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We investigate the possibility of the acoustic superresonance phenomenon (analog to the superradiance 
in black hole physics), i.e., the amplification of a sound wave by reflection from the ergoregion of a 
rotating acoustic black hole with Lorentz symmetry breaking. For rotating black holes the effect of 
superradiance corresponds to the situation where the incident waves have reflection coefficient greater 
than one, and energy is extracted from them. For an acoustic Kerr-like black hole its rate of loss of 
mass is affected by the Lorentz symmetry breaking. We also have shown that for suitable values of the 
Lorentz-violating parameter a wider spectrum of particle wave function can be scattered with increased 
amplitude by the acoustic black hole.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

Acoustic black holes possess many of the fundamental proper-
ties of the black holes of general relativity and have been exten-
sively studied in the literature [1–3]. The connection between black 
hole physics and the theory of supersonic acoustic flow was estab-
lished in 1981 by Unruh [3] and has been developed to investigate 
the Hawking radiation and other phenomena for understanding 
quantum gravity. Hawking radiation is an important quantum ef-
fect of black hole physics. In 1974, Hawking combining Einstein’s 
General Relativity and Quantum Mechanics announced that classi-
cally a black hole does not radiate, but when we consider quantum 
effects emits thermal radiation at a temperature proportional to 
the horizon surface gravity.

Since the Hawking radiation showed by Unruh [3] is a purely 
kinematic effect of quantum field theory, we can study the Hawk-
ing radiation process in completely different physical systems. For 
example, acoustic horizons are regions where a moving fluid ex-
ceeds the local sound speed through a spherical surface and pos-
sesses many of the properties associated with the event horizons 
of general relativity. In particular, the acoustic Hawking radiation 
when quantized appears as a flux of thermal phonons emitted 
from the horizon at a temperature proportional to its surface grav-
ity. Many fluid systems have been investigated on a variety of 
analog models of acoustic black holes, including gravity wave [4], 
water [5], slow light [6], optical fiber [7] and electromagnetic
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waveguide [8]. The models of superfluid helium II [9], atomic 
Bose–Einstein condensates [10,11] and one-dimensional Fermi de-
generate noninteracting gas [12] have been proposed to create an 
acoustic black hole geometry in the laboratory.

The purpose of this Letter is to study the superresonance phe-
nomenon considering the idea of the Lorentz symmetry breaking 
theories suggested in the seminal paper in Superstring Theory [13] 
and further developed in Quantum Field Theory and General Rel-
ativity [14–17] to investigate the relativistic version of acoustic 
black holes from the Abelian Higgs model [18] with Lorentz sym-
metry breaking. A relativistic version of acoustic black holes has 
been presented in [18,19] (see also [20]). This is also motivated by 
the fact that in high energy physics both strong Lorentz symmetry 
violation and quark gluon plasma (QGP) may take place together. 
Thus, it seems to be natural to look for acoustic black holes in a 
QGP fluid with Lorentz symmetry breaking in this regime. Acous-
tic phenomena in QGP matter can be seen in Ref. [21] and acoustic 
black holes in a plasma fluid can be found in Ref. [22].

Differently of the most cases studied, we consider the acous-
tic black hole metrics obtained from a relativistic fluid plus a 
term that violates the Lorentz symmetry. The effects of this set 
up is such that the fluctuations of the fluids are also affected. The 
sound waves inherit the broken Lorentz symmetry of the fluid, lose 
the Lorentz boost invariance and develops a birefringence phe-
nomenon. As consequence the Hawking temperature is directly 
affected by the Lorentz-violating term. Analogously to Lorentz-
violating gravitational black holes [23,24], the effective Hawking 
temperature of the acoustic black holes now is not universal for 
all species of particles. It depends on the maximal attainable ve-
locity of this species. Furthermore, the acoustic black hole met-
ric can be identified with an acoustic Kerr-like black hole. The
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Lorentz-violating term affects the rate of loss of mass of the black
hole. We also have shown that for suitable values of the Lorentz-
violating parameter a wider spectrum of particle wave function can
be scattered with increased amplitude by the acoustic black hole.
This increases the superresonance phenomenon previously studied
in [25,26].

The Letter is organized as follows. In Section 2 we apply the
black hole metrics obtained in the extended Abelian Higgs model
with the Lorentz-violating term, first introduced in [19]. In Sec-
tion 3 we address the issue of perfect vortex. We find that even in
Lorentz symmetry breaking fluids there is no superresonance phe-
nomenon, though the angular velocity is changed. In Section 4 we
make our final conclusions.

2. The Lorentz-violating model

In this section we shall apply the acoustic black hole metrics
obtained in the extension of the Abelian Higgs model with a mod-
ified scalar sector via scalar Lorentz-violating term [19,27]. The
Lagrangian of the Lorentz-violating Abelian Higgs model is

L = −1

4
Fμν F μν + |Dμφ|2 + m2|φ|2 − b|φ|4

+ kμν Dμφ∗Dνφ, (1)

where Fμν = ∂μ Aν − ∂ν Aμ , Dμφ = ∂μφ − ie Aμφ and kμν is a con-
stant symmetric tensor implementing the Lorentz symmetry break-
ing. The upper bound for its components are k00 � 3.6 × 10−8 [28]
and tr(kij) � 3 × 10−6 in relativistic and non-relativistic BEC the-
ory [29]. In our present study, for the sake of simplicity, we reduce
the ten components of the tensor to two independent components
by choosing the following entries kii = k00 ≡ β and k0i = kij ≡ α.
While this is non-trivial enough for our analysis other effects could
also be achieved by making other choices. We further assume
all the components with magnitude around the shorter bound
k00 � 3.6 × 10−8. The tensor is now given by the form

kμν =
⎡
⎢⎣

β α α α
α β α α
α α β α
α α α β

⎤
⎥⎦ (μ,ν = 0,1,2,3), (2)

being α and β real parameters with magnitude around k00. In a
previous study [19] following this theory we have found three- and
two-dimensional acoustic metric describing acoustic black holes. In
the following we shall focus on the planar acoustic black hole met-
rics to address the issue of superresonance phenomenon [25,26].

2.1. The case β �= 0 and α = 0

The acoustic line element in polar coordinates on the plane
with Lorentz symmetry breaking, up to an irrelevant position-
independent factor, in the ‘non-relativistic’ limit (v2 � c2) is given
by [19]

ds2 = − (c2 − β̃−v2)

β̃+
dt2 − 2(vr dr + vφr dφ)dt

+ β̃+
β̃−

(
dr2 + r2 dφ2), (3)

where β̃± ≡ 1 ± β , c is the sound velocity in the fluid and v is the
fluid flow velocity. We consider the flow with the velocity potential
ψ(r, φ) = A ln r + Bφ whose velocity profile in polar coordinates on
the plane is given by [1]

�v = A
r̂ + B

φ̂. (4)

r r
The transformations of the time and the azimuthal angle coordi-
nates

dτ = dt + β̃+ Ar dr

(c2r2 − β̃− A2)
, (5)

dϕ = dφ + Bβ̃− A dr

r(c2r2 − β̃− A2)
. (6)

In the new coordinates, the metric becomes

ds2 = β̃+
β̃−

[
− β̃−

β̃2+

(
1 − β̃−(A2 + B2)

c2r2

)
dτ 2

+
(

1 − β̃− A2

c2r2

)−1

dr2 − 2β̃−B

β̃+c
dϕ dτ + r2 dϕ2

]
. (7)

The radius of the ergosphere is given by g00(re) = 0, whereas the
horizon is given by the coordinate singularity grr(rh) = 0 [1], that
is

re = β̃
1/2
−
c

√
A2 + B2, rh = β̃

1/2
− |A|

c
. (8)

We can observe from Eq. (7) that for A > 0 we are dealing with a
past event horizon, i.e., acoustic white hole and for A < 0 we are
dealing with a future acoustic horizon, i.e., acoustic black hole. The
metric is

gμν = β̃+
β̃−

⎡
⎢⎢⎢⎣

− β̃−
β̃2+

[1 − r2
e

r2 ] 0 − β̃−
β̃+

B
cr

0 (1 − r2
h

r2 )−1 0

− β̃−
β̃+

B
cr 0 1

⎤
⎥⎥⎥⎦ , (9)

and inverse gμν

gμν = β̃+
β̃−

⎡
⎢⎢⎣

− β̃2+
β̃−

Γ (r) 0 − β̃+ B
cr Γ (r)

0 (1 − r2
h

r2 ) 0

− β̃+ B
cr Γ (r) 0 [1 − r2

e
r2 ]Γ (r)

⎤
⎥⎥⎦ , (10)

where Γ (r) = [1 − r2
h

r2 ]−1.
We consider the Klein–Gordon equation for a linear acoustic

disturbance ψ(t, r, φ) in the background metric (10), i.e.,

1√−g
∂μ

(√−g gμν∂ν

)
ψ = 0. (11)

We can make a separation of variables into the equation above as
follows

ψ(t, r, φ) = R(r)ei(ωt−mφ). (12)

The radial function R(r) satisfies the linear second order differ-
ential equation, which turns out to be a simpler one-dimensional
Schroedinger problem[

β̃2+
β̃−

ω2 − 2β̃+Bmω

cr2
− m2

r2

(
1 − r2

e

r2

)]
R(r)

+ 1

r

(
1 − r2

h

r2

)
d

dr

[
r

(
1 − r2

h

r2

)
d

dr

]
R(r) = 0. (13)

We now introduce the tortoise coordinate r∗ by using the follow-
ing equation

d

dr∗ =
(

1 − r2
h

r2

)
d

dr
=

(
1 − β̃− A2

c2r2

)
d

dr
, (14)

which gives the solution
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r∗ = r +
√

β̃−|A|
2c

log

(
r −

√
β̃−|A|

c

r +
√

β̃−|A|
c

)
. (15)

Observe that in this new coordinate the horizon rh = β̃
1/2
− |A|

c maps
to r∗ → −∞ while r → ∞ corresponds to r∗ → +∞. Now, we
consider a new radial function, G(r∗) = r1/2 R(r) and the modi-
fied radial equation obtained from (13), in the asymptotic region
(r∗ → ∞), that can be approximately written as

d2G(r∗)
dr∗2

+ ω̃2G
(
r∗) = 0, ω̃2 = β̃2+

β̃−
ω2. (16)

We find for Eq. (16) the simple solution

G
(
r∗) = eiω̃r∗ + Re−iω̃r∗ ≡ G A

(
r∗). (17)

Notice that the first term in Eq. (17) corresponds to ingoing wave
and the second term to the reflected wave, so that R is the re-
flection coefficient as in usual studies of potential scattering. The
Wronskian of the solutions (17) can be computed to give

W(+∞) = −2iω̃
(
1 − |R|2). (18)

Now, near the horizon region (r∗ → −∞), we have

d2G(r∗)
dr∗2

+ (ω̃ − mΩ̃H )2G
(
r∗) = 0, (19)

where, Ω̃H = ΩH/

√
β̃− and ΩH = Bc/A2 is the angular velocity of

the acoustic black hole. We suppose that just the solution identi-
fied by ingoing wave is physical, so that

G
(
r∗) = T ei(ω̃−mΩ̃H )r∗ ≡ G H

(
r∗). (20)

The undetermined coefficient T is the transmission coefficient of
our one-dimensional Schroedinger problem. Now the Wronskian of
the solution is

W(−∞) = −2i(ω̃ − mΩ̃H )|T |2. (21)

Because both equations are approximate solutions of the asymp-
totic limit of the modified radial equation, the Wronskian is con-
stant and then W (+∞) = W (−∞). Thus, we obtain the reflection
coefficient

|R|2 = 1 −
(

ω̃ − mΩ̃H

ω̃

)
|T |2. (22)

For frequencies in the interval 0 < ω̃ < mΩ̃H the reflectance is
always larger than unit, which implies in the superresonance
phenomenon (analog to the superradiance in black hole physics)
[25,26]. Here m is the azimuthal mode number and ΩH = Bc/A2

is the angular velocity of the usual Kerr-like acoustic black hole.
Notice from Eq. (22) that the frequency ω̃ and the modified an-
gular velocity Ω̃H depends on the Lorentz-violating parameter
β̃− = 1 −β . This means that for −1 < β < 1 we have an increasing
(−1 < β < 0) or decreasing (0 < β < 1) in the frequencies and a
larger or smaller spectrum of particles wave function can be scat-
tered with increased amplitude. For the previously assumed rea-
sonable Lorentz-violating parameter β ∼ 10−8 one expects a small
effect. Alternatively, the acoustic Kerr-like black hole possesses a
wider or narrower rate of loss of mass (energy). Thus, we show
that the presence of the Lorentz-violating parameter modifies the
quantity of removed energy of the acoustic black hole and that
is either possible to accentuate or attenuate the amplification of
the removed energy of the acoustic black hole. The effect of su-
perresonance can be eliminated when β̃+ = mΩH , or β = mΩH − 1.
ω ω
In this case, the reflection coefficient is equal to unity. A similar
result was obtained in [31], where the effect of superradiance in
acoustic black hole was studied in the presence of disclination and
a correction dependent on the disclination in terms of the angular
velocity was obtained.

2.2. The case β = 0 and α �= 0

In the present subsection we repeat the previous analysis for
β = 0 and α �= 0. As in the earlier case we take the acoustic line
element with Lorentz symmetry breaking obtained in [19] in the
non-relativistic limit, up to first order in α, given by

ds2 = −α̃

[
1 − (v2

r + v2
φ)

α̃c2

]
dτ 2 + α̃−1

(
1 − v2

r

α̃c2

)−1

dr2

− 2vφ

c
r dϕ dτ + (1 − 2αv)r2 dϕ2, (23)

with, 2αv = −2α(vr + vφ). Thus, in the new coordinates the met-
ric becomes

ds2 = −α̃

(
1 − r2

e

r2

)
dτ 2 + α̃−1

(
1 − r2

h

r2

)−1

dr2

− 2B

cr
r dϕ dτ +

[
1 + 2α(α̃1/2crh + B)

r

]
r2 dϕ2, (24)

where α̃ = 1+α. The radius of the ergosphere (re) and the horizon
(rh) are given by

re = 1

α̃1/2

√
A2 + B2

c
, rh = |A|

α̃1/2c
. (25)

The components of the metric are

gμν =

⎡
⎢⎢⎣

−α̃[1 − r2
e

r2 ] 0 − B
cr

0 1
α̃
(1 − r2

h
r2 )−1 0

− B
cr 0 [1 + 2α(α̃1/2crh+B)

r ]

⎤
⎥⎥⎦ , (26)

and its inverse gμν reads

gμν =
⎡
⎢⎣

−Θ(r)
D(r) 0 − BΘ(r)η(r)

crD(r)

0 α̃(1 − r2
h

r2 ) 0

− BΘ(r)η(r)
crD(r) 0 α̃(1 − r2

e
r2 )

Θ(r)η(r)
D(r)

⎤
⎥⎦ , (27)

where Θ(r) = [1 − r2
h

r2 ]−1, η(r) = [1 + 2α(α̃1/2crh+B)
r ]−1 and D(r) =

B2Θ(r)η(r)
c2r2 + α̃[1 − B2Θ(r)

α̃c2r2 ].
Now, the radial function R(r), as in the previous case, satisfies

the linear second order differential equation[
ω2 − 2Bmωη(r)

cr2
− α̃m2η(r)

r2

(
1 − r2

e

r2

)]
R(r)

D(r)

+ 1

r

(
1 − r2

h

r2

)
d

dr

[
rα̃

(
1 − r2

h

r2

)
d

dr

]
R(r) = 0. (28)

Again, we introduce the tortoise coordinate r∗ through the equa-
tion

d

dr∗ =
(

1 − r2
h

r2

)
d

dr
. (29)

Now, after introducing a new radial function, G(r∗) = r1/2 R(r), the
modified radial equation (28), in the asymptotic region (r∗ → ∞),
can be approximately written as
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d2G(r∗)
dr∗2

+ ω̃2G
(
r∗) = 0, ω̃2 = ω2

α̃2
. (30)

The solution of Eq. (30) reads

G
(
r∗) = eiω̃r∗ + Re−iω̃r∗ ≡ G A

(
r∗). (31)

We are now able to compute the Wronskian of the solutions (31)
to obtain

W(+∞) = −2iω̃
(
1 − |R|2). (32)

On the other hand, in the near horizon region (r∗ → −∞), we have

d2G(r∗)
dr∗2

+ (ω̃ − mΩH )2G
(
r∗) = 0, (33)

where ΩH = Bc/A2. In this region the solution reads as follows

G
(
r∗) = T ei(ω̃−mΩH )r∗ ≡ G H

(
r∗), (34)

and the Wronskian of this solution is

W(−∞) = −2i(ω̃ − mΩH )|T |2, (35)

so that, from (32) and (35), we obtain the reflection coefficient

|R|2 = 1 −
(

ω̃ − mΩH

ω̃

)
|T |2. (36)

Note that only the frequency ω̃ is affected by the parameter that
violates the Lorentz symmetry and for α > 0 the frequency inter-
val is increased. For the previously assumed reasonable Lorentz-
violating parameter α ∼ 10−8 one expects a small effect. The an-
gular velocity is not modified. As in the previous example, for the
extreme case α̃ = ω

mΩH
or α = ω

mΩH
− 1, so that the reflection

coefficient is equal to unity and the effect of superresonance is
eliminated.

3. Perfect vortex

Perfect vortex is obtained in the regime A = 0 in (7). In this
case this spacetime (acoustic vortex) represents a fluid with a non-
radial flow [30]. The radius of the ergosphere is given by

re =
√

β̃−
B

c
. (37)

In the limit r → ∞, we have that the modified radial equation is
given by

d2G(r)

dr2
+ ω̃2G(r) = 0, ω̃2 = β̃2+

β̃−
ω2, (38)

whose solution is

G(r) = eiω̃r + Re−iω̃r, (39)

and near the ergosphere (r → re), the equation reads as follows

d2G(r)

dr2
+

[
(ω̃ − mΩ̃e)

2 − Ω̃2
e

4

(
4m2 − 1

)]
G(r) = 0, (40)

where Ω̃e = 1
re

= c

B
√

β̃−
, is the angular velocity of the ergosphere.

In this region, we have the solution as follows

G(r) = T exp

[
−iω̃

√(
1 − ω̃+

ω̃

)(
1 − ω̃−

ω̃

)
r

]
, (41)

where
ω̃± = mΩ̃e
[
1 ±

√
1 − (

4m2
)−1]

. (42)

Thus, we obtain the reflection coefficient

|R|2 = 1 −
√(

1 − ω̃+
ω̃

)(
1 − ω̃−

ω̃

)
|T |2. (43)

Note that it is impossible to have, |R|2 > 1. Thus, we have the ab-
sence of superresonance phenomenon for the perfect vortex. How-
ever, for β → 1 we have an increasing in the frequency ω̃ and in
the angular velocity of the ergosphere of an acoustic vortex (with
pure rotation without horizons).

Let us now consider the second case described by the metric
(24). So for the perfect vortex in this case, i.e., with A = 0, the
radius of the ergosphere is

re = B

α̃1/2c
. (44)

Now the reflection coefficient is given by

|R|2 = 1 −
√(

1 − ω̃+
ω̃

)(
1 − ω̃−

ω̃

)
|T |2, ω̃ = ω

√
σ

α̃
(45)

where

ω̃± = mΩ̃e
[
1 ±

√
1 − (

4m2
)−1]

, σ = 1 + 2αc (46)

and Ω̃e = c√
σ B

, is the angular velocity of the ergosphere.

4. Conclusions

In this Letter we have considered the implications of the metric
obtained in [19] for extended Abelian Higgs model with a Lorentz-
violating term. As first shown in [19], one of the consequences is
that the acoustic Hawking temperature is changed such that it de-
pends on the group speed which means that, analogously to the
gravitational case [23,24], the Hawking temperature is not univer-
sal for all species of particles. It depends on the maximal attainable
velocity of this species. In the context of gravitational black holes
this has been previously studied and appointed as a sign of pos-
sibly violation of the second law of the thermodynamics. Further-
more, the acoustic black hole metric in our model can be identified
with an acoustic Kerr-like black hole. In the present analysis we
explicitly have shown that the Lorentz-violating term affects the
rate of loss of mass (energy) of the black hole. We also have shown
that for suitable values of the Lorentz-violating parameter a wider
or lower spectrum of particle wave function can be scattered with
increased amplitude by the acoustic black hole. This increases the
superresonance phenomenon previously studied in [25]. Thus, we
show that the presence of the Lorentz-violating parameter mod-
ifies the quantity of removed energy of the acoustic black hole
and that is either possible to accentuate or attenuate the ampli-
fication of the removed energy of the acoustic black hole, though
for the previously assumed reasonable Lorentz-violating parame-
ter α,β ∼ 10−8 one expects a small effect. In the extreme case,
the effect of superresonance can be eliminated when β̃+ = mΩH

ω ,

or β = mΩH
ω − 1. In this case, the reflection coefficient is equal

to unity. The Abelian Higgs model is good to describe high en-
ergy physics and extended Abelian Higgs model can also describe
Lorentz symmetry violation in particle physics in high energy. Thus
our results show that in addition to the expected gravitational mini
black holes formed in high energy experiments one can also expect
the formation of acoustic black holes together.
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