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Abstract

Is tame open? No answer so far. One may pose the Tame-Open Conjecture: Tame is open. But
how to support it? No effective way to date. In this note, the rank of a wild algebra is introduced.
The Wild-Rank Conjecture, which implies the Tame-Open Conjecture, is formulated. The Wild-
Rank Conjecture is improved to the Basic-Wild-Rank Conjecture. A covering criterion on the rank
of a basic wild algebra is given, which can beeefively applied to verify the Basic-Wild-Rank
Conijecture for concrete algebrasmakes all conjectures much reliable.

0 2004 Elsevier Inc. All rights reserved.

Throughoutk denotes a fixed algebraically closield. By an algebra we mean a finite-
dimensional associativie-algebra with identity. By a module we mean a left module of
finite k-dimension except in the context of covering theory. We denote byArtbe cate-
gory of finite-dimensional lefd-modules. For terminology in the representation theory of
algebras, we refer to [ARS,R2].
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1. Tame-Open Conjecture

Ford e N1 :={1,2,3,...}, A; denotes the affine variety of associative algebra struc-
tures with identity ork? (cf. [Gal, Section 2.1]). The linear gro@l (k) operates oty
by transport of structure (cf. [Gal, Section 2.2]). One remarkable result in the geometry of
representations ishe finite representation type is opere., alld-dimensionak-algebras
of finite representation type form an open subsedp{cf. [Gal,Kr,Gel]). Inspired by this,
Geiss asked whether tame is open (cf. [Gel,Ge2])? Of course one may pose a conjecture
as follows:

Tame-Open Conjecture. For anyd € N1, all tame algebras in4,; form an open subset
of .Ad.

How to support the Tame-Open Conjecture?dfvious way is to verify it for each di-
mensiord. In case I< d < 3, Ay = {all d-dimensional tame algebriad’hus Tame-Open
Conjecture holds for ¥ d < 3. In caseal = 4, one can easily determine the representation
type of all 4-dimensional algebras listed in [Gal, Section 5]. Apply the upper semi-
continuity of the functionA — dim; Aut(A) = dimg End(A) (cf. [Kr, Proposition 6.3]),
one can show that Tame-Open Conjecture holdsifer4 as well. However, for > 5,
even ford =5 only, the problem becomes too conalied to be dealt with (cf. [Hap,Mal).
Thus it seems that it is difficult to go further along this way.

Note that the Tame-Open Conjecture was also studied by Kasjan from the viewpoint of
model theory. He proved that the class of tame algebras is axiomatizable, and finite axioma-
tizability of this class is equivalent to the Tame-Open Conjecture (cf. [Kas]). Nevertheless,
it seems that this cannot support Tame-Open Conjecture.

2. Wild-Rank Conjecture

A finite-dimensionak-algebraA is calledwild if there is a finitely generated-k (x, y)-
bimoduleM which is free as arighit(x, y)-module and such that functdf @y, ,) — from
modk(x, y) to modA preserves indecomposability and isomorphism classes (cf. [CB1]).
We say thatA is strictly wild if in addition the functorM ®x,,, — is full. In a natural
way, we can define notions of wildness or strictly wildness for a full subcategory of the
module category over an algebra. If the algehia wild then we denote by, the number
min{rank.. yy M | M is a finitely generatedi-k(x, y)-bimodule which is free as a right
k(x, y)-module and such that the functef®y . y) — from modk (x, y) to modA preserves
indecomposability and isomorphism clagseBy [C, Corollary 2.4.3]k(x, y) is a free
ideal ring. By [C, Corollary 1.1.2J(x, y) is an IBN ring. Thus the rank of a frégx, y)-
module is unique. Hencey is well defined and called theank of the wild algebraA.
Similarly, we may define the rank of a wild subcategorg of modA. Obviouslyyra < re.

In this paper, we do not distinguisfrdimensional algebras from points ;. Put
Ti:={Aec Ay | Atamg andW, :={A € Ay | A wild}.
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Wild-Rank Conjecture. There is a functionf :N — N such thatry < f(d) for all
Ae Wd.

Remark 1. In some sense, the Wild-Rank Conjecture is an analogue of the numerical
criterion of the finite representation type (cf. [B, Theorem]).

If an algebraic groupG acts on a varietyX then thenumber of parametersf G
on X is dimg X := max{dimX, — s | s > 0} where X, is the union of orbits of di-
mensions (cf. [Kac, p. 71] or [KR, p. 125] or [CB2, p. 399]). IA is a finite-dimensional
k-algebra then the set m@dl, n) of the n-dimensional representations afis the closed
subset of Hom(A, M (n, k)) consisting of allk-algebra homomorphisms from to the
algebraM (n, k) of n x n matrices. There is a natural conjugation actiorGif, (k) on
mMod(A, n). Put A, <, :=1{A € Ay | dimg, k) mod(A,n) <n} and Ay, -, :={A € Ay |
dimGLﬂ(k) mod(A, n) > n}.

Lemma 1 ([Gel, Proposition 1], [CB2Proof of Theorem B]).4,, <, is an open subset
of A; and A, -, is a closed subset 04, for all d andn.

PUtAS" := ('_y Ag, <i andA>" == J'_; Ag ~i. ThenAS D AS? D .. and A1 C
A;Z C....ByLemma 1,Ad<" is an open subset o4, and. A" is a closed subset ol
for all 4 andn.

Lemma 2 ([D, Proposition 2], [Gel, Proposition 2], [CB2, Lemma.3])

g = ﬂAds@: ﬂA;i and W, = UAd*>i= U A;i.

ieNp ieNg ieNg ieNg
Theorem 1. The Wild-Rank Conjecture implies the Tame-Open Conjecture.

Proof. If the Wild-Rank Conjecture holds then there is a functipnN — N such that

ra < f(d) for all A eW; andd € N1. Let A € W,. Then there is a finitely gener-
ated A-k(x, y)-bimodule M which is free of rank-4 overk(x, y) such that the functor
M ®k(x,yy — from modk(x, y) to modA preserves indecomposability and isomorphism
classes. Note thagt:= M Qx(x,y) —:modk(x, y),1) — Mod(A, rat) is a regular map (cf.
[DS, p. 67]). Consider stratifications

mod(k(x, y), 1) = U mod(k(x, y), ), and mModA, rar) = U MOd(A, r41) ().
i J
Since modk (x, y), t) is irreducible and
mod(k(x, y), 1) = (_J(mod(k(x, y),7) ;) N ¢~ (MOAA, rat)j)),
i,j

there are@ and; such that the constructible subset
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X :=mod(k(x, y), t)(l.) N~ H(mod(A, rat)(j))

is irreducible and dense in m@dx, y), 7). Thus¢ (X) is an irreducible and constructible
subset of mo@4, r41)(;). Consider the restriction af on X and¢(X). By [Mu, Sec-
tion 1.8, Theorem 3], dimp(X) — dimX = dim¢—1(y) for somey € ¢(X). Take any
x € ¢~ 1(y). Since the inverse image of an orbit ungds an orbitg induces a regular map
Y from the orbitGL, (k) - x to the orbitGL,,; (k) - y. Applying [Mu, Section |.8, Theorem 3]
again, we have dim~1(y) = dimy~%(y) = dimGL,,, (k) - y — dimGL, (k) - x = j —i.
Therefore

dimGLw(k) mod(A, rat) >dim moctA,rAt)(j) —j>dime¢(X) —j
=dimX + (j —i) — j =dimmodk(x, y),7) — i
> dimmodk(x, y), ) — dimGL, (k) = 2> — 1> =12

for all . In particular, take =r4 then dingL , x) Mod(A, rf‘) > rf‘. This implies that for
anyA e W,, A

2 2
Aedy 2 S A cATD

> f2(d) ;
By Lemma2W; =A; is a closed subsetof;. O

3. Morita equivalence

Now we study changes of the rank of a wild algebra under Morita equivalence and factor
algebra. The following result implies that to prove the Wild-Rank Conjecture suffices to
show it for all basic algebras.

Theorem 2. If a d-dimensional wild algebra is Morita equivalent to a basic algebra
thenry <d -rp.

Proof. Supposed = @, n; P; with n; > 1 and P;, 1<i < m, being the nonisomor-
phic indecomposable projectivé-modules. LetP = @ ; Pi. Then B = End,(P)°".
Consider the evaluation functep = Homy (P, —) :modA — modB. Note thatep is an
equivalence of categories with quasi-inveFs@ g — (cf. [ARS, Corollary 11.2.6.] and [AF,
Theorem 22.2]). Sinc8 is wild, there is aB-k(x, y)-bimoduleM which is free of rank
overk(x, y) such that the functalf ® .,y — from modk(x, y) to modB preserves inde-
composability and isomorphism classes. Note th& also projective oveB. Decompose
P as the direct sum of the indecomposable projective riyimodules, seP = @ﬁzl 0;.
For Q; there is a projective righB-module Q; such thatQ; & Q) = B. Thus there is a
projective rightB-module P’ such thatP @& P’ = B. Further(P ® M) @ (P’ g M) =
B! ®p M which is free of rank - rp <dimy P -rp <dimy A-rp=d-rg. SinceP g M
is finitely generated projective ovetx, y), by [C, Theorem 1.4.1], it is free ovéKx, y).
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Moreover, its rank is at mogt- rz. Consider the compositioA @ 3 M ®y(x,y) —, we have
ra<d-rp. O

From now on, unless stated otherwige assume that all algebras are basitwus any
algebraA can be written asQ /I whereQ is the Gabriel quiver oA and! is an admissible
ideal of the path algebraQ. For a quiverQ we denote byQg (respectivelyQ1) the set
of vertices (respectively arrows) ¢f. The next result implies that to prove the Wild-Rank
Conjecture suffices to show it for all minimal wild algebras. Herieimal wild means no
proper factor algebra is wild.

Lemma 3. If I is an ideal of an algebrat and A/I is wild thenry <ra/;.

Proof. If M is a finitely generated /I-k(x, y)-bimodule which is free of rank,,; over
k(x, y) suchthat the functa¥ ® ) — from modk (x, y) to modA /I preserves indecom-
posability and isomorphism classes, thiris also a finitely generated-k (x, y)-bimodule
which is free of rank: 4 /; overk(x, y) such that the functa¥f Q) — from modk (x, y)
to modA preserves indecomposability and isomorphism classes.

4. Coveringcriterion

In this section, we shall provide a coveringterion which can be effectively applied
to provide an anticipated upper bound for the rank of a concrete wild algebra. For the
knowledge of Galois covering theory, we refer to [BG,Ga2,MP].

A minimal wild concealed algebraeans a concealed algebfaaninimal wild heredi-
tary algebra. Unless stated otherwise, the wondimalin minimal wild hereditary algebra
or in minimal wild concealed algebria always used in the sense of [Kel]. First of all, we
provide upper bounds for ranks of some strictly wild subcategories in the module cate-
gories over minimal wild concealed algebras.

Lemma 4. Ranks of all minimal wild hereditary algebras are bounded by a fixed number.

Proof. Note that the underlying diagrams of the quivers of all minimal wild hereditary
algebras are listed in [Kel, p. 443]. Denote| i@ the underlying diagram of the quiver.
Then there are at most2! quivers with underlying diagrariQ|. Thus (up to isomor-
phism) there are finitely many minimal wild hereditary algebras.

Let A=kQ/I. For anA-moduleM we define itssupportSupgM) to be the subset
of Qo consisting of allx € Qg satisfyingM (x) ## 0. An A-moduleM is calledsincereif
SuppM) = Qo.

Lemma 5. Ranks of all minimal wild concealed algebras are bounded by a fixed number.

Proof. Itis enough to show that (up to isomorphism) there are only finitely many minimal
wild concealed algebras. This is clear jyy1,U2]. Here we give some details. Ldt be
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a minimal wild concealed algebra of tygé. Let T = D;_; T; be a preprojective tilting
H-module such thatA = Endy (T). ThenT; = T~ P; for some indecomposable projec-
tive H-module P; and some nonnegative integeg. Here t denotes Auslander—Reiten
translation. Thus' = ¢—mintm: [1Sistbry with T3 = P @ t~17%, where P is a projec-
tive H-module and:r ~17, has no projective direct summand. By [R2, p. 76, (6)] we have
Ext},(Tl, T1) = 0. ThusT; is still a preprojective tiltingH -module. By [ARS, Proposi-
tion 1.9(b)] we have Eng(T1) = Endy(T) = A. Let P = He and H' = H/{e) where(e)

is the two-sided ideal off generated by. Then Hom; (P, T») = Homy (P, 17 1Ts) =

D Ext},(r*sz, P) = 0. ThusT is an H’-module. In particulaf® is a non-sincere pre-
projectiveH-module. Since there are only finitely many non-sincere indecomposable pre-
projective H-modules (cf. [Ke3, Corollary 3.9]), there are only finitely many square-free
preprojective tilting H-modules with projective summands. Therefore there are only fi-
nitely many minimal wild oncealed algebras of typé. By the proof of Lemma 4, the
number of minimal wild hereditary algebras is finite, so is the number of minimal wild
concealed algebras.o

Denote by(modA); the full subcategory of mod consisting of allA-modules whose
indecomposable direct summands are all siacBiote that this notation is different from
that in [E,HanZ2].

Lemma6. If A=kQ/I is a strictly wild algebra and4 /{e;) is not strictly wild for any
primitive idempotent corresponding to a veriel Qg, then(modA); is strictly wild.

Proof. The proof is almost the same as that of [Han2, Lemma (3.1)]. Denoi&slthe
quiver with two vertices 12 and three arrows, 8, y. First of all, there is a fully faithful
exact functotF : modk Kz — modk(x, y) sending(V1, V2; a, B, y) to

01 00 00O T T0OOUO OO O 0 O
00100001 1000 000
0001000 |6 10 0 O0O0O
(\i®V2); |0 0 001 00O0[,]0O 8 1 0 0 0 0],
000O0O0T10 |00« 1 00O
000O0O0OTL |00 O0PFL 1 00O
Lo o 0ooo0oo0aLlLoo o 0y 1 0

where all entries of these two matrices are 2 matrices and
o - 10 5— 0 0 ;|10 0
~lo of lo 1| “T|« of
! __ O 0 ! __ 0 0
'B_[ﬁ O} and y—[y O]
Moreover, there is also a fully faithful exact functgr. modk(x, y) — modkKz which

is defined by sendingV; x,y) to (V,V;1 x,y). Since A is strictly wild, there ex-
ists a fully faithful exact functof: modkKs — modA. By assumption, we know that
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SuppH(S1)) U SupgH(S2)) = Qo, wheres; is the simplekK3-module corresponding to
vertexi. It is easy to see that both7(S1) andGF(S2) are sincer&Ks-modules, i.e. for

eachi, GF(S;) is an extension of}" by S5’ for some positive integers; andn;. Hence
HGF(S1) andHGF (S2) are sinceredA-modules. Since the funct@(GF is fully faithful

and exact, it preserves indecomposability. Hence each indecomposable direct summand of
eachA-module in IMHGF is an image of a module in ma@dKs. Thus allA-modules in
ImHGF are contained ifmodA),. Finally HGFG defines a strictly wild functor from

modk (x, y) to (modA),. O

The constank in the next lemma is very important and will appear frequently.

Lemma 7. Ranks ofmodA),; whereA runs through all minimal wild concealed algebras
are bounded by a fixed number. Suppbsethe smallest bound.

Remark 2. It should be interesting to evaluate the number

Proof. It follows from [Ke2, Corollary 2.2] that mod is strictly wild. It is well known
that minimal wild concealed algebras are imal wild in the sense of [Kel] (cf. [U2,
p. 146]). By Lemma 6(modA); is strictly wild as well. By the proof of Lemma 5, there
are only finitely many minimal wild concealed algebrasi

A quiver with relationg Q, I) is called aactor quiverof a quiver with relationgQ’, I’)
if Qo is asubset 0, 01 is a subset of the subset 6f, obtained fromQ’ by excluding
all the arrows starting or ending at some vertexdg\ Qo, and! is the admissible ideal
of kQ obtained from/” by replacing each arrow i®7\ Q1 in each element of’ by zero
(cf. [Han2]). Note that in this cas&Q/1I is a factor algebra dfQ’/I’. A Galois covering
of quiver with relatior : (Q',1— (0, I) is said to bewild concealedf there is a finite
factor quer(Q ) of (Q', I') such thale/I is a minimal wild concealed algebra. The
following result including its proof is a odification of [E, Proposition 1.10.6].

Lemma8. Letw:(Q', 1) — (O, Nl be a Galois covering of a quiver with relations with
a torsion-free Galois grougs and(Q I) a finite factor quiverof Q’, I'). Then

(1) The restrictionF; : (modkQ/I); — modk Q/I preserves indecomposability and iso-
morphism classes.

(2) There is a finitely generatedQ/I-k O /I-bimoduleM which is free of rankQo| over
kQ/I and such that, = M ®, 5,7 — on (modk 0/1);.

Proof. (1) F) preserves indecomposability: Takeindecomposable i(modké/f)s and
considerN as akQ’/1’-module. By [Ga2, Lemma 3.5], it suffices to show that 2 N
for 1+ g € G. If 1 # g then, sinceG is torsion-free (8 Q)g # Qo. Hence Sup@ N) =
SuppN). Thus8 N 2 N.

F;,, preserves isomorphism classes: Eg{N1) = F, (N2). Let N; = @7;1 Nj; be the
direct sum decomposition df; € (modk@/i)s, j =1,2, into indecomposables. Then,
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by the paragraph above and Krull-Schmidt theorem, we have ny and F) (Ny;) =
Fy(N2;), 1<t; <n1, i=1,...,n1. ConsideringV;;, j=1,2,i=1,...,n1askQ /I/-

module By [Ga2, Lemma 3. 5] we hava, = 8i N, for someg; € G andz =1,...,n1.
Thus Q¢ = Supf(Ny;) = Supp® Np,) =8 0o. Sinceg is torsion-free, we havg, =1
andNy; = Ny, i =1,...,n1. HenceNy = N».

(2) ThekQ/1I- -kQ/I- blmoduIeM For a free basigh; | i € Qo}, defineM to be the free
kQ/I module@ 0o i (kQ/I) We define a lefk 0 /I-module structure oM as follows:

Leti € Qo, s € Oo, ando € kQ/I We denote by, the idempotent ot Q corresponding
tos, and we set

_ [ bs(eso) ifm(s)=1i,
¢i(bso) = {O otherwise.
Supposex:i — j is an arrow inQ. If s Qo With (s) =i anda:s — ¢ is an arrow
in é with 7 (s) =i andw (&) = « then we definex(b;o) = b,(@o), and setw(bso) =
otherwise. We claim that this is/Q/I-module action: Suppose € I. Note that every
relation is a sum of minimal and zero relations (cf. [MP]). To prenéso) =0 foro €
kQ/I suffices to show it for a m|n|mal or zero relatigne 1. We assume < e (kQ)e;
fori, j € Qo. If there is nos € Qo such thatn(s) =i then we haven(b;0) = 0. If there
is s € Op such thatr(s) = i then there iso’ e I' N e,(kQ Jes such thatr (o’ ) = p. By
replacing each arrow an\Ql by zero, we obtairp € I N e;(kQ)es from o’. Clearly,
p(bso) =bi(po)=0.

Now letN € mode/I; we will show thatFy (N) = M /i N canonically. Since for
any arronx é we have thatb;a) @ N = b; ® (@N) C by ® N, the module ®ro/i N
has underlying spac@seéo(bs ® N). Leti € Qp. If 7 (s) #i thene;(by ® N) =0. If
w(s) =i thene;j(bs ® N) = (bses) @ N = bs; ® esN = by @ N(s). SO we may iden-
tify e;(M ® N) with (F,(N))({) = EBH(S) ,N(s) Now consider the action of an arrow
a:i — jin Q. Leta:s — t be an arrow mQ with 7 (s) =i, m(&) = o« and hence
7 (t) = j. Thena(by ® N) = (b)@) ® N =b; ® (&N) = b; ® (@esN) =b; @ (@N(s)) =
b; ® N(a)(N(s)), and this is just the action of on the spacéF, (N))(@). O

Theorem 3 (covering criterion) Let A = kQ/I be a wild algebra andr:(Q’,I') —
(Q, I a wild concealed Galois covering of quivers with relations with torsion-free Ga-
lois group. Themnry < 10b.

Proof. Let (Q, I) be a finite factor quiver ofQ’, I) such thath/I is a minimal wild
concealed algebra. By Lemma 7, there is a finitely geneﬂa@d -k{(x, y)-bimoduleM;
which is free of rank at mosk over k(x, y) such that the functoM1 ®i,,) — from
modk(x, y) to (modk@/i)s preserves mdecomposabnlty and isomorphism classes. By
Lemma 8, there is a finitely generated//- kQ/I -bimodule M> which is free of rank

| 0ol overkQ/I such that on mo@, 1), the pushdown functoF, = M» ®y /i — pre-
serves indecomposability and isomorphism classes. Consider the compbﬁgt@pQ/l

M1 Qi (x,y) —; We havery < rankMz ® M1) # |Q0| b<10b. O
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According to Theorems 2 and 3, we reforame the Wild-Rank Conjecture as follows:

Wild-Rank Conjecture. Let A be ad-dimensionalunnecessarily basjowvild algebra.
Thenr, < 10bd.

Basic-Wild-Rank Conjecture. Let A be a d-dimensional basic wild algebra. Then
ra < 10b.

Clearly, Basic-Wild-Rank Conjecture> Wild-Rank Conjecture=> Tame-Open Con-
jecture.

5. Applications of the covering criterion

How to support the Basic-Wild-Rank Conjecture? For concrete algebras, our covering
criterion is very effective. Indeed, for a concrete basic wild algebgiven by quiver with
relations(Q, I), we can find a minimal wild factor algebi of A. Usually, eitherB is
itself a minimal wild concealed algebra or there is an algebé B such thatC admits
a wild concealed Galois covering with tawe-free Galois groupThus we can apply the
covering criterion to the algebi@.

By the covering criterion, we know the Basic-Wild-Rank Conjecture holds for all well-
known wild algebras such as wild local algebras, wild two-point algebras, wild radical
square zero algebras, wild finitegroup algebras, wild three-point algebras whose quiver
is system quiver (cf. [R1,Han3,Han1,Han2,LZ]). This implies that all three conjectures are
much reliable.

Certainly one can list many propositis analogous to the following one.

Proposition. Let A be ad-dimensional wild local algebrdrespectively wild two-point
algebra, wild radical square zero algebrarhenr, < 10b.

Proof. Up to duality and isomorphism4 has a minimal wild factor algebrB appearing

in the list of [R1, p. 283] (respectively [Han3, Table W], [Han1, p. 98] or [Han2, p. 290]).
By check case-by-case, we know that eitlBeis itself a minimal wild concealed algebra
or there is an algebr@ = B such thatC admits a wild concealed Galois covering with a
torsion-free Galois group. O
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