication and
caching: if the kernel knows all (or at least a large number of) agents have the right to only read a tuple, it can replicate
the tuple and put the copies into different partitions of the distributed tuple-space to be accessed by the agents. In a
distributed system, a tuple-space can be distributed on a number of processors. Replicating data into these physically
distributed partitions of the tuple-space could reduce the amount of communication, for example, involved in reading
the data, as compared to reading it from its original location which could be on a remote machine. Naturally, these
replicas will have to be removed if and when any copy of the tuple is in’ed later. Based on the information provided
by multicapabilities, the kernel can decide whether to replicate the tuple after weighing the benefits of caching the
data against the task of removing the copies later.

Consider a publisher/subscriber example: the scenario is that one agent publishes material to be accessed by many
subscribers. Knowing that the subscribers can only read the material, the kernel can replicate the material to be
accessed by the subscribers. When the publisher decides to remove (or update) the material, all the (old) copies must
be removed. The issue here is “when”—one might argue that the removal is temporally incorrect—but the question of
“when” is ‘flexible’ in LINDA since there is no notion of global time in the model.

The system can be implemented in such a way that when an in operation is performed on the data, a ‘tidying up’
message is sent to the kernel, indicating that the copies should be removed. This removal is not necessarily immediate:
nevertheless, to preserve the logical state of the system, the copies should be removed before the next out operation
of the publisher, for example, or before the effect of the next operation is propagated to other parts of the tuple-space.



220 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

Otherwise, an agent executing the next in/rd operation may accidentally get (a copy of) the supposedly removed
tuple.

5. Related work

Although LINDA has become a well known coordination model, as an alternative to the conventional
communication paradigms, it is sometimes considered as ‘too open and too flexible’, leaving it vulnerable to
accidental, or even malicious, manipulation. Much work has been carried out to impose more control, at the expense
of its most attractive feature—flexibility. Capabilities, on the other hand, provide the mechanism to finely control
a system without losing the flexibility essential in an open environment. Examples of early attempts at improving
LINDA using a capability-like mechanism is Pinakis’s Joyce-LINDA [21], which used public-key encryption to support
capabilities, and Law-Governed LINDA (LGL) [17]. Unfortunately, the capability values in Joyce-LINDA cannot be
matched by formals in templates, thus preventing them being passed via tuple-space. Introducing an additional special
data type to enable the matching process only complicates things. The notion of capability-based control in LGL is
somewhat restricted: capabilities are required in order to send a message to another agent, but none is necessary to
receive one. This means that a message can only be sent if the sender has the capability for the target agent. Therefore,
there is a possibility of indefinite waiting, since these agents might not be aware of the sender’s need to acquire the
necessary capability.

SECOS [28,3] generalizes the tuple-space model so that tuples can play the role of capabilities. It is flexible enough
to do (almost) everything that Lindacap can do, but there are distinct differences, and neither subsumes the other. As in
Lindacap, SECOS provides a facility to define ‘views’, using a two-level locking scheme: objects (tuples) are locked
with a key, and each field must be locked with a different key. Like our multicapabilities, their object locks provide
a partitioning facility for the tuple-space. Unfortunately, the problem with using a key-related control is that it is not
possible to discriminate the rights for certain operations: if an agent possesses a key to a tuple, there is no way of
restricting the permission, e.g. for a read-only, but not remove, operation. Indeed, their can-match-anything ‘empty’
template, which can be useful for garbage collection, for example, may be exploited by any agent to remove any
tuple. Although SECOS does allow restriction of a capability, it does not support the other capability operations of
Lindacap. Unlike the decentralized capability distribution in our model where any agent may distribute any capability
in its possession, the distribution of keys in SECOS is the responsibility of the tuple’s originator, which, though more
controlled, can become an onerous task, especially in a large open system. Another system that uses a capability-based
security policy with keys is Lana [4]. The messages (i.e. tuples) on their (tuple-space based) associative ‘message
boards’ are locked with keys, not capabilities—capabilities are used for remote method invocations. Locked with a
key, the reference to (the capability for) the object being called is placed on the message board.

An interesting example of a more recent work is VLOS [7], a distributed operating system based on tuple-spaces.
Capabilities are required to create new tuple-spaces, new field types, as well as type signatures, i.e. unique groupings
of field types which are unique to a particular tuple-space, to make up a tuple type (i.e. template). In VLOS, a tuple-
space is created with nothing associated with it, except some basic types, and capabilities. Whenever an agent wishes
to perform a standard input/output operation, such as outing a tuple, the system requires it to register the tuple type
before the operation can be carried out. A capability for an object in VLOS consists of a unique identifier and the type
of the object (i.e. whether it is a tuple-space, a field type, a type signature, or other objects), the name of the tuple-space
(of which the object is a member), a set of rights, and a cryptographic hash function to minimise forgery. Like ours,
a capability in VLOS acts as a ‘handle’ to the object it is associated with. Our multicapabilities, however, yield more
flexibility in the sense that they are not associated with a tuple-space—they can be used with any tuple-space as long
as the user possesses the capability for the target tuple-space. Furthermore, the combination calculus of capabilities
gives an added advantage for our model to maintain control while being flexible.

A µKLAIM [11] capability is a pair that represents the operation allowed on a pattern of the matching (target)
tuple, whereas our multicapability is a triple that provides extra features of partitioning via tags, to limit and control
agents’ accesses, as well as the combination calculus to further enrich the model. Based on the KLAIM language [18],
µKLAIM uses its type system to enforce access control. Unlike our capability model that uses dynamic checking,
µKLAIM relies on both static and dynamic checking.

In the systems mentioned above, capabilities are mainly discussed as an access control mechanism for security
purposes, some with the assistance of cryptography, as in [21,28,4]. µKLAIM for instance, emphasises security



N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222 221

policies: an agent may have ‘knowledge’ of a location name even though it does not have a capability to it. We are
concentrating on the functional properties of capabilities as ‘visibility’ filters—agents can only know about objects
for which they hold a capability, and the capability makes visible a sub-set of the operations available for that object’s
type. This scheme enables a refined control over agents’ actions (not limited to access control only) on objects in the
system, and facilitates certain aspects of coordination, such as those mentioned in Section 4.

6. Conclusions and future work

Capabilities represent the information on ‘who knows about what operation on a certain object’. The more the
kernel knows of the system’s potential behaviour, the better, more optimised coordination can be achieved, thus
increasing the system’s efficiency. The extra information, supplied by the capabilities given to the agents, can provide
the facility to create a finer level of control in distributed systems.

As capabilities can only be applied to uniquely identifiable objects, such as tuple-spaces, we have proposed the
new concept of multicapabilities which extends capabilities to apply to a group of un-named objects to accommodate
tuples. A multicapability consists of a unique tag to differentiate between different capabilities for the same template
(and which in addition aids in its unforgeability), a reference to a group of tuples, and a set of rights to control
the actions permitted to be performed on an object in the said group. The set of rights need not be limited to input
and output operations, but may include any sensible, even user-defined, operations that are appropriate to the system.
Some capability combination operations have been introduced—namely the set-like union, intersection, and difference
operations—to provide further mechanisms towards achieving a finely controlled system. We are still investigating
the sensible ‘combining’ operations, and currently developing proper semantics.

It is known that one of the disadvantages of capabilities is that they are difficult to revoke. VLOS [7] provides
single-use capabilities, which are valid to be used only once, to overcome this problem. An alternative solution is to
incorporate indirect capability objects: a capability held by an agent does not directly point to an object, but instead
refers to an indirection object, which in turn points to the object (as used in EROS [25]). Deleting an indirection
object enables a capability to be permanently revoked. As an option to deletion, we are studying the idea of selective
temporary revocation using indirection objects in which the corresponding sub-interfaces can be turned off and on to
provide a finer control in the system. When an indirection object is turned off, any access (including out) to the object
will block until it is switched back on.

Indirection objects can become a filter for a group of multicapabilities and their derivations: a derived
multicapability with identical or restricted rights will point to the same indirection object as its super-multicapability;
whereas creating a new multicapability (even of the same template) will automatically create a different indirection
object. Deleting the former will revoke the said multicapability along with its sub-multicapabilities.

There are a number of ways in which the current work can be extended. Remaining in the coordination domain,
we are considering how multicapabilities would fit into frameworks such as Gamma [2] or Reo [1]. More generally,
we will pursue the view of a (multi)capability as a sub-interface to re-evaluate the use of capabilities in mainstream
object-oriented programming.

On a final note, we view a capability as not merely access control, but in more general terms as visibility control.
Visibility can represent security. Although this paper does not address the issue of security, it is indeed a crucial
problem when dealing with agents with intelligence and autonomy, particularly those involved in some sort of
confidential and sensitive business transactions or other critical applications.

Acknowledgements

The authors are grateful to the anonymous reviewers for the helpful comments on the previous version of this paper.
Nur Izura Udzir is funded by the Public Services Department of Malaysia.

References

[1] F. Arbab, Reo: A channel-based coordination model for component composition, Mathematical Structures in Computer Science 14 (3) (2004)
329–366.

[2] J.-P. Banatre, D. Le Metayer, Programming by multiset transformation, Communications of the ACM 36 (1) (1993) 98–111.



222 N.I. Udzir et al. / Science of Computer Programming 64 (2007) 205–222

[3] C. Bryce, M. Oriol, J. Vitek, A coordination model for agents based on secure spaces, in: Proc. 3rd International Conference on Coordination
Models and Languages, Coordination’99, in: LNCS, vol. 1594, Springer-Verlag, Berlin, Heidelberg, 1999, pp. 4–20.

[4] C. Bryce, C. Razafimahefa, M. Pawlak, Lana: An approach to programming autonomous systems, in: ECOOP 2002, in: LNCS, vol. 2374,
Springer-Verlag, Berlin, Heidelberg, 2002, pp. 281–308.

[5] N. Carriero, D. Gelernter, How to write a parallel program: A guide to the perplexed, ACM Computing Surveys 21 (3) (1989) 323–357.
[6] N. Carriero, D. Gelernter, Coordination languages and their significance, Communication of the ACM 35 (2) (1992) 97–107.
[7] V.-L. Chung, C.S. McDonald, The development of a distributed capability system for VLOS, Australian Computer Science Communications

24 (3) (2002) 57–64.
[8] J.B. Dennis, E.C. van Horn, Programming semantics for multiprogrammed computations, Communication of the ACM 9 (3) (1966) 143–154.
[9] E. Freeman, S. Hupfer, K. Arnold, JavaSpaces: Principles, Patterns, and Practice, in: The Jini Technology Series, Addison-Wesley, 1999.

[10] D. Gelernter, Generative communication in Linda, ACM Transactions on Programming Languages and Systems 7 (1) (1985) 80–112.
[11] D. Gorla, R. Pugliese, Enforcing security policies via types, in: Proc. 1st Int. Conf. on Security in Pervasive Computing, SPC’03, in: LNCS,

vol. 2802, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 88–103.
[12] J.L. Jacob, A. Wood, A principled semantics for inp, in: Coordination Models and Languages, in: LNCS, vol. 1906, Springer-Verlag, Berlin,

Heidelberg, 2000, pp. 51–66.
[13] D.E. Knuth, Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms,

American Mathematical Society, 1997.
[14] H.M. Levy, Capability-Based Computer Systems, Digital Press, 1984.
[15] R. Menezes, A. Wood, Using tuple monitoring and process registration on the implementation of garbage collection in open linda-like systems,

in: Proc. 10th IASTED International Conference on Parallel and Distributed Computing and Systems, ACTA Press, 1998, pp. 490–495.
[16] R. Menezes, Resource management in open tuple space systems, Ph.D. Thesis, Uni. of York, UK, 2000.
[17] N.H. Minsky, J. Leichter, Law governed Linda as a coordination model, in: Object-Based Models and Languages for Concurrent Systems,

in: LNCS, vol. 924, Springer-Verlag, Berlin, Heidelberg, 1995, pp. 125–146.
[18] R. de Nicola, G.L. Ferrari, R. Pugliese, KLAIM: A kernel language for agents interaction and mobility, IEEE Transactions on Software

Engineering 24 (5) (1998) 315–330.
[19] G. Nutt, Operating System: A Modern Perspective (2nd), Addison-Wesley, 2002.
[20] J.L. Peterson, A. Silberschatz, Operating System Concepts, 2nd edition, Addison-Wesley, 1985.
[21] J. Pinakis, Providing Directed Communication in LINDA, in: Proc. 15th Australian Computer Science Conference, 1995, pp. 731–743.
[22] A. Rowstron, A run-time systems for coordination, in: Coordination of Internet Agents: Models, Technologies, and Applications, Springer-

Verlag, 2001, pp. 61–82.
[23] A. Rowstron, A. Wood, BONITA: A set of tuple space primitives for distributed coordination, in: Proc. 30th Hawaii International Conference

on System Sciences HICSS-30, vol. 1, IEEE Computer Society Press, 1997, pp. 379–388.
[24] J.S. Shapiro, EROS: A capability system, Ph.D. Thesis, Uni. of Pennsylvania, USA, 1999.
[25] J.S. Shapiro, J.M. Smith, D.J. Farber, EROS: A fast capability system, in: Symposium on Operating Systems Principles, 1999, pp. 170–185.
[26] A.S. Tanenbaum, S.J. Mullender, R. van-Renesse, Using sparse capabilities in a distributed operating system, in: Proc. 6th International

Conference on Distributed Computing Systems, ICDCS, IEEE Computer Society, 1986, pp. 558–563.
[27] N.I. Udzir, A. Wood, Establishing private communications in open systems using multicapabilities, in: Proc. 2nd IEEE International

Conference on Information and Communication Technologies: From Theory to Applications, ICTTA’06, 2006.
[28] J. Vitek, C. Bryce, M. Oriol, Coordinating processes with secure spaces, Science of Computer Programming 46 (1–2) (1999) 163–193.
[29] A. Wood, Coordination with attributes, in: Coordination Languages and Models, in: LNCS, vol. 1594, Springer-Verlag, Berlin, Heidelberg,

1999, pp. 21–36.


	Coordination with multicapabilities
	Introduction
	Multicapabilities
	Basic structure
	Operations on multicapabilities
	Example: Reader--Writer

	Combining multicapabilities
	Union
	Intersection
	Negation


	Implementation overview
	Implementing unicapabilities
	Implementing multicapabilities
	Passing capabilities
	Descriptions of the primitives
	Implementation issues

	Application examples
	Garbage collection on tuples
	Keeping track of capabilities

	Deadlock breaking
	Example: Stable marriages

	Replication and caching

	Related work
	Conclusions and future work
	Acknowledgements
	References


