Generalized Rees Rings and
Arithmetical Graded Rings

F. Van Oystaeyen

University of Antwerp, UIA, Antwerp, Belgium

Communicated by P. M. Cohn

Received May 2, 1981

0. Introduction

In this paper we study graded rings with an arithmetical ideal theory for the graded ideals, e.g., Gr-Dedekind and Gr-principal ideal rings. If these rings are positively graded rings, then the structure of Gr-Dedekind and of Gr-principal ideal rings is easily investigated and it is much like the structure of the ungraded equivalents. For arbitrary \(\mathbb{Z} \)-gradations, however, the new classes of rings introduced here have an interesting structure relating to the class group of the part of degree zero. The main results in Section 2 determine the structure of Gr-Dedekind rings. First, if \(R \) is a Gr-Dedekind ring such that \(RR_1 = R \), then \(R \) is a generalised Rees ring (and vice versa). These are obtained as follows: let \(I \) be a fractional ideal of a Dedekind domain \(R_0 \), consider the graded ring \(\bar{R}_0(I) = \sum_{n \in \mathbb{Z}} I^nX^n \) which is a graded subring of \(K_0[X, X^{-1}] \), \(K_0 \) being the field of fractions of \(R_0 \). Note that classically, the Rees ring of an ideal \(I \) of a domain \(R \) was defined to be the graded ring \(\bar{R}(I) = R \oplus I \oplus \cdots \oplus I^n \oplus \cdots \approx R + IX + I^2X^2 + \cdots + I^nX^n + \cdots \). Now, for an arbitrary Gr-Dedekind ring \(R \), the part of degree 0, \(R_0 \) say, is a Dedekind ring and in Theorem 2.10 we establish that there is an \(e \in \mathbb{N} \) such that \(R^{(e)} \) is a generalized Rees ring, where \(R^{(e)} \) is the graded ring defined by \((R^{(e)})_k = R_{ek} \). The closing paragraphs of Section 2 deal with the study of the class groups of Gr-Dedekind rings \(R \) and the relations between these and the class groups of \(R_0 \) the part of degree 0.

In particular, we pay attention to some connections between the structure of class groups and the ramification in \(R \) of prime ideals of \(R_0 \), containing a certain ideal \(\delta(R) \), called the discriminator of \(R \), i.e., \(\delta(R) = R_{-1}R_1 \). In [5], we give some applications of these ideas, in particular the constructions of a "graded" Zeta-function etc.

Another application is to the theory of the Brauer group of a commutative ring, where arithmetical graded rings play a very peculiar role. We hope to present this material in a forthcoming paper.
1. Preliminaries

Throughout this paper $R = \bigoplus_{n \in \mathbb{Z}} R_n$ is a graded commutative ring without zero divisors. K will be its field of fractions and K^e stands for the graded field of fractions. Recall from [3] that a graded field is a graded ring such that each nonzero homogeneous element is invertible and that a commutative graded field has the form $k[X, X^{-1}]$, where the part of degree 0, k say, is a field and X a variable of degree $e > 0$. We write $h(R)$ for the set of homogenous elements of R while $h(R)^*$ stands for the set of nonzero elements of $h(R)$. A graded fractional ideal of R is graded R-submodule I of K^e such that there exists a $d \neq 0$ in R such that $dI \subseteq R$ (obviously, $d \in h^*(R)$ may be assumed here). A fractional ideal I of R is said to be invertible if there exists a fractional ideal $J \subseteq K$ such that $IJ = R$, we say that $J = I^{-1}$. If $I \subseteq K^e$ is a nonzero graded fractional ideal, then I^{-1} is graded and $I^{-1} \subseteq K^e$.

A graded domain R is said to be a graded principal ideal ring if every graded ideal is principal. A graded domain is a Gr Dedekind ring if every graded ideal of R is a projective module.

Lemma 1.1. For a graded domain R the following assertions are equivalent:

1. R is a Gr-Dedekind ring.
2. Every graded ideal of R is invertible.
3. R is Noetherian, integrally closed in K and every nonzero graded prime ideal is a maximal graded ideal of R.
4. Every graded ideal is in a unique way (up to ordering) a product of graded prime ideals.
5. The graded fractional ideals of R form a multiplicative Abelian group.
6. R is Noetherian and R_M is a principal ideal ring for each maximal graded ideal M of R.
7. R is Noetherian and R_P is a principal ideal ring for every graded prime ideal P of R.
8. R is Noetherian and $Q^*_h(R)$ is a Gr-principal ideal ring for every maximal graded ideal M.

Proof. The proof is fairly easy; similar to the ungraded case.

Corollaries 1.2.

1.2.1 A Gr-principal ideal ring is a Gr-Dedekind ring.
If R is a Gr-Dedekind ring, then the class group of R, denoted by $C(R)$, is isomorphic to the graded class group $C_g(R)$. Henceforth we will only use the notation $C(R)$ even when $C_g(R)$ is meant. For definitions and details on $C(R)$ and $C_g(R)$ we may refer to [1].

In a Gr-Dedekind ring every graded fractional ideal can be generated by two homogeneous elements, one chosen arbitrarily in the ideal.

Since we can easily dispose of positively graded Gr-Dedekind rings, cf. Remark 2.7, we assume that the gradation of R is not positive here.

Lemma 1.3. If R is a Gr-Dedekind ring, then there is an $e \in \mathbb{N}$ such that $R = \bigoplus_{n \in \mathbb{Z}} R_n$ with $R_n \neq 0$ for every $n \in \mathbb{Z}$.

Proof. Choose $d, e > 0$ minimal such that $R_{-d} \neq 0$, $R_{e} \neq 0$. Write $RR_e = P_1 \cap \cdots \cap P_n$ with P_i, $i = 1, \ldots, n$, graded prime ideals of R. If $d > e$, then $0 = (RR_e)_0 = (P_1)_0 \cap \cdots \cap (P_n)_0$; hence $(P_i)_0 = 0$ for some $i \in \{1, \ldots, n\}$. Then it is clear that $P_i \cap R_{kd} = 0$ for all $k \in \mathbb{Z}$ and therefore each homogeneous element of P_i has to be nilpotent (of order d), i.e., $P_i = 0$. The case $e > d$ may be dealt with similarly, thus $e = d$ follows. Consider R_{ne+k} with $0 < k < e$, then $R_{ne}R_{ne+k} = 0$ with $R_{ne} \neq 0$ yields $R_{ne+k} = 0$.

Corollary 1.4. Without loss of generality we may assume that $R = \bigoplus_{n \in \mathbb{Z}} R_n$ with $R_n \neq 0$ for all $n \in \mathbb{Z}$.

Lemma 1.5. If R is Gr-Dedekind ring, then R_0 is a Dedekind ring.

Proof. That R_0 is Noetherian is easily seen. If I is an ideal of R_0, generated by e_1, \ldots, e_s say, then the fact that RI is projective yields that RI is a direct summand of a graded free R-module I, cf. [2, Chap. 1]. Then I_0 is a free R_0-module and $(RI)_0 = I$ is a direct summand of L_0, i.e., I is a projective R_0-module.

2. Structure Theorems

Theorem 2.1. Let R be a Gr-Dedekind ring such that $RR_1 = R$; then for each graded prime ideal P of R, $P = RP_0$.

Proof. Decompose RP_0 into a product of graded prime ideals $RP_0 = P_1^{r_1} \cdots P_m^{r_m}$. Since for $n \in \mathbb{N}$, $n \neq 1$, and any graded prime ideal P there exists $t \in \mathbb{Z}$ such that $P_t \notin P^n$, the assumption $P_0 \subset P^n$ entails $RR_{-t}, RP_t \subset P^n$, i.e., $RR_{-t} \subset P$. Being a graded field, R/P may be written as $R_0/P_0[X, X^{-1}]$ for some invertible X of R/P. Obviously, $R_1 \notin P$, hence $(R/P)_1 \neq 0$ and consequently $\deg X = 1$, $X^{-t} \in (R/P)_{-t}$ follows.
(R/P)_\ell \neq 0 \text{ and consequently } \deg X = 1, X^{-\ell} \in (R/P)_{-\ell} \text{ follows. Now } (R/P)_\ell \neq 0 \text{ contradicts } R_{-\ell} \subset P \text{ and so we have established so far that } P_0 \subset P^n \text{ entails } n = 1, \text{i.e., } RP_0 = P_1 \cdot \cdot \cdot P_m. \text{ Choose } 0 \neq \bar{x} \in (R/RP_0)_n \text{ and let } x \in R_n - RP_0 \text{ represent } \bar{x}. \text{ From } R_n \notin P_1, \text{ hence } R_{-n} \notin P_1, \text{ it follows that we may select } y \in R_n - RP_0 \text{ so that } 0 \neq \bar{x}y \in R_0/P_0. \text{ By Lemma 1.5., } P_0 \text{ is a maximal ideal of } R_0, \text{ therefore, } \bar{x} \text{ is invertible in } R/RP_0 \text{ and hence } RP_0 \text{ is a maximal graded ideal.} \]

Corollary 2.2. In a Gr-Dedekind ring R such that RR_1 = R every graded ideal is generated by its part of degree 0.

Proof. The proof is straightforward.

The Rees ring associated to an ideal I of R is defined to be $R(I) = R + IX + \cdot \cdot \cdot + I^nX^n + \cdot \cdot \cdot$. This is a positively graded subring of $R[X]$ which is isomorphic to $R \oplus I \oplus \cdot \cdot \cdot \oplus I^n \oplus \cdot \cdot \cdot$.

If I is an invertible ideal of R, we define the generalized Rees ring associated to I as being the ring $R(I) = \sum_{n \in \mathbb{Z}} I^nX^n$ with the obvious gradation. This generalized Rees ring is a graded subring of $Q(R)[X, X^{-1}]$, where $Q(R)$ is the field of fractions of the domain R. If R is Noetherian, then $R(I) = \bar{R}(I)$ is Noetherian, cf. [2, Proposition 3.12]. On the other hand, the proof of Proposition 3.12 may be adapted to yield that $\bar{R}(I)$ is Noetherian too. But then [2, Proposition 3.2] entails that $R(I)$ is a Noetherian ring.

Theorem 2.3. Let I be an ideal of a Dedekind ring R, then $\bar{R}_0(I)$ is a Gr-Dedekind ring.

Proof: We have to establish that $\bar{R}_0(I)$ is graded integrally closed in its ring of fractions and that graded prime ideals of $\bar{R}_0(I)$ are maximal graded ideals. Write $R = \bar{R}_0(I)$ and let R be the integral closure of R in its graded field of fractions $Q^g(R)$. Suppose $y_n \in \bar{R} - R$ for some $n \in \mathbb{Z}$. Clearly, $R_{-n}y_n \subset \bar{R}$, but $R_{-n}y_n \notin R$ (since $R_{-n}y_n \subset R$ yields $RR_{-n}y_n \subset R$ hence $y_n \in R$). So for some $z_{-n} \in R_{-n}, c = z_{-n}y_n \in (\bar{R} - R)_0$. If c satisfies $T^n + a_{n-1}T^{n-1} + \cdot \cdot \cdot + a_0$ with $a_i \in R$, then also $T^n + (a_{n-1})_0T^{n-1} + \cdot \cdot \cdot + (a_0)_0$ with $(a_i)_0 \in R_0$. Because R_0 is a Dedekind ring, $c \in R_0$, contradiction. Therefore $\bar{R} = R$. To prove that graded prime ideals of R are 0 or maximal graded ideals it will suffice to show that for any prime ideal P_0 of R_0, RP_0 is a maximal graded ideal of R. By definition of $\bar{R}_0(I)$ it follows that $(R/RP_0)_n = I^nX^n/P_0I^nX^n$ and hence $(R/RP_0)_n \cong R_0/P_0$ because I^n/P_0I^n is a simple R_0-module. Hence R/RP_0 and $R_0/P_0[X, X^{-1}]$ are isomorphic as graded rings (note: deg $X = 1$ since RR_1 = R) and therefore RP_0 is a maximal graded ideal.

Remark 2.4. $\bar{R}_n(I) = \bar{R}_n(J)$ if and only if I and J belong to the same element of C(R_0).
Proof. Assume that I and J are integral ideals, then $\tilde{R}_0(I)I = \tilde{R}_0(I)X^{-1}$, whence: $I = \tilde{R}(I)_1X^{-1}$. Since $\tilde{R}_0(J)_1 = JY$, $\tilde{R}_0(J) = \sum_{n \in \mathbb{Z}} J^nY^n$ with $Y^{-1} \in \tilde{R}_0(J)$, it follows (up to isomorphism) that $IJ^{-1} = R_0XY^{-1}$. Conversely, if $I = Jx$ for some $x \in Q(R_0)$, then

$$\tilde{R}_0(I) = \sum_{n \in \mathbb{Z}} (Jx)^nX^n = \sum_{n \in \mathbb{Z}} J^n(xX)^n \cong \sum_{n \in \mathbb{Z}} J^nY^n = \tilde{R}_0(J).$$

Theorem 2.5. Every Gr-Dedekind ring R with $RR_1 = R$ is of the form $\tilde{R}_0(I)$ for some ideal I of R_0. There is an exact sequence of multiplicative groups: $I \rightarrow \langle \tilde{I} \rangle \rightarrow C(R_0)x^\times C(R) \rightarrow 1$, where $\langle \tilde{I} \rangle$ is the subgroup of $C(R_0)$ generated by the class \tilde{I} of I. The epimorphism π is thus an isomorphism if and only if I is a principal ideal and in this case $R \cong R_0[X, X^{-1}]$.

Proof. Put $S = R_0 - \{0\}$, $Q_0 = S^{-1}R_0$. If $0 \neq x_n \in R_n$, then there exists $0 \neq y_{-n} \in R_{-n}$ and thus it is sufficient to make $x_ny_{-n} \in S$ invertible in order to obtain the graded field of fractions of R, $S^{-1}R$, say. Take $x_{-1} \in R_{-1} - \{0\}$. Then $x_{-1}^{-1} \in S^{-1}R$ and hence $S^{-1}R = Q_0[x_{-1}, x_{-1}^{-1}]$. Let J be the maximal fractional ideal of R_0 such that $Jx_1 \subset R$ and I the maximal ideal of R_0 such that $Ix_{-1} \subset R$. We have: $Jx_{-1} = R_{-1}$, $Ix_{-1} = R_1$ and since $R_1R_{-1} = R_0$ we obtain that $IJ = R_0$, i.e., $J = I^{-1}$. Similarly if I_2 is the ideal of R_0 for which $I_2x_1^2 = R_2$, then $I_2I^{-1} \subset I$ follows from $R_{-1}R_2 \subset R_1$, hence $I_2 \subset I^2$. On the other hand $I^2x_1^2 = (Ix_1)^2 \subset R_2$ yields $I^2 \subset I_2$. Repeating this argument we find that $R = \tilde{R}_0(I)$. It is obvious that we may define a mapping $\pi: C(R_0) \rightarrow C(R)$ which is induced by extension of ideals of R_0 to ideals of R and it is easily seen that π is a group epimorphism containing \tilde{I} in its kernel. If H is an ideal of R_0 such that RH is principal in R, then we may write $RH = Rh_j^I$ for some $h_j \in RH$. Taking parts of degree n in RH yields: $(RH)_n = H^nX^n = R_{n-j}h_j^I$ with $h_j^I = h_jX^I$ for some $h_j \in I^j$; whence: $H^n = I^{n-j}h_j$ and thus $\tilde{H} \in \langle \tilde{I} \rangle$ in $C(R_0)$. Finally, if $I = R_0i$ is principal in R_0, then $R = R_0[iX, (IX)^{-1}]$ and $C(R) \cong C(R_0)$. Conversely, if π is injective, then $RI = RX^{-1}$ entails that I is principal.

Proposition 2.6. If R is a graded Noetherian domain such that $RR_1 = R$ and R_0 is a Dedekind ring, then $R = \tilde{R}_0(I)$ for some ideal I of R.

Proof. Attentive reading and economizing of the foregoing proof of Theorem 2.5.

Although the condition $RR_1 = R$ is a rather natural one (it should be compared to the assumption that R is generated as an R_0 ring by R_1 in common theory of positively graded rings!) we can deal with the general case to some extent. First note
Remark 2.7. If R is a positively graded Gr-Dedekind ring, then $R \cong k[X]$ with k a field, X a variable.

Proof. $M = \sum_{i>0} R_i$ is a graded prime ideal hence maximal as a graded ideal, so R_0 is a field. Moreover, since M is the unique maximal graded ideal it follows that R is a Gr-principal ideal ring. Write $\sum_{i>0} R_i = Ra$ for some homogeneous $a \in R$ and then it is easy to show $R = R_0[a] \cong k[X]$.

If R is a graded ring, then for any $0 \neq e \in \mathbb{N}$ we put $R^{(e)} \cong \bigoplus_{n \in \mathbb{Z}} R_{en}$ with gradation defined by $R_k^{(e)} = R_{ek}$.

Lemma 2.8. If R is a Gr-Dedekind ring, then $R^{(e)}$ is a Gr-Dedekind ring for any $e \neq 0$ in \mathbb{N}.

Proof. Reference [2, Corollary 3.11] yields that $R^{(e)}$ is Noetherian. Neglecting the gradations we may consider $R^{(e)}$ as a subring of R and the graded field of quotients $Q\hat{e}(R^{(e)})$ as a subring of $Q\hat{e}(R)$. Therefore any $x \in Q\hat{e}(R^{(e)})$ graded integral over $R^{(e)}$ is integral over R (in $Q\hat{e}(R)$) hence in R. Obviously $Q\hat{e}(R^{(e)}) = S^{-1}R^{(e)}$ with $S = R_0\setminus\{0\}$, i.e., $Q\hat{e}(R^{(e)}) = (Q\hat{e}(R))^{(e)}$ and $R \cap (Q\hat{e}(R))^{(e)} = R^{(e)}$ as ungraded rings. Consequently $x \in R^{(e)}$. The correspondence $P \to P^{(e)}$ defines a one-to-one correspondence between spec$_g R$ and spec$_g R^{(e)}$, the inverse correspondence being given by $Q \to \text{rad } R(\sum_{m \in \mathbb{Z}} Q_m)$. Hence graded prime ideals of $R^{(e)}$ are maximal graded ideals.

Lemma 2.9. If R is a Gr-Dedekind ring and P is a graded prime ideal of R, then the graded ring of fractions at P is obtained by localizing at the multiplicatively closed set $R_0 - P_0$ and the localized ring is a graded discrete valuation ring.

Proof. Since R/P is a graded field $x_n \in R_n - P$ yields that there is an $y_n \in R_n - P$ and it suffices to invert $x_n y_n \in R_0$ in order to invert x_n. The localized ring is a local graded principal ideal domain and therefore it is a graded discrete valuation ring (see [3] for details on graded valuation rings). Note that here a direct construction of a \mathbb{Z}-valued valuation function v_p is possible by setting $v_p(x)$ equal to the exponent of P in the decomposition of Rx if x is homogeneous and $v_p(x_1 + \cdots + x_k) = \min\{v_p(x_1), \ldots, v_p(x_k)\}(1)$

Theorem 2.10. If R is a Gr-Dedekind ring, then there exists $e \in \mathbb{N}$ and an ideal I of R_0 such that $R^{(e)} = R_0(I)$.

Proof. Write $RR_1 = P^m_1 \cdots P^m_n$. If all v_i are zero, then $RR_1 = R$ and we take $e = 1$ and use Theorem 2.5, otherwise we deduce from the structure of the graded field R/P that there exists $e \in \mathbb{N}$ such that $P \supset R_{me+r}$ for all m and all $0 < r < e$. If $e = 0$, then $P \supset R_t$ for all $t \neq 0$. Consider the graded
localized ring $Q^g_p(R)$ of R at P (for generalities on graded rings of quotients, cf. [4]). Then $Q^g_t(P) \supset Q^g_p(R)$, for all $t \neq 0$ since $Q^g_p(R)$ is obtained by inverting elements of degree 0. The Lemma 2.9 yields that $Q^g_p(R)$ is a graded discrete valuation ring so we may choose $a \in Q^g_p(R)_0$ such that $v_p(a) = n \neq 0$ and such that $v_p(\alpha)$ is minimal amongst nonzero $v_p(\beta)$ with $\beta \in Q^g_p(R)_0$. Choose any $x \in Q^g_p(p) - Q^g_p(p)^*$, i.e. $v_p(x) = 1$. Then $v_p(\alpha^{-1}x^n) = 0$ or $\alpha^{-1}x^n$ is invertible in $Q^g_p(R)$, contradicting $Q^g_p(R) \subset Q^g_p(P)$ unless $P = R$, $P_0 = R_0$.

Actually, for each $P_i \supset R_1$ we find a number e_i such that $e_i > 0$ and $P_i^{(e_i)} \subset R^{(e_i)}$ has the property: $P_i^{(e_i)} \not\supset (R^{(e_i)})_1$. Put $e = \text{the least common multiple of the } e_i$ then, for each i $P_i^{(e)} \supset R_i^{(e)}$. The structure theorem for Gr Dedekind rings with $RR_1 = R$ may therefore be applied to $R^{(e)}$, because $R_i^{(e)}$ is not contained in any graded prime ideal of $R^{(e)}$ (indeed, for $P_i \supset R_1$ this has been shown before and if $Q \not\subset R$, then $Q \not\subset R_n$ yields $Q^{(n)} \not\subset (R^{(n)})_1$). Therefore $R^{(e)} = \overline{R}_0(I)$ for some ideal I of R_0.

Corollary 2.11. If R is a Gr-Dedekind ring, then there exists $n \in \mathbb{N}$ such that the diagram of group homomorphism is commutative,

$$
1 \rightarrow \langle I \rangle \rightarrow C(R_0) \rightarrow C(R^{(n)}) \rightarrow 1.
$$

Proof. Find $n \in \mathbb{N}$ as in Theorem 2.10. Extension of ideals from R_0 to $R^{(n)}$, "from" $R^{(n)}$ to R and from R_0 to R defines the arrows in the diagram. Use Theorem 2.5 and check commutativity.

We call the ideal R_1R_{-1} of R_0 the discriminator of the Gr-Dedekind ring R, and denote it by $\delta(R)$.

Lemma 2.12. If R is a Gr-Dedekind ring, then $S = Q^g_{\delta(R)}(R)$ is a generalized Rees ring with $C(S) = C(R)/(P_1, \ldots, P_s)$, where P_1, \ldots, P_s are the graded prime ideals containing R_1.

Proof. Since R is a Gr-Dedekind ring every graded localization is perfect, i.e., has graded property T in the sense of [4]. For every ideal L of S we have $L = S$. ($L \cap R$) and therefore we obtain an epimorphism,

$$
\gamma: C(R) \rightarrow C(S).
$$

If J is an ideal of R such that $SJ = Sa$ for some homogeneous $a \in S$, then $(RR_1)^N a \subset J$ for some $N \in \mathbb{N}$. The Gr-Dedekind property yields $(RR_1)^N a = JH$, where H is such that $SH = S$. From this it is easily seen that
Note 2.13. \(Q_{R_{-1}}^g(R) \cong Q_{RR_1}^g(R) \) as graded rings.

Corollary 2.14. We have a commutative diagram

\[
\begin{array}{ccc}
C(R^{(n)}) & \rightarrow & C(R) \\
\downarrow & & \downarrow \\
C(R_0) & \rightarrow & C(Q_{S(R_0)}) = C(R_0)/\langle \bar{p}_1, \ldots, \bar{p}_s \rangle \\
\downarrow & & \downarrow \\
C(Q_{S(R_0)}) = C(R_0)/\langle \bar{p}_1, \ldots, \bar{p}_s \rangle & \rightarrow & C(Q_{RR_1}^g(R)) = (C(R_0)/\langle \bar{p}_1, \ldots, \bar{p}_s \rangle)/\langle \bar{I}_{S(R_0)} \rangle
\end{array}
\]

where \(p_1, \ldots, p_s \) are the prime ideals of \(R_0 \) containing \(\delta(R) \), i.e., \(p_i = P_i \cap R_0 \), and \(\bar{I}_{S(R)} \) is the ideal of \(Q_{S(R_0)}^g(R_0) \) defining the generalized Rees ring structure of \(Q_{RR_1}^g(R) \).

Proposition 2.15. Let \(R \) be a Gr-Dedekind ring such that there is an \(N \in \mathbb{N} \) such that the generalized Rees ring \(R^{(N)} \) has the property that \(C(R^{(N)}) \rightarrow C(R) \) is injective. Then \(C(Q_{RR_1}^g(R)) \cong C(R_0)/\langle \bar{p}_1, \ldots, \bar{p}_s, \bar{I} \rangle \), where \(I \) is the ideal of \(R_0 \) determining the structure of the generalized Rees ring \(R^{(N)} \) and \(p_i, i = 1, \ldots, s \) are the prime factors of the discriminator in \(R_0 \).

Proof. In Corollary 2.14 we write \(I_{S(R)} = Q_{S(R_0)}^g(J') \) for some ideal \(J' \) of \(R_0 \). Commutativity of the diagram yields that \(J' \) is in the kernel of the composition \(C(R_0) \rightarrow C(R^{(N)}) \rightarrow C(R) \rightarrow C(S) \). Hence if we write \(J' = p_0^{e_0} q_1^{w_1} \cdots q_s^{w_s} \), then \(R\hat{J}' = \hat{p}_1^{e_1} \cdots \hat{p}_s^{e_s} \hat{Q}_1^{w_1} \cdots \hat{Q}_s^{w_s} \) (where \(e_j, j = 1, \ldots, s \), are the ramification indices of \(p_1, \ldots, p_s \), respectively) and \(S\hat{J}' = (S\hat{Q}_1)^{w_1} \cdots (S\hat{Q}_s)^{w_s} \). Consequently \((S\hat{Q}_1)^{w_1} \cdots (S\hat{Q}_s)^{w_s} \) is a product of the \(\hat{p}_1 \cdots \hat{p}_s \) up to principal \(\hat{R} \)-ideals. Since \(C(R^{(N)}) \rightarrow C(R) \) is injective it follows that the class of \(q_1^{w_1} \cdots q_s^{w_s} \) is in the group generated by \(\bar{p}_1, \ldots, \bar{p}_s, \bar{I} \), whence \(J' \in \langle \bar{p}_1, \ldots, \bar{p}_s, \bar{I} \rangle \) follows. Therefore \(C(R_0)/\langle \bar{p}_1, \ldots, \bar{p}_s, \bar{I} \rangle = C(R_0)/\langle \bar{p}_1, \ldots, \bar{p}_s, \bar{I} \rangle \).

Next we turn to Gr-principal ideal rings.

Theorem 2.16. If \(R \) is a Gr-principal ideal domain such that \(RR_1 = R \), then \(R_0 \) is a principal ideal domain and \(R \cong R_0[X, X^{-1}] \).
Proof. It is straightforward to show the fact that \(R \) is a graded unique factorization domain implies that \(R_0 \) is a unique factorization domain, hence as \(R_0 \) is also a Dedekind domain, \(R_0 \) has to be a principal ideal domain. Theorem 2.5 then yields that \(R \cong R_0[X, X^{-1}] \).

REFERENCES