Two integral operators on the class $\mathcal{N}(\beta)$

Nicoleta Ularua, Daniel Breazb, B.A. Frasinc

a University of Piteşti, Târgul din Vale Str., No. 1, 110040 Piteşti, Argeş, Romania
b “1 Decembrie 1918” University of Alba Iulia, N. Iorga Str., No. 11–13, 510009, Alba Iulia, Alba, Romania
c Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan

ARTICLE INFO

Article history:
Received 11 January 2011
Accepted 5 July 2011

Keywords:
Analytic functions
Starlike functions
Integral operator

ABSTRACT

Let $\mathcal{N}(\beta)$ be the subclass of analytic functions $f(z)$, which satisfies the inequality

$$\text{Re}\left\{\frac{zf''(z)}{f'(z)} + 1\right\} < \beta.$$ (for some $\beta > 1$)

In this paper, we determine conditions on β such that the integral operators

$$\int_0^z \prod_{i=1}^n \left(\frac{f^{(i)}(t)}{t} \right)^{\alpha_i} dt \quad \text{and} \quad \int_0^z (te^{\xi t})^{\gamma_i} dt$$

will be in the class $\mathcal{N}(\beta)$. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. Further, by \mathcal{S}, we shall denote the class of all functions in \mathcal{A} which are univalent in U. A function $f(z)$ belonging to \mathcal{S} is said to be starlike of order β if it satisfies

$$\text{Re}\left\{\frac{zf'(z)}{f(z)} \right\} > \beta \quad (z \in U)$$

for some $\beta (0 \leq \beta < 1)$. We denote by $\mathcal{S}^*\beta$ the subclass of \mathcal{A} consisting of functions which are starlike of order β in U. Also a function $f \in \mathcal{A}$ is said to be in the class \mathcal{R}_β iff

$$\text{Re}\left\{f'(z) \right\} > \beta, \quad (z \in U)$$

for some $\beta (0 \leq \beta < 1)$.

Let $\mathcal{N}(\beta)$ be the subclass of \mathcal{A}, consisting of functions $f(z)$, which satisfies the inequality

$$\text{Re}\left\{\frac{zf''(z)}{f'(z)} + 1\right\} < \beta \quad (\beta > 1, z \in U).$$

The class $\mathcal{N}(\beta)$ was introduced and studied by Uralegaddi et al. in [1] and Owa and Srivastava in [2].

* Corresponding author.
E-mail addresses: nicoletaularu@yahoo.com (N. Ularu), dbreaz@uab.ro (D. Breaz), bafrasin@yahoo.com (B.A. Frasin).
Let the functions \(f(z) \) be regular in the unit disk \(\mathbb{U} \), with \(f(0) = 0 \). If \(|f(z)| \leq 1 \), for all \(z \in \mathbb{U} \), then
\[
|f(z)| \leq |z|, \quad z \in \mathbb{U}
\]
and equality holds only if \(f(z) = \varepsilon z \), where \(|\varepsilon| = 1 \).

2. Main results

Theorem 2.1. Let the functions \(f_i(z) \in \mathcal{A} \) for all \(i = 1, n \) be in the class \(\mathcal{B}(\mu, \beta) \), \(\mu \geq 1, 0 \leq \beta < 1 \). If \(|f_i(z)| < M_i \) \((M_i \geq 1)\), \(z \in \mathbb{U} \) then the integral operator
\[
F_{n, \ldots, n}(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\frac{1}{\alpha_i}} dt
\]
is in \(\mathcal{N}(\gamma) \), where
\[
\gamma = \sum_{i=1}^n \frac{1}{|\alpha_i|} \left((2 - \beta)M_i^{\mu_i-1} + 1 \right) + 1
\]
and \(\sum_{i=1}^n \frac{1}{|\alpha_i|} \left((2 - \beta)M_i^{\mu_i-1} + 1 \right) > 0 \), \(\alpha_i \in \mathbb{C} - \{0\} \), for all \(i = 1, n \).

Proof. Define the function \(F_n(z) \) by
\[
F_n(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\frac{1}{\alpha_i}} dt.
\]
Then a computation shows that
\[
\frac{zF_n'(z)}{F_n(z)} = \sum_{i=1}^n \frac{1}{\alpha_i} \left(\frac{zf_i(z)}{f(z)} - 1 \right).
\]
Thus, we have
\[
\text{Re} \left(\frac{zF_n'(z)}{F_n(z)} + 1 \right) = \text{Re} \left(\sum_{i=1}^n \frac{1}{\alpha_i} \left(\frac{zf_i(z)}{f(z)} - 1 \right) + 1 \right)
\]
\[
< \sum_{i=1}^n \frac{1}{|\alpha_i|} \left(\left| \frac{zf_i(z)}{f(z)} \right|^\mu + 1 \right),
\]
\[
= \sum_{i=1}^n \frac{1}{|\alpha_i|} \left(\left| \frac{zf_i(z)}{f(z)} \right|^\mu - \left| \frac{f_i(z)}{f(z)} \right|^\mu \right) + 1.
\]
Since \(f_i(z) \in \mathcal{B}(\mu, \beta) \) and \(|f_i(z)| \leq M_i \), applying Schwarz Lemma, we obtain
\[
\text{Re} \left(\frac{zF_n'(z)}{F_n(z)} + 1 \right) < \sum_{i=1}^n \frac{1}{|\alpha_i|} \left(\left| \frac{zf_i(z)}{f(z)} \right|^\mu \right) M_i^{\mu_i-1} + 1
\]
Therefore $F_{a_1,\ldots,a_n}(z) \in \mathcal{N}(\gamma)$. □

Letting $\mu = 1$ in Theorem 2.1, we have

Corollary 2.2. Let the functions $f_i(z) \in \mathcal{A}$ for all $i = 1, n$ be in the class S_β^γ, $0 \leq \beta < 1$. If $|f_i(z)| < M_i (M_i \geq 1)$, $z \in \mathcal{U}$ then the integral operator defined by (2.1) is in $\mathcal{N}(\gamma)$, where

$$
\gamma = \sum_{i=1}^{n} \frac{1}{|\alpha_i|} ((2 - \beta) + 1) + 1
$$

and $\sum_{i=1}^{n} \frac{1}{|\alpha_i|} ((2 - \beta) + 1) > 0, \alpha_i \in \mathbb{C} - \{0\}$, for all $i = 1, n$.

Theorem 2.3. Let $f_i(z) \in \mathcal{A}$ for all $i = 1, n$ be in the class $\mathcal{B}(\mu, \beta)$, $\mu \geq 0, 0 \leq \beta < 1$. If $|f_i(z)| \leq M_i (M_i \geq 1)$, $z \in \mathcal{U}$ then the integral operator

$$
G(z) = \int_{0}^{z} (re^{i(\gamma t)})^n dt
$$

is in $\mathcal{N}(\delta)$, where

$$
\delta = \sum_{i=1}^{n} |\gamma_i| ((2 - \beta)M_i^{\mu} + 1) + 1
$$

and $\sum_{i=1}^{n} |\gamma_i| ((2 - \beta)M_i^{\mu} + 1) > 0, \gamma_i \in \mathbb{C}$, for all $i = 1, n$.

Proof. From (2.4), we obtain

$$
\frac{zG''(z)}{G'(z)} = \sum_{i=1}^{n} \gamma_i (1 + zf'_i(z)).
$$

Hence

$$
\text{Re} \left(\frac{zG''(z)}{G'(z)} + 1 \right) = \text{Re} \left(\sum_{i=1}^{n} \gamma_i (1 + zf'_i(z)) + 1 \right)
$$

$$
< \sum_{i=1}^{n} |\gamma_i| (1 + zf'_i(z)) + 1
$$

$$
< \sum_{i=1}^{n} |\gamma_i| \left(1 + |f'_i(z)| \left(\frac{z}{f_i(z)} \right)^\mu \left| \left(\frac{f_i(z)}{z} \right)^\mu \right| |z| \right) + 1. \tag{2.5}
$$

Since $f_i(z) \in \mathcal{B}(\mu, \beta)$ and $|f_i(z)| \leq M_i$, we obtain

$$
\text{Re} \left(\frac{zG''(z)}{G'(z)} + 1 \right) < \sum_{i=1}^{n} |\gamma_i| \left(1 + \left| f'_i(z) \left(\frac{z}{f_i(z)} \right)^\mu \right| M_i^{\mu-1} \right) + 1
$$

$$
< \sum_{i=1}^{n} |\gamma_i| ((2 - \beta)M_i^{\mu} + 1) + 1 = \delta.
$$

So the integral operator $G(z)$ is in $\mathcal{N}(\delta)$. □

Letting $\mu = 0$ in Theorem 2.3, we have

Corollary 2.4. Let $f_i(z) \in \mathcal{A}$ for all $i = 1, n$ be in the class \mathcal{R}_β, $0 \leq \beta < 1$. If $|f_i(z)| \leq M_i (M_i \geq 1)$, $z \in \mathcal{U}$ then the integral operator defined by (2.4) is in $\mathcal{N}(\delta)$, where

$$
\delta = \sum_{i=1}^{n} |\gamma_i| (3 - \beta) + 1
$$

and $\sum_{i=1}^{n} |\gamma_i| (3 - \beta) > 0, \gamma_i \in \mathbb{C}$, for all $i = 1, n$.
Letting $\mu = 1$ in Theorem 2.3, we have

Corollary 2.5. Let $f_i(z) \in A$ for all $i = 1, n$ be in the class S^β_γ, $0 \leq \beta < 1$. If $|f_i(z)| \leq M_i (M_i \geq 1), z \in U$ then the integral operator defined by (2.4) is in $\mathcal{N}(\delta)$, where

$$\delta = \sum_{i=1}^{n} |\gamma_i| ((2 - \beta)M_i + 1) + 1$$

and $\sum_{i=1}^{n} |\gamma_i| ((2 - \beta)M_i + 1) > 0$, $\gamma_i \in \mathbb{C}$, for all $i = 1, n$.

Acknowledgment

This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007–2013 co-financed by the European Social Fund-Investing in People.

References