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Abstract 

The method of continuously distributed dislocations model is applied to the problem of rapidly propagating cracks. Weertman’s 
solution of a running edge dislocation considering the effect of inertia (1961) has been utilized. A semi-infinite length crack 
running in a strip with clamped sides was analyzed. The singular integral equations representing the boundary condition of this 
problem were solved numerically by the newly proposed method based on the boundary collocation. The stress intensity factor 
was calculated and it has been made clear that precise solutions can be obtained even when the number of the collocation points 
is small. The crack opening displacement was also calculated and a startling result has been obtained. In the neighborhood of the 
crack tip, the crack opening displacement exceeds the applied displacement between both sides of the strip. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of 
Structural Engineering. 
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1. Introduction 

The method of continuously distributed dislocations model is one of the classical methods for the analysis of 
crack problems. For the last few decades, classical methods have been giving way to numerical methods such as 
FEM (Finite Element Method), especially in the analysis of complicated or practical crack problems. However, the 
method of continuously distributed dislocations model is a powerful technique for expressing the singularities at the 
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crack tips and in some special two dimensional cases, this method can give extremely precise solutions. Regarding 
this method, we can appreciate an excellent textbook by Hills et al. (1996). 

The method of continuously distributed dislocations model can be applied to dynamic crack problems as well as 
static ones considering the effect of inertia due to the rapid crack propagation using Weertman’s solution of a 
moving dislocation (1961). By this method, a running crack in a strip with clamped sides under anti-plane shear 
loading (mode III) was analyzed by Shioya et al. (1983). Related in-plane problem (mixed mode of I and II) was also 
analyzed by Fujimoto et al. (1985). From these problems, this paper focuses on a semi-infinite length mode I crack 
running rapidly in a strip with clamped sides and the numerical method of the singular integral equations for the 
problem is newly proposed. In the singular integral equations of this problem, the unknown functions are infinite or 
semi-infinite in their domains. Therefore, the current numerical method (e.g. Fujimoto (1991)) is not applicable 
because this method is for the problems in which the unknown functions are finite in their domains. Not only stress 
intensity factors but also crack opening displacements were calculated. The convergence with the increase of the 
number of the collocation points was investigated. 

 
Nomenclature 

G shear modulus  
  Poisson’s ratio 
 43  for the plane strain condition, )1/()3(  for the plane stress condition 
 mass density 

h width of the strip 
V velocity of crack 
x, y moving coordinates with the velocity V in the x-direction 

1s  2
1)/(1 cV  

2s  2
2 )/(1 cV  

1c  /)1/()1( G : longitudinal wave velocity 

2c  /G : shear wave velocity 
u, v displacement components in the x- and y-directions, respectively 

 

2. Model and formulation using continuous dislocations model 

As shown in Fig. 1, let’s consider a semi-infinite length crack propagating with a constant velocity V in a strip 
with an infinite length and clamped sides. This strip is assumed to be linearly elastic, homogeneous and isotropic. 
The boundary condition at both sides is as follows. 

2/on2/0 0 hy,u vv ;     2/on2/,0 0 hyu vv   (1) 

The running crack in Fig. 1 can be replaced with the continuous array of running dislocations. Let’s denote the 
density of the dislocation (Burgers vector per unit crack length) by )0()( xxf  and introduce the function

)()( xxp  for satisfying the clamp condition at both sides (2). According to the reference by Fujimoto et al. 
(1985), we can obtain the following singular integral equations as the stress free condition on the crack surface and 
the clamp condition at both sides, respectively.  
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Fig. 1. Model of a semi-infinite length crack running in a strip with clamped sides. 

The kernel functions in the equations (5) and (6) are as follows. 
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In the first term of the lhs of the equation (2) and the second term of the lhs of (3), there are singularities in the 
integrands. In this case, the principal value of the Cauchy type is taken. It should be noted that in deriving these 
equations, the stress fields of a moving dislocation (Weertman (1961)) and a moving point force (Fujimoto (1985)) 
were utilized. Further, we must consider the following conditions additionally. 

0

0
)( vdf ,     01

3)( vGdp   (5) 

The stress intensity factor IK  and the crack opening displacement )(COD xv  can be expressed using the 
dislocation density function )(xf  as 
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3. Numerical method 

In solving the singular integral equations (2) and (3) numerically with the additional conditions (5), normalization 
and transformation of variables are conducted in these equations. The variables with the domain [–∞, 0] are changed 
to those with the domain [–1, 1] by the following transformation. 

2
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Similarly, regarding the variables with the domain [–∞, ∞], the following transformation is conducted to have the 
new domain [–1, 1]. 

t
thx

1
1log

2
,     

1
1log

2
h   (8) 

Then, we obtain from the equations (2), (3) and (5), 
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Next, let’s consider the equations (9) and (10) to be satisfied at the following collocation points, respectively. 

)1,,3,2,1(
12
12cos mi

m
it ,     )1,,3,2,1(cos ni

n
it  (14) 

Based on the numerical method by Fujimoto (1991), equations (9)-(12) are discretized and approximated as follows. 
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Solving the linear algebraic equations (15)-(18), we can obtain ),,3,2,1()( mjF j  and ),,3,2,1()( njP j . 
The stress intensity factor and the crack opening displacement can be calculated by 
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4. Numerical results 

In this chapter, some numerical results are shown. Table 1 shows the convergence of the calculated non-
dimensional stress intensity factors with the increase of the number of the collocation points, where non-dimensional 
stress intensity factor is defined as 

I
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G

hK
v

.  (22) 

Further, exact solution by Nilsson (1972) is as follows. 
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This value is also indicated in this table. It can be seen from this table that the calculated stress intensity factor 
converges rapidly to the exact solution with the increase of m and n when the crack velocity V is not large. In the 
case when V is close to the Rayleigh wave velocity Rc  ( 2927.0 ccR when = 1.8), many collocation points are 
needed for the convergence. However, precise numerical solutions can be obtained without fail by increasing m and 
n. Rapid convergence of the crack opening displacement was also verified. Figure 2 is the calculated crack opening 
displacements for various crack velocities with m = n = 200. As described in the reference by Fujimoto (1985), in the 
neighborhood of the crack tip, there is a region where the opening displacement exceeds the value 0v , the applied 
displacement between both sides and the larger the crack velocity is, the larger this excess becomes. 
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              Table 1. Chart of the calculated non-dimensional stress intensity factors with the increase of m and n (in the case = 1.8). 

n m 1.0/ 2cV  5.0/ 2cV  8.0/ 2cV  9.0/ 2cV  92.0/ 2cV  925.0/ 2cV  

10 

10 2.229573 2.004926 1.408738 0.7532961 0.3745994 0.1928547 
20 2.229578 2.004928 1.408671 0.7532891 0.3735255 0.1928240 
30 2.229578 2.004929 1.408678 0.7532922 0.3735057 0.1927809 
40 2.229578 2.004929 1.408677 0.7532910 0.3735064 0.1927844 
50 2.229578 2.004929 1.408677 0.7532908 0.3735060 0.1927852 
100 2.229578 2.004929 1.408677 0.7532908 0.3735061 0.1927851 
200 2.229578 2.004929 1.408677 0.7532908 0.3735061 0.1927851 

20 

10 2.227804 2.000985 1.391263 0.7453340 0.4047537 0.2287867 
20 2.227803 2.000984 1.391259 0.7455369 0.4037181 0.2295843 
30 2.227804 2.000984 1.391259 0.7455378 0.4037189 0.2295799 
40 2.227804 2.000985 1.391259 0.7455369 0.4037180 0.2295795 
50 2.227804 2.000985 1.391259 0.7455369 0.4037179 0.2295795 
100 2.227804 2.000985 1.391259 0.7455369 0.4037180 0.2295797 
200 2.227804 2.000985 1.391259 0.7455369 0.4037180 0.2295797 

30 

10 2.227804 2.000983 1.391170 0.7442750 0.4043652 0.2317081 
20 2.227804 2.000983 1.391165 0.7444869 0.4032325 0.2326493 
30 2.227804 2.000983 1.391165 0.7444868 0.4032325 0.2326491 
40 2.227804 2.000983 1.391165 0.7444865 0.4032319 0.2326486 
50 2.227804 2.000983 1.391165 0.7444869 0.4032325 0.2326492 
100 2.227804 2.000983 1.391165 0.7444869 0.4032324 0.2326491 
200 2.227804 2.000983 1.391165 0.7444869 0.4032324 0.2326491 

40 

10 2.227804 2.000983 1.391169 0.7442539 0.4043060 0.2317098 
20 2.227804 2.000983 1.391165 0.7444668 0.4031778 0.2326301 
30 2.227804 2.000983 1.391165 0.7444668 0.4031778 0.2326299 
40 2.227804 2.000983 1.391165 0.7444668 0.4031778 0.2326299 
50 2.227804 2.000983 1.391165 0.7444668 0.4031779 0.2326300 
100 2.227804 2.000983 1.391165 0.7444668 0.4031778 0.2326299 
200 2.227804 2.000983 1.391165 0.7444668 0.4031778 0.2326299 

50 

10 2.227804 2.000983 1.391169 0.7442537 0.4043046 0.2317074 
20 2.227804 2.000983 1.391165 0.7444665 0.4031762 0.2326280 
30 2.227804 2.000983 1.391165 0.7444665 0.4031762 0.2326278 
40 2.227804 2.000983 1.391165 0.7444665 0.4031762 0.2326278 
50 2.227804 2.000983 1.391165 0.7444665 0.4031762 0.2326279 
100 2.227804 2.000983 1.391165 0.7444665 0.4031762 0.2326278 
200 2.227804 2.000983 1.391165 0.7444665 0.4031762 0.2326278 

100 

10 2.227804 2.000983 1.391169 0.7442537 0.4043046 0.2317072 
20 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326279 
30 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
40 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
50 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
100 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
200 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 

200 

10 2.227804 2.000983 1.391169 0.7442537 0.4043046 0.2317072 
20 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326279 
30 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
40 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
50 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
100 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
200 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 

Exact (Nilsson (1972)) 2.227804 2.000983 1.391165 0.7444665 0.4031761 0.2326278 
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Fig.2. Calculated crack opening displacement for various crack velocity V (in the case = 1.8). 

5. Conclusions 

In this paper, a crack running in a strip with fixed sides was analyzed by the method of continuously distributed 
dislocations model with considering the effect of the inertia due to rapid crack propagation. The problem was 
reduced into a set of singular integral equations. A simple numerical method was proposed and applied to the 
problem. As the results, the followings have been obtained. 
(1) Rapid convergence with the increase of the number of the collocation points was verified both for the calculated 

stress intensity factors and the crack opening displacements. 
(2) The converged stress intensity factors agreed perfectly with the exact solutions. 
(3) The crack is opening beyond the applied displacement between both sides of the strip. This phenomenon is 

remarkable when the crack velocity is large. 
 

References 

Fujimoto, K., Shioya, T., 1985. Elastic Analysis of Dynamic Crack Propagation in Fixed Sided Plates, Proceedings of the 28th Japan Congress on 
Materials Research, The Society of Materials Science, Japan, 49-58. 

Fujimoto, K., 1985. Elastic Analysis of Moving Point Forces, Bulletin of Tokyo Gakugei University (Section VI) 37, 25-34. 
Fujimoto, K., 1991. Method of Numerical Analysis of the Singular Integral Equations for Crack Problems, JSME International Journal (Series I) 

34, 430-435. 
Hills, D.A., Kelly, P.A., Dai, D.N., Korsunsky, A.M., 1996. Solution of Crack Problems, The Distributed Dislocation Technique, Kluwer 

Academic Publishers, Dordrecht. 
Nilsson, F., 1972. Dynamic Stress-Intensity Factors for Finite Strip Problems, International Journal of Fracture Mechanics 8, 403-411.  
Shioya, T., Fujimoto, K., 1983. A Theoretical Study on the Running Crack Path by Energy Balance Method, Transactions of the Japan Society 

for Aeronautical and Space Sciences 25, 246-257. 
Weertman, J., 1961. High Velocity Dislocations, in “Response of Metals to High Velocity Deformation”. Shewmon, P.G., Zackay, V.F. (Eds.). 

Interscience Publishers, Ltd., New York, London, pp.205-247. 
 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

-1 -0.8 -0.6 -0.4 -0.2 0

0.1

0.5

0.7

0.8

0.85

0.9

0.92

hx /

0

COD )(
v

v x
2/cV


