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Abstract

Multicriteria decision making (MCDM) problems are getting increasingly difficult over the years. Nowadays, it is very

common to have a problem where heterogeneous types of information must be processed before making a decision. From a

wide variety of MCDM methods, just a few of them are able to process mixed types of information at the same time and most

of these methods relies on transformations that may cause problems and/or be unjustified. In this paper we bring a modular

interpretation of the TODIM (an acronym in Portuguese for Interative Multi-criteria Decision Making) method to handle

heterogeneous data types simultaneously, in a systematic way. We argue that the method have a modular capacity which is

the novelty of our approach. Using this interpretation, the whole problem with heterogeneous information is broken into

modules and processed in a straightforward way. Two examples are used to illustrate the approach showing the effectiveness

and practicability.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

Multi-criteria decision making (MCDM) methods have been widely applied to support decision makers to

select the best alternative regarding to multiple criteria among a finite number of alternatives. Despite their

usefulness, many of the existing methods are often applied to data of the same type because of their inability

to deal adequately with heterogeneous data type, e.g., crisp, stochastic, linguistic, etc... Indeed, for real world-

problems the decision matrix may be filled out with different kind of data. For example, in the decision of

choosing which car model to buy, one would analyze how the car models satisfy the attributes that he/she

considers important, as the price of the car (crisp), the engine power (crisp), the comfort, which is an imprecise

concept that could be evaluated by linguistic variables as very comfortable, comfortable and not comfortable,

the fuel consumption that depends on the driver of the car, the conditions of the roads, the average speed, etc...

that could be evaluated as a random variable.

Another problem that arises in MCDM is that, as shown in [1], the human thinking presents a strong bias

in situation involving risks. In this same work, the Prospect Theory was proposed. The TODIM method [2]

is one of the first MCDM methods based on the Prospect Theory. The idea of the TODIM is to compare the

alternatives with respect to each criterion in a pairwise fashion in terms of gains and losses. The gain and

losses are then passed to the prospect function to get the partial dominances and, then, the partial dominances

are aggregated to form the final dominance. The rank order of the alternatives is basically based on this final

dominance. In the standard formulation, the TODIM method only deals with crisp numbers. However, it was
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extended to deal with fuzzy numbers [3], intuitionistic fuzzy information [4], intuitionistic fuzzy information in

a random environment [5], interval-valued intuitionistic fuzzy information [6], probability distributions [7] and

hesitant fuzzy [8].

Although there are many adaptation of TODIM, to deal with several types of information, little efforts were

made to try to adapt them to be able to compute with heterogeneous data. The TODIM method was extended to

deal with crisp numbers, interval-valued numbers and fuzzy numbers at the same time in [9]. In this paper, we

argue that the TODIM method use a modular strategy to process the information. The method break the whole

problem into small modules, process these modules separately and, only then, aggregate the results of each

module to obtain a general quantity. Using this interpretation, the TODIM is able to deal with heterogeneous

data types directly, independently of the type of the information, in a systematic way without the need of data

transformation. All these advantages are obtained in a very intuitive and simple manner where the TODIM have

a huge resemblance with the standard formulation.

The remainder of this paper is organized as follows. In Section 2, some preliminary background on interval

data, fuzzy sets, intuitionistic fuzzy sets are provided. In Section 3, we shortly revise the TODIM. In Section 4,

the Modular-TODIM method is presented. A discussion of some aspects that may affect the Modular approach

is presented in Section 5. In Section 6, two examples are presented to illustrate the method and the results show

the feasibility of the approach. In Section 7, some conclusions and directions for future work are given.

2. Basic concepts and definitions

In this section we present the definitions of the data types that will be used in this paper, which are, crisp

numbers, interval numbers, fuzzy sets and intuitionistic fuzzy sets. Also, some necessary concepts are intro-

duced. The crisp numbers are denoted by lower case letters (a), interval numbers are denoted by bold lower case

letters (a), fuzzy sets are denoted by lower case letters with tilde (ã) and intuitionistic fuzzy sets are denoted by

capital letters with tilde (Ã).

Consider the problem of selecting one between m alternatives. Each alternative is evaluated with respect to

n criteria. Let A = {A1, A2, . . . , Am} be a set with the m alternatives and C = {C1,C2, . . . ,Cn} be a set with the

n criteria. In general, the criteria can be classified into two types: benefit and cost. For benefit criterion, higher

value is better while for the cost criterion is valid the opposite. We can summarize the Multicriteria Decision

Making (MCDM) problem into the following matrix:

DM =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 C2 . . . Cn

A1 s11 s12 . . . s1n

A2 s21 s22 . . . s2n
...

...
...
. . .

...
Am sm1 sm2 . . . smn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where si j represents the rating of the ith alternative evaluated with respect to the jth criterion. In this work the

ratings si j can assume any of the already mentioned forms.

2.1. Interval-numbers

Next, we provide some basic definitions to work with interval numbers. We start with two definitions:

interval number and Euclidean distance.

Definition 2.1. [10]. The object a =
[
aL, aU

]
, where aL ≤ aU, defined on the real line, is called interval number.

The values aL and aU stand for the lower and upper bounds of a, respectively. The center and the width of an
interval number a =

[
aL, aU

]
are given by m(a) = (aL + aU)/2 and w(a) = (aU − aL), respectively.

Definition 2.2. [11]. Let a =
[
aL, aU

]
and b =

[
bL, bU

]
be two interval numbers. The Hamming distance

between a and b is given by

d(a, b) =
1

2

(∣∣∣aL − bL
∣∣∣ + ∣∣∣aU − bU

∣∣∣) (1)

Now, it is necessary to define a way to rank the interval numbers. Since there is uncertainty with interval

numbers, these rankings are not likely to be complete certain. Facing this problem, [12] has proposed a quantity,

called degree of preference, to measure the degree of preference of an interval number over another one.
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Definition 2.3. [12]. Let a =
[
aL, aU

]
and b =

[
bL, bU

]
be two interval numbers. The degree of preference of a

over b is given by

P(a > b) =
max

{
0, aU − bL

}
−max

{
0, aL − bU

}
aU − aL + bU − bL (2)

Definition 2.4. [12] Let a =
[
aL, aU

]
and b =

[
bL, bU

]
be two interval numbers. We say that a is superior to b,

denoted by a > b, if P(a > b) > P(b > a). If P(a > b) = P(b > a), then we say that a is indifferent to b, denoted
by a = b.

For the generalization of TODIM, we use the Definition 2.3 only through the Definition 2.4. Due this fact

we present the following corollary to simplify the method.

Corollary 2.1. Let a =
[
aL, aU

]
and b =

[
bL, bU

]
be two interval numbers, then a > b, in the sense of Definition

2.4, if and only if m(a) > m(b).

By Corollary 2.1 we can determine which interval is preferable in the sense of Definition 2.4 simply compar-

ing the center of the intervals. The last definition about interval numbers provides a way to normalize interval

data.

Definition 2.5. Let si j =
[
sL

i j, s
U
i j

]
be an interval numbers used to evaluate the ith alternative with respect to jth

criterion. The normalization of the interval number is given according to the following expressions

rL
i j =

sL
i j

max
i

sU
i j

and rU
i j =

sU
i j

max
i

sU
i j

, i = 1, . . . ,m (3)

2.2. Fuzzy sets
In this section we provide some basic definitions of fuzzy sets.

Definition 2.6. [13]. A fuzzy set ã in a universe of discourse X is characterized by a membership function
μã : X → [0, 1]. In other words, a fuzzy set ã is a mathematical object of the form

ã = {〈x, μã(x)〉 : x ∈ X}
While there is no restrictions on the form of the membership function, besides μã(x) ≤ 1 ∀x , a special case

commonly used is the trapezoidal membership functions.

Definition 2.7. A fuzzy set ã is a trapezoidal fuzzy number (TFN), denoted by a = (a1, a2, a3, a4), if it is defined
on the real line with membership function given by:

μã(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x−a1

a2−a1
a1 < x < a2

1 a2 ≤ x ≤ a3
a4−x
a4−a3

a3 < x < a4

0 otherwise

(4)

where a1 ≤ a2 ≤ a3 ≤ a4. A triangular fuzzy number is a special case of a TFN when a2 = a3.

Definition 2.8. Let ã = (a1, a2, a3, a4) and b̃ = (b1, b2, b3, b4) be two TFN. A distance measure between ã and b̃
is given by

d(ã, b̃) =
1

4

4∑
i=1

|ai − bi| (5)

Now, it is necessary a way to compare two TFN. The next two definitions provide a way to do so.

Definition 2.9. [14]. Let b̃ = (b1, b2, b3, b4) be a TFN, then defuzzified value of b̃ is given by

m(ã) =
b1 + b2 + b3 + b4

4
(6)

Observe that for TrFN, b2 = b3.

Definition 2.10. Let ã and b̃ be two TFN. We say that ã is superior to b̃ if m(ã) > m(b̃). If m(ã) = m(b̃) then one
say that ã is indifferent to b̃.
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The next definition provides a way to normalize a TFN.

Definition 2.11. Let ãi j =
(
a1

i j, a
2
i j, a

3
i j, a

4
i j

)
be a TFN used to evaluate the ith alternative with respect to jth

criterion. To normalize the TFN of criterion j we use the following formula:

r̃i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1

i j

max
i

a4
i j

,
a2

i j

max
i

a4
i j

,
a3

i j

max
i

a4
i j

,
a4

i j

max
i

a4
i j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , i = 1, . . . ,m (7)

2.3. Intuitionistic fuzzy sets
In this section we provide some basic definitions of intuitionistic fuzzy sets.

Definition 2.12. [15]. An intuitionistic fuzzy set Ã in X is a mathematical object of the form

Ã =
{〈x, μÃ(x), νÃ(x)〉 : x ∈ X

}
where μÃ, νÃ : X → [0, 1], such that μÃ(x) + νÃ(x) ≤ 1, ∀x ∈ X. Here, μÃ stands for the membership function
and νÃ for the non-membership function. The hesitancy degree of x ∈ X is given by πÃ(x) = 1 − μÃ(x) − νÃ(x).

Again, there is no restrictions on the form of the membership and non-membership, as long as they satisfy

the restrictions on Definition 2.12. However, the intuitionistic trapezoidal fuzzy number is commonly applied

[16, 17, 18, 19, 5].

Definition 2.13. Let Ã be an IFS in X. We say that Ã = 〈(a1, a2, a3, a4) , (b1, b2, b3, b4) , μ̃Ã, ν̃Ã〉 is an intuitionistic
trapezoidal fuzzy set (ITFS) if its membership function and non-membership function are, respectively, given by

μÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x−a1

a2−a1
μ̃Ã a1 < x < a2

μ̃Ã a2 ≤ x ≤ a3
a4−x
a4−a3
μ̃Ã a3 < x < a4

0 otherwise

(8)
νÃ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1−ν̃Ã
b1−b2

(x − b1) + 1 b1 < x < b2

ν̃Ã b2 ≤ x ≤ b3
1−ν̃A
b4−b3

(x − b4) + 1 b3 < x < b4

1 otherwise

(9)

where μ̃Ã, ν̃Ã ∈ [0, 1] represent the maximum of the membership degree and the minimum of non-membership
degree, respectively. Also, b1 ≤ a1 ≤ b2 ≤ a2 ≤ a3 ≤ b3 ≤ a4 ≤ b4. If a1 = b1, a2 = b2, a3 = b3 and a4 = b4, we
represent the IFS just as Ã = 〈(a1, a2, a3, a4) , μ̃Ã, ν̃Ã〉
Definition 2.14. Let Ã = 〈(a1, a2, a3, a4) , (b1, b2, b3, b4) , μ̃Ã, ν̃Ã〉 and B̃ = 〈(c1, c2, c3, c4) , (d1, d2, d3, d4) , μ̃B̃, ν̃B̃〉,
then the distance between then is given by

d(Ã, B̃) =
1

2

[
dμ(Ã, B̃) + dν(Ã, B̃)

]
(10)

where
dμ(Ã, B̃) =

1

4

[
|a1 − c1| + (1 + |μ̃A − μ̃B|) (1 + |a2 − c2| + |a3 − c3|) − 1 + |a4 − c4|

]
(11)

and
dν(Ã, B̃) =

1

4

[
|b1 − d1| + (1 + |ν̃A − ν̃B|) (1 + |b2 − d2| + |b3 − d3|) − 1 + |b4 − d4|

]
(12)

Definition 2.15. [5]. Let Ã be an IFS in a bounded X. A score function for IFS is

S (Ã) = μ̃ÃEμÃ
− EνÃ

(13)

where EμÃ
=
∫

X xμ′
Ã
(x)dx, μ′

Ã
=

μÃ∫
X μÃ(x)dx

, and EνÃ
=
∫ sup X

inf{x:μ(x)>0} xνÃ(x)dx. If μÃ is a degenerated function, with

a1 = a2 = a3 = a4 then EμÃ
= a1.

The Definition 2.15 presents a way to rank IFN. The bigger the score function S is, the bigger is the IFN.

For intuitionistic trapezoidal fuzzy number in the interval [0,1], we have the following:

EμÃ
=

(a4 + a3)2 − (a2 − a1)2 − a4a3 + a1a2

3(a2 − a1) + 6(a3 − a2) + 3(a4 − a3)
(14)

EνÃ
=

3a2
1

(b2 − b1ν) + 2a3
1
(ν − 1) − b3

2
(2ν + 1) + 3b1b2

2ν

6(b1 − b2)
−
ν
(
b2

2 + b2
3

)
2

(15)

− (b3 − b4) [b3(2ν + 1) + b4(ν + 2)]

6
+

1 − b2
4

2
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Definition 2.16. Let Ã and B̃ be two TFN. We say that Ã is superior to B̃ is S (Ã) > S (B̃). If S (Ã) = S (B̃) then
we say that Ã is indifferent to B̃.

Definition 2.17. Let Ãi j = 〈
(
a1

i j, a
2
i j, a

3
i j, a

4
i j

)
,
(
b1

i j, b
2
i j, b

3
i j, b

4
i j

)
, μ̃Ã, ν̃Ã〉 be an ITFN used to evaluate the ith alter-

native with respect to jth criterion. To normalize the ITFNs of criterion j we use the following formula:

R̃i j =

〈⎛⎜⎜⎜⎜⎜⎝a
1
i j

c
,

a2
i j

c
,

a3
i j

c
,

a4
i j

c

⎞⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎝b

1
i j

c
,

b2
i j

c
,

b3
i j

c
,

b4
i j

c

⎞⎟⎟⎟⎟⎟⎠ , μ̃Ã, ν̃Ã

〉
, i = 1, . . . ,m (16)

where c = max
i

b4
i j.

3. The standard TODIM

In this section, we describe the TODIM method [2]. In the original proposal all the si j are real numbers. Let

w = (w1,w2, . . . ,wn) be the weight vector of the criteria C1,C2 . . . ,Cn, where 0 ≤ wi ≤ 1 and
∑n

i=1 wi = 1. It

is necessary that the decision maker defines a reference criterion, usually the criterion with the highest weight.

Let the Cr, 1 ≤ r ≤ n be such criterion. Define wr j = wj/wr. The TODIM(θ), θ > 0, method consists in:

1. Define and normalize the decision matrix.

2. Calculate the final dominance of Ai over each alternative Aj by δ
(
Ai, Aj

)
=
∑n

c=1 φc

(
Ai, Aj

)
,∀(i, j) where,

φc

(
Ai, Aj

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

wrc∑
c wrc

(
sic − s jc

)
if sic ≥ s jc

− 1
θ

√∑
c wrc
wrc

(
s jc − sic

)
otherwise

(17)

3. The global valor of alternative i is obtained by

εi =

∑
j δ(Ai, Aj) −mini

∑
j δ(Ai, Aj)

maxi
∑

j δ(Ai, Aj) −mini
∑

j δ(Ai, Aj)
(18)

4. Sort the alternatives by their value εi.

The parameter θ in TODIM controls the impact caused in case of losses. We have that, if θ < 1 the losses

are amplified and if θ > 1 the losses are attenuated. The prospect theory states that the individuals are more

sensitive to losses than to gains, suggesting θ < 1. This parameter can considerably affect the ranking order of

the alternatives. If we choose a small θ we are looking for an alternative that provides small losses in all criteria,

on the other hand, if we choose big values for θ we are looking for an alternative that provides more gains, even

if we have losses in some criteria.

Recently, [5] pointed out an unexpected behavior of the TODIM method and suggested the following mod-

ification in the φc function,

φc

(
Ai, Aj

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

wc

(
sic − s jc

)
if sic ≥ s jc

− 1
θ

√
wc

(
s jc − sic

)
otherwise

(19)

4. A modular formulation of the TODIM method

An important characteristic of TODIM is that the comparisons among the alternatives are made isolatedly

on each criterion and only then, they are aggregated. In TODIM, the partial dominances are evaluated separately

for each criterion and then they are aggregated into the final dominance. By doing so, the partial analysis of the

alternatives on each criterion are independent of their ratings on a different criterion. Therefore, if we have a

decision matrix where each one of the criterion has a different type of information, since they are analyzed by

the TODIM separately, it is not necessary to transform the different types of information in a common type to

compare the alternatives. However, we must guarantee that the partial quantities, i.e., the quantities obtained

in each module, are compatible, otherwise a module may be overweighted in the aggregation step. We discuss

more about this in Section 5. The Mo-TODIM is presented in the following steps:

1. Define and normalize the decision matrix. Each criterion of the decision matrix will be considered as a

module of the decision making problem.
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2. For each module c = 1, . . . , n, calculate the partial dominance of Ai over Aj, φc

(
Ai, Aj

)
, i, j = 1, . . . ,m,

where

φc

(
Ai, Aj

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

wcd
(
sic, s jc

)
if sic ≥ s jc

− 1
θ

√
wcd
(
sic, s jc

)
otherwise

(20)

for benefit criterion and

φc

(
Ai, Aj

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

wcd
(
sic, s jc

)
if sic ≤ s jc

− 1
θ

√
wcd
(
sic, s jc

)
otherwise

(21)

for cost criterion. We recall that the comparisons sic ≥ s jc depends on the type of information being used.

The Definition 2.4 is used for interval number, the Definition 2.10 for TFN and Definition 2.16 for IFS.

3. For all i, j ∈ (1, . . . ,m), calculate the final dominance of Ai over each alternative Aj, by

δ
(
Ai, Aj

)
=

n∑
c=1

φc

(
Ai, Aj

)
(22)

4. Calculate the global value of alternative i by

εi =

∑
j δ(Ai, Aj) −mini

∑
j δ(Ai, Aj)

maxi
∑

j δ(Ai, Aj) −mini
∑

j δ(Ai, Aj)
(23)

5. Sort the alternatives by their value εi.

This is a very simple and intuitive extension of TODIM that makes it capable of processing many types of

information. As one can see, the resemblance with the standard version is huge. The key change of this method

is that in each module the distance formula may be different, in such a way that allows the method to process

different type of information in a very natural way.

5. A note about the role of distances measures in the modular approach

In this section we discuss some issues that can affect the results of Mo-TODIM and we try to clarify what

we meant by compatible quantities in Section 4.

Despite the easiness that the modular interpretation of Mo-TODIM provides, we must consider that this

modular approach connects different versions of the TODIM (which are in essence different methods) altogether.

This can bring problems that we would not have by analyzing every module with the same version. To illustrate

that, let us introduce a new distance formula for ITFN.

Definition 5.1. [5]. Let Ã and B̃ be two ITFS. The distance between Ã and B̃ is defined by

d(Ã, B̃) =

√∫ min{μ̃A,μ̃B}

0

[
aL
μ(λ) − bL

μ(λ)
]2
+
[
aR
μ (λ) − bR

μ (λ)
]2

dλ +

+

√∫ 1

max{ν̃A,ν̃B}
[
aL
ν (λ) − bL

ν (λ)
]2
+
[
aR
ν (λ) − bR

ν (λ)
]2 dλ +

+

√
1

2

[
(μ̃A − μ̃B)2 + (ν̃A − ν̃B)2 + (μ̃A + ν̃A − μ̃B − ν̃B)2

]
Consider two TFN, ã = (0.1, 0.2, 0.4, 0.5) and b̃ = (0.2, 0.4, 0.6, 0.8), and two ITFN,

Ã = 〈(0.1, 0.2, 0.4, 0.5), (0.1, 0.2, 0.4, 0.5), 1, 0〉 and B̃ = 〈(0.2, 0.4, 0.6, 0.8), (0.2, 0.4, 0.6, 0.8), 1, 0〉. In this case,

since the intuitionistic fuzzy sets are a natural generalization of the fuzzy sets and you can precisely represent the

fuzzy sets as intutionistic fuzzy sets, we can state that the information of ã and Ã are the same. The same is valid

for b̃ and B̃. Now, suppose that you are applying the Mo-TODIM and in criterion C1 you have information as

TFN and in criterion C2 you have information as ITFN. Then, you apply Definition 2.8 to calculate the distance

between ã and b̃ and apply the Definition 5.1 to calculate the distance between Ã and B̃. For the first, you will

get a distance of 0.2 and, for the second, you will get a distance of 0.416. This is not an isolated example. In

fact, the distance in Definition 5.1 tends to be higher than the distance in Equation 2.8 for values in [0, 1]. Due

this fact, despite being considered the same information, the distance in Definition 5.1 will dominate in value
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the distance in Definition 2.8. So, trying to apply Mo-TODIM that uses both distances can be misleading, since

the module that applies the Definition 5.1 will overestimate the gains/losses in comparison to Definition 2.8.

Then, the partial dominance of such criterion can potentially have more impact on the final dominance matrix

than the other partial dominances. This would not be a problem if the method applied the same distance in all

modules.

Although, the distances must be approximately the same, there is no need, in general, that they must be the

same. After all, in the general cases, the distances will be dealing with different information types. For example,

consider the case where one of the module is interval number and one of the modules is TFN. Consider two

interval values a = [0.1, 0.2] and b = [0.1, 0.9] and two TFN ã = (0.1, 0.1, 0.2, 0.2) and b̃ = (0.1, 0.1, 0.9, 0.9).

Note that for ã the values in interval a = [0.1, 0.2] have membership degree equal to one and the values outside

this interval has membership degree equal to zero. The same occurs for b̃ and interval b. Therefore, despite the

different types of information, each pair (a, ã) and (b, b̃) have similar content of information, with the similar

being the key word here, they are similar but by all means not equal. For example, interval value does not

have the concept of membership and non-membership degree associated with it. So, when we assume that the

membership degree for the values in the interval is equal to one or any other value is an ad-hoc approach. But

still, they are similar information. So, the distances between ã and b̃ and a and b should be approximately the

same. Let us consider another distance measure, presented in Definition 5.2.

Definition 5.2. [20]. Let c̃ = (c1, c2, c3, c4) and d̃ = (d1, d2, d3, d4) be two TFN. A distance measure between c̃
and d̃ is given by

d(c̃, d̃) =

√√√
1

6

⎡⎢⎢⎢⎢⎢⎢⎣
4∑

i=1

(ci − di)
2 +
∑

i∈{1,3}
(ci − di) (ci+1 − di+1)

⎤⎥⎥⎥⎥⎥⎥⎦ (24)

By using the distance in Definition 2.2 we have that d(a, b) = 0.35 and by using Definition 5.2 we have

d(ã, b̃) = 0.495. In this situation, one could argue that this is a significant difference and this distances are not

compatible. However, these distances tend to be very close to each other, with occasional higher differences.

So, it should be fine to use both these distances. As a matter of fact, if we apply Definition 5.2 instead of

Definition 2.8, every result presented in the Section 6 holds with only minor differences in few cells of the

tables presented. The large majority of the values will be just the same. In general, minor incompatibilities

between the distances may not cause serious impact but, in situations where the alternatives have fairly close

performance these incompatibilities may influence the results of Mo-TODIM.

In this work, we use the distances in Definitions 2.2, 2.8 and 2.14. For crisp numbers, it is applied the

absolute difference. These distances matches perfectly in the sense discussed in this section.

6. Simulation Results

In this section we discuss two case studies of Mo-TODIM. The purpose is to illustrate the method as well

as to validate the method by comparing the results with those already reported in literature. The first case study

is discussed in [9], where a version of the TODIM, which we will call Extended-TODIM, that process hybrid

data types was applied. So, we can analyze the results obtained by the Mo-TODIM and the Extended-TODIM.

For the second case study, we will apply the Mo-TODIM in the instance discussed in the [21].

6.1. Case Study 1

This problem is discussed in [9]. A company wants to determine which one of three product projects is

better. Each one of these projects are evaluated according to three criteria: cost of each product (C1), payback

period (C2) and chance of success (C3). The criteria C1, C2 and C3 are evaluated as crisp number, interval

number and triangular fuzzy number, respectively. It is clear that the criteria C1 and C2 are cost criteria and

the criterion C3 is a benefit criterion. The weights of the criteria are given by w = (0.4, 0.3, 0.3). The decision

matrix is presented in Table 1. The first step is to normalize the decision matrix.

Table 1: Data of the product project problem: raw (left) and normalized (right).

Alternatives C1 C2 C3 C1 C2 C3

A1 660 [1,3] (4,5,6) 1 [0.33, 1] (0.50, 0.63, 0.75)

A2 630 [2,3] (4,6,8) 0.95 [0.67, 1] (0.50, 0.75, 1.00)

A3 650 [2,3] (6,7,8) 0.98 [0.67, 1] (0.75, 0.88, 1.00)
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Table 2: The partial dominance of the alternatives for criteria C1, C2 and C3 using θ = 0.4

φ1 A1 A2 A3 φ2 A1 A2 A3 φ3 A1 A2 A3

A1 0.00 -0.34 -0.19 A1 0.00 0.22 0.22 A1 0.00 -0.48 -0.68

A2 0.13 0.00 0.11 A2 -0.56 0.00 0.00 A2 0.19 0.00 -0.48

A3 0.08 -0.28 0.00 A3 -0.56 0.00 0.00 A3 0.27 0.19 0.00

Table 3: The partial dominance of the alternatives for criteria C1, C2 and C3 using θ = 2.5

φ1 A1 A2 A3 φ2 A1 A2 A3 φ3 A1 A2 A3

A1 0.00 -0.05 -0.03 A1 0.00 0.22 0.22 A1 0.00 -0.08 -0.11

A2 0.13 0.00 0.11 A2 -0.09 0.00 0.00 A2 0.19 0.00 -0.08

A3 0.08 -0.04 0.00 A3 -0.09 0.00 0.00 A3 0.27 0.19 0.00

Once the decision matrix is normalized, we calculate the partial dominance of the alternatives in each crite-

rion. The partial dominances for θ = 0.4 and θ = 2.5 are presented in Tables 2 and 3.

From Tables 2 and 3 it is clear the effects of θ on the impact of the losses. For θ < 1 the losses are amplified

whereas for θ > 1 the losses are attenuated. Next, we calculate the δ, which is just the sum of the matrices

of partial dominance, and then we obtain ε. The final rank orders obtained for Mo-TODIM(θ), considering

θ ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 5}, are presented in Table 4.

Table 4: The ranking of the alternatives provided by Extended-TODIM [9] and obtained by Mo-TODIM, using different values for θ in the

case of the best project problem.

Rank 1 2 3

Extended-TODIM(1) A3 A2 A1

Extended-TODIM(2) A3 A2 A1

Extended-TODIM(3) A2 A3 A1

Extended-TODIM(4) A2 A3 A1

Extended-TODIM(5) A2 A3 A1

Mo-TODIM(0.2) A3 A2 A1

Mo-TODIM(0.4) A3 A2 A1

Mo-TODIM(0.6) A3 A2 A1

Mo-TODIM(0.8) A3 A2 A1

Mo-TODIM(1) A3 A2 A1

Mo-TODIM(1.5) A3 A2 A1

Mo-TODIM(2) A3 A2 A1

Mo-TODIM(2.5) A3 A2 A1

Mo-TODIM(5) A3 A2 A1

We can note some differences in the results of Mo-TODIM and Extended-TODIM. The Extended-TODIM

method ranked the alternatives as A3 � A2 � A1 for θ = 1 and θ = 2. As we can see in Table 4, the Mo-

TODIM provides this same rank order for all values of θ. But, for θ ∈ {3, 4, 5} the Extended-TODIM provided

A2 � A3 � A1 disagreeing with the Mo-TODIM in which alternative is the best one. Why does that happen?

Let’s analyze the performances of A3 and A2. By looking at Table 1, we see that A2 is superior considering

C1 and A3 is superior considering C2. In both criteria A1 has the worst rating. In criterion C2, A2 and A3

have the same losses. So, each alternative is better according to one criterion and both have the same losses in

criterion C2. Looking the criterion C1, we have that the rating of A2 is 630 and the rating of A3 is 650, i.e., A3 is

approximately 3.2% worse than A2. Under the criterion C3, we have that A3 has a rating of (6, 7, 8) which leads

to a deffuzified value of 7 and A2 has a rating of (4, 6, 8) which leads to a deffuzified value of 6. Therefore, we

have that A2 is approximately 14% inferior to A3 under criterion C3. Then the gain of A3 in C3 is much bigger

than the gain of A2 in C1. Even giving more weight for the criterion C1 we would have 0.4 × 0.032 ≈ 0.01 and

0.3 × 0.14 ≈ 0.04. Since in C2 both have the same rating, we can conclude that A3 provides more gains than

A2 and, at the same time, A3 suffer less losses. Therefore, independently if we are amplifying or attenuating the

losses, i.e., independently of the value of θ, we can intuitively see that A3 is superior. So, it makes sense that

Mo-TODIM does not change the rank order of the alternative when we change the value of θ.
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6.2. Case Study 2
Now we discuss the application provided in [21] where we have four alternatives and five criteria. In this

instance we have the following data types: C1 crisp numbers, C2 and C3 triangular fuzzy numbers and C4 and

C5 interval numbers. All criteria are considered as benefit criteria. The data are shown in Table 5. In their work,

[21] obtain from incomplete information the weight vector w = (0.103, 0.45, 0.067, 0.3, 0.08), which will be

used here.

Table 5: Decision matrix of case study 2.

Alternatives C1 C2 C3 C4 C5

A1 2.0 (0.4, 0.5, 0.6) (0.8, 0.9, 1.0) [55, 56] [345.91, 404.09]

A2 2.5 (0.2, 0.3, 0.4) (0.4, 0.5, 0.6) [30, 40] [359.66, 428.34]

A3 1.8 (0.6, 0.7, 0.8) (0.6, 0.7, 0.8) [50, 60] [319.26, 392.74]

A4 2.2 (0.4, 0.5, 0.6) (0.4, 0.5, 0.6) [35, 45] [432.26, 505.743]

First we must normalize the matrix. The normalized matrix is presented in Table 6.

Table 6: Normalized decision matrix of case study 2.

Alternatives C1 C2 C3 C4 C5

A1 0.80 (0.50, 0.63, 0.75) (0.80, 0.90, 1.00) [0.917, 0.933] [0.684, 0.799]

A2 1.00 (0.25, 0.37, 0.50) (0.40, 0.50, 0.60) [0.500, 0.667] [0.711, 0.847]

A3 0.72 (0.75, 0.87, 1.00) (0.60, 0.70, 0.80) [0.833, 1.000] [0.631, 0.777]

A4 0.88 (0.50, 0.63, 0.75) (0.40, 0.50, 0.60) [0.583, 0.750] [0.855, 1.000]

We again apply the Mo-TODIM method using θ ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 5}, the results are presented

in Table 7. The Mo-TODIM agreed with the method proposed in [21] in the vast majority of θ values. However,

we can see that for small values of θ, i.e., when the losses are strongly penalized, the alternative A1 is preferred

than the alternative A3. By Table 5 we can see that alternative A1 is better than A3 in C1, C3, C4 and C5, although

in C4 the advantage for A1 is very small (degree of preference of 0.545). So, for small values of θ, the losses of

A3 turns to be too expensive, even considering the small weights in such criteria. When θ gets bigger and bigger

the impact of the losses in such criteria goes down and the gains that A3 has over A1 in criterion C2, which has

the highest weight, starts to prevail.

Table 7: The ranking of the alternatives provided by Mo-TODIM using different values for θ for case study 2.

Rank 1 2 3 4

Method [21] A3 A1 A4 A2

Mo-TODIM(0.2) A1 A3 A4 A2

Mo-TODIM(0.4) A1 A3 A4 A2

Mo-TODIM(0.6) A3 A1 A4 A2

Mo-TODIM(0.8) A3 A1 A4 A2

Mo-TODIM(1) A3 A1 A4 A2

Mo-TODIM(1.5) A3 A1 A4 A2

Mo-TODIM(2) A3 A1 A4 A2

Mo-TODIM(2.5) A3 A1 A4 A2

Mo-TODIM(5) A3 A1 A4 A2

7. Concluding remarks

In this paper we argued that, with some adaptations, the TODIM method is able to process different types of

information without any transformation, as long as the data types are homogeneous in each criterion. Avoiding

to transform the data types to a common data type has two main advantages: first, the method is much simpler

to understand and to apply, and second we prevent some potential drawbacks that the transformation step may

cause.

There are some extensions of TODIM method to deal with a variety of information types. Once there is

a version of TODIM for one type of information, the modular strategy of evaluation of TODIM, where each

criterion can be considered as a separated module, allows the method to process those information and then
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aggregating the modules results in a natural way. We also discussed the importance that the distances measures

used in the modules be compatible, in a broad sense. The Mo-TODIM method is simple and intuitive, very

similar to the standard formulation.

In order to analyze the behavior of the method, it was investigated in two case studies. In both examples,

the method behaved as expected, with just minor and justified differences of the results obtained by previous

works. Also, we analyzed the sensitivity of the Mo-TODIM in relation to the parameter θ and provided the rank

order for several different values of θ.
In this work, we illustrate the method with four different information types but, one could easily add more

modules to deal with other types of information like interval-valued fuzzy sets, interval-valued intuitionistic

fuzzy sets, probability distributions and so on. Since that are some proposed generalizations of TODIM to

process specific data types, one could use these different versions in each module to achieve a very broad

method to model the problem in hands. Eventually, a modification/adaptation of the distance measures may be

necessary which might be considered a limitation. Other methods can be easily extended based on the modular

approach, which is an interesting future research topic.
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