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The interaction between bulk and dynamic domain wall in the presence of a linear/non-linear
electromagnetism make energy density, tension and pressure on the wall all variables, depending on
the wall position. In Lee et al. (2009) [1] this fact seems to be ignored.

© 2011 Elsevier B.V. Open access under CC BY license.
The (n+1)-dimensional bulk space time with Z2 symmetry can
equivalently be chosen as (i.e. Eq. (4) of Ref. [1])

ds2 = − f (R)dT 2 + dR2

f (R)
+ R2 dΩ2

n−1 (1)

in which dΩ2
n−1 is the line element on Sn−1. The n-dimensional

domain wall (DW) in the FRW form is

ds2 = −dτ 2 + a(τ )2 dΩ2
n−1 (2)

with the constraint

f (a)Ṫ 2 − ȧ2

f (a)
= 1 (3)

in which a dot implies d
dτ .

The Israel junction condition

[Kμν − gμν K ] = −κ2
n+1 Sμν (4)

leads to (with Z2 symmetry)

−2(n − 1)

a

√
f + ȧ2 = κ2

n+1(ρ + σ), for ττ component, (5)
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2(n − 2)

a

√
f + ȧ2 + f ′ + 2ä√

f + ȧ2
= κ2

n+1(p − σ),

for θiθi components. (6)

As considered in Ref. [1] the DW energy momentum Sν
μ =

diag(−ρ − σ , p − σ , . . . , p − σ) is given by

Sμν = 2√−g

δ

δgμν

∫
dnx

√−g(−σ + Lm) (7)

in which (Eq. (22) of Ref. [1])

Lm = L0 + C

an−1
Āτ (8)

and C = ± q
√

2(n−1)(n−2)

κ2
n+1

. By using (7) one finds

Sμν = −2
δLDW

δgμν
+ LDW gμν (9)

for LDW = (−σ +Lm). The latter equation implies (see Appendix A)

Sτ
τ = 2C

an−1
Āτ + L0 − σ , (10)

and

Sθi
θi

= L0 − σ (i = 1, . . . ,n − 1). (11)

Comparison with the general form of Sν
μ implies that the induced

electrostatic energy density on the DW is
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ρ = − 2C

an−1
Āτ − L0 (12)

while the pressure is

p = L0. (13)

Now, taking into account Eqs. (5) and (6), we get two equations to
be satisfied simultaneously, i.e.

−2(n − 1)

a

√
f + ȧ2 = κ2

n+1

(
− 2C

an−1
Āτ − L0 + σ

)
(14)

and

2(n − 2)

a

√
f + ȧ2 + f ′ + 2ä√

f + ȧ2
= κ2

n+1(L0 − σ). (15)

Herein Āτ is given in terms of the bulk potential and metric func-
tion by

Āτ = ĀT

√
f + ȧ2

f
. (16)

The angular part of Israel equation admits

κ2
n+1(σ − L0) = −

(
2(n − 2)

a

√
f + ȧ2 + f ′ + 2ä√

f + ȧ2

)
, (17)

which is clearly not a constant. In Ref. [1] the authors consider a
new constant parameter χ2 = κ2

n+1(σ �)2/4(n − 1)2 and by setting
L0 = 0 (i.e. zero pressure) they find an equation of motion for the
dynamic domain wall, based only on Eq. (14), which reads

ȧ2 + V (a) = 0. (18)

Plotting rescaled form of V (a) for fixed values of χ (namely χ =
1.1) is the last stage of Ref. [1]. Based on our argument on the
other hand setting χ to a constant value is equivalent to setting
σ = const. which is obviously in contradiction with the form of σ
we found in Eq. (17) above. In other words, choosing σ = const.
does not satisfy both of the Israel junction conditions at the same
time.

Unlike this case, if we neglect the interaction between the bulk
and domain wall in the form of Nambu–Goto action, i.e.

SDW = −σ◦
∫
Σ

dnx
√−g (19)

we observe that

Sμν = −2
δLDW

δgμν
+ LDW gμν = −σ◦gμν. (20)

This means from Sν
μ = diag(−ρ −σ , p −σ , . . . , p −σ) = diag(−σ◦,

−σ◦, . . . ,−σ◦) that −ρ = p = const. (which is set to zero for sim-
plicity). As a result the two Israel junction conditions are consis-
tent, i.e.

−2(n − 1)

a

√
f + ȧ2 = κ2

n+1σ◦, (21)

2(n − 2)

a

√
f + ȧ2 + f ′ + 2ä√

f + ȧ2
= −κ2

n+1σ◦. (22)

By differentiating (21) one obtains

f ′ + 2ä√
f + ȧ2

= 2
√

f + ȧ2

a
, (23)

which reduces (22) to (21). Therefore these two equations amount
to the single equation (21).
Fig. 1. The plot of radius a(τ ) of the FRW universe for n = 4, on the domain wall as
a function of proper time. The oscillatory behavior reveals a bounce at a distance
greater than the horizon (a > rh ). The choice of parameters is: C < 0, q = 4.5, m = 6
and � = 0.3. The exact location of the event horizon (rh ) is shown in the smaller
figure for f (r).

Our conclusion to this problem simply implies a more com-
plicated equation of motion for the dynamic domain wall that
emerges from the substitution of Eqs. (17) into (14), i.e.,

ä + (G − 1)

a
ȧ2 + (G − 1) f

a
+ f ′

2
= 0, (24)

in which

G = κ2
n+1

(
C

an−2
ĀT

1

f

)
. (25)

Given the complexities of f (R) and ĀT for the Einstein–Born–
Infeld theory [1], Eq. (24) is a rather difficult differential equation
to be solved. To give an idea about its structure yet we resort
to the 5-dimensional cosmological Einstein–Maxwell theory (n = 4
and β → ∞ limit of Ref. [1]). Solution for f (R) and ĀT are given
(from Eqs. (12) and (16) of [1] with β → ∞) by

f (R) = 1 + R2

�2
− m2

R2
+ q2

R4
, (26)

ĀT =
√

3

2

q

R2
. (27)

Plugging these expressions with (25) into (24) (for κ2
n+1 = 1, C =

−2
√

3q and R = a(τ )) plots the f (R) which in turn determine nu-
merical integrations of (24) for specific parameters. We remark,
that depending on the initial conditions and parameters falling into
black hole or escaping to infinity and any possibility in between
those two extremes are available. We plot, for instance in Fig. 1
the bouncing property of a(τ ) with the choice C < 0. It should be
remarked that with the choice C > 0, there is no bounce.

Appendix A

To find Sτ
τ and Sθi

θi
we use the formula (9), and consider

LDW = (−σ + Lm), (28)

in which

Lm = L0 + C
n−1

Āτ = L0 + C
n−1

Āμgμτ . (29)

a a
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Now, in our variational principle we assume σ to be independent
of gμν . Variation of LDW with respect to the canonical variable
gμν leads accordingly to

δLDW = C

an−1
Āμδgμτ + δ

(
C

an−1

)
Āμgμτ

= C

an−1
Āμ

(
1

2
gμτ gαβ − gμα gτβ

)
δgαβ, (30)

which, after substitution into (9), it implies

Sαβ = −2
δLDW

δgαβ
+ LDW gαβ

= −2
C

an−1
Āμ

(
1

2
gμτ gαβ − gμα gτβ

)

+
(

−σ + L0 + C

an−1
Āτ

)
gαβ. (31)
One obtains

Sττ = − C

an−1
Āτ −

(
−σ + L0 + C

an−1
Āτ

)

=
(

−2
C

an−1
Āτ + σ − L0

)
(32)

or equivalently

Sτ
τ = 2

C

an−1
Āτ + L0 − σ . (33)

In the same manner one finds

Sθi
θi

= L0 − σ . (34)
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