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Abstract Entropy generation for the steady two-dimensional laminar forced convection flow and

heat transfer of an incompressible Jeffrey non-Newtonian fluid over a linearly stretching, imperme-

able and isothermal sheet is numerically investigated. The governing differential equations of con-

tinuity, momentum and energy are transformed using suitable similarity transformations to two

nonlinear coupled ordinary differential equations (ODEs). Then the ODEs are solved by applying

the numerical implicit Keller’s box method. The effects of various parameters of the flow and heat

transfer including Deborah number, ratio of relaxation to retardation times, Prandtl number, Eck-

ert number, Reynolds number and Brinkman number on dimensionless velocity, temperature and

entropy generation number profiles are analyzed. The results reveal that the entropy generation

number increases with the increase of Deborah number while the increase of ratio of relaxation

to retardation times causes the entropy generation number to reduce. A comparative study of

the numerical results with the results from an exact solution for the dimensionless velocity gradient

at the sheet surface is also performed. The comparison shows excellent agreement within 0.05%

error.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

During the last few decades, researchers have shown much
interest in the flows of non-Newtonian fluids. The reason for

such accelerating interest is in fact due to the wide range of
applications of non-Newtonian fluids. The non-Newtonian
fluids have applications in various areas such as in chemical
and petroleum industries, geophysics and biological sciences.
The flows of non-Newtonian fluids have governing equations

which are more complex than the Navier–Stokes equations.
The governing equations for flows of non-Newtonian fluids
are in fact the consequence of the constitutive relations which

are used to predict the rheological behavior of these fluids. Due
to versatile nature of the non-Newtonian fluids, various consti-
tutive relations have been considered in the literature. One of
the various constitutive relations used for non-Newtonian flu-

ids is the Jeffrey fluid model. The Jeffrey fluid model is a linear
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Nomenclature

a stretching rate (s�1)

Br Brinkman number (=lÆ(uw)
2/kÆDT) (–)

Cf,x local skin friction coefficient ð¼ ð1þ bÞf 00ð0Þ=
ð1þ kÞRe0:5x Þ (–)

Cp specific heat at constant pressure of the fluid

(J kg�1 K�1)
Ec Eckert number (=(uw)

2/Cp(Tw � T1)) (–)
f dimensionless velocity variable ð¼ �v=ðatÞ0:5Þ (–)
k thermal conductivity (W m�1 K�1)
m power of exact solution in Eq. (12) (–)
Nux local Nusselt number ð¼ �h0ð0Þ=Re�0:5x Þ (–)
NS entropy generation number (–)
Pr Prandtl number (=lCp/k) (–)
Rex local Reynolds number (=uwx/t) (–)
Sgen local volumetric entropy generation rate (W m�3

K�1)
(Sgen)0 characteristic entropy generation rate (W m�3

K�1)

T temperature variable (K)
Tw given temperature of the sheet (K)
T1 temperature of fluid far away from the sheet (K)

DT sheet and free-stream temperature difference
(=Tw � T1) (K)

u velocity in x-direction (m s�1)

uw velocity of the sheet (m s�1)

v velocity in y-direction (m s�1)
x horizontal coordinate (m)
y vertical coordinate (m)

Greek symbols

a thermal diffusivity (m2 s�1)
b Deborah number ð¼ ak1Þ (–)
g similarity variable ð¼ yða=tÞ0:5Þ (–)
h dimensionless temperature variable (=T � T1/

Tw � T1) (–)
k ratio of relaxation to retardation times (–)
k1 relaxation time (s)

l dynamic viscosity (N s m�2)
t kinematic viscosity (m2 s�1)
q density (kg m�3)

w stream function (m2 s�1)
X dimensionless temperature difference (=DT/T1)

(–)

Subscripts

1 infinity
f fluid
w sheet surface
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model which uses time derivatives instead of convected deriv-
atives which are used for example in the Maxwell fluid model.

The area of non-Newtonian fluid flow and heat transfer has
been given much attention in the last few years. For instance,
Molla and Yao [1] investigated mixed convection heat transfer

of non-Newtonian fluids over a flat plate using a modified
power-law viscosity model. They solved the boundary layer
equations by marching from the leading edge downstream
and presented the numerical results for a shear-thinning fluid

in terms of velocity and temperature distribution. Hayat
et al. [2] studied the magneto-hydrodynamic (MHD) flow of
a Jeffery fluid in a porous channel. They constructed series

solutions to the nonlinear problem by using the homotopy
analysis method (HAM). Sahoo [3] considered the flow and
heat transfer of a non-Newtonian third grade fluid due to a lin-

early stretching plate with partial slip. He adopted a second
order numerical scheme to solve the differential equations
and obtained the combined effects of the partial slip and the
third grade fluid parameter on velocity and temperature fields.

Prasad et al. [4] considered the steady viscous incompressible
two-dimensional MHD flow of an electrically conducting
power law fluid over a vertical stretching sheet. They assumed

the stretching of surface velocity and the prescribed surface
temperature to vary linearly with the distance from the slit
and solved the boundary layer equations by Keller’s box

method. Hayat et al. [5] investigated the three-dimensional
flow of Jeffrey fluid over a linearly stretching surface and
solved the nonlinear coupled system of governing equations

using a homotopy analysis method. Hayat et al. [6] studied
the unsteady boundary layer flow and heat transfer of an
incompressible Jeffrey fluid over a linearly stretching sheet.
They obtained the analytical solutions of the arising
differential system by homotopy analysis technique. Khan
et al. [7] presented a mathematical model for unsteady stagna-

tion point flow of a linear viscoelastic fluid bounded by a
stretching/shrinking sheet. They solved the resulting nonlinear
problems by a homotopy analysis approach. Malik et al. [8]

considered the Jeffrey fluid flow with a pressure-dependent vis-
cosity. They numerically solved two types of flow problem,
namely, Poiseulle flow and Couette flow for the Jeffrey fluid.
Hayat et al. [9] examined the flow and heat transfer of an

incompressible Jeffery fluid over a stretching surface with
power law heat flux and heat source in the presence of thermal
radiation. They developed homotopic solutions for velocity

and temperature fields. Hayat et al. [10] investigated the
boundary layer stretched flow and heat transfer of a Jeffrey
fluid subject to convective boundary conditions. They solved

the governing dimensionless equations by using the homotopy
analysis approach. They analyzed the influence of embedded
parameters and found that the temperature is an increasing
function of the Biot number. Turkyilmazoglu and Pop [11]

investigated the flow and heat transfer of a Jeffrey fluid near
the stagnation point over a stretching/shrinking sheet with a
parallel external flow. They indicated that structure of the ana-

lytical solutions strongly depends on a parameter measuring
the ratio of strength of the external flow to surface stretch-
ing/shrinking. Goyal and Bhargava [12] analyzed the effect

of velocity slip on the MHD flow and heat transfer of non-
Newtonian nanofluid over a stretching sheet with a heat
source/sink. They also considered the Brownian motion and

thermophoresis effects and solved the differential equations
by the variational finite element method. Qasim [13] studied
the combined effects of heat and mass transfer in Jeffrey fluid
over a stretching sheet in the presence of heat source/sink.
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They derived exact solutions by power series method using
Kummer’s confluent hyper-geometric functions and examined
the effects of emerging parameters on velocity, temperature

and concentration profiles. Nadeem et al. [14] numerically
studied the steady 2-D flow of a Jeffrey fluid over a linearly
stretching sheet in the presence of nanoparticles.

In the last decade, many researchers have studied the
entropy generation in fluid flow and heat transfer over
surfaces. Aiboud and Saouli [15] presented the application of

second law analysis of thermodynamics to viscoelastic mag-
neto-hydrodynamic (MHD) flow over a stretching surface.
They analytically obtained the velocity and temperature
profiles using the Kummer’s functions and computed the

entropy generation number. Makinde [16] analyzed the inher-
ent irreversibility in hydromagnetic boundary layer flow of
variable viscosity fluid over a semi-infinite flat plate under

the influence of thermal radiation and Newtonian heating.
Using local similarity solution technique and shooting quadra-
ture, he numerically obtained the velocity, temperature and

entropy generation number. Dehsara et al. [17] numerically
analyzed entropy generation for the magneto-hydrodynamic
(MHD) mixed convection flow over a nonlinear stretching

inclined transparent plate embedded in a porous medium due
to solar radiation. Butt et al. [18] discussed the boundary layer
flow and heat transfer analysis of a second grade fluid over a
stretching sheet through a porous medium and investigated

the effect of viscoelasticity on entropy generation using the
Homotopy analysis method (HAM). Butt et al. [19] reported
the effects of velocity slip on entropy generation in the bound-

ary layer flow over a vertical surface with convective boundary
condition. They numerically solved the governing equations
using the shooting method and presented expressions for the

entropy generation number and Bejan number. Malvandi
et al. [20] analytically studied the steady two-dimensional
boundary layer flow over an isothermal flat plate by homotopy

perturbation method (HPM) and analyzed the entropy gener-
ation inside the boundary layer. Galanis and Rashidi [21] stud-
ied the entropy generation in non-Newtonian fluids due to heat
transfer in entrance region of ducts. Butt et al. [22] made an

investigation on entropy generation within a steady laminar
mixed convective MHD flow of a viscoelastic fluid over a
stretching sheet. They solved the governing equations using

the homotopy analysis method and obtained expressions for
local entropy generation number, Bejan number, and average
Bejan number. Butt and Ali [23] analyzed the effects of entropy

generation in MHD flow over a permeable stretching sheet
embedded in a porous medium in the presence of viscous dis-
sipation. They obtained analytical solutions of momentum and
energy equations in terms of Kummer’s functions and com-

puted the entropy generation number and Bejan number.
Noghrehabadi et al. [24] analyzed the boundary layer heat
transfer and entropy generation of a nanofluid over an isother-

mal linearly stretching sheet with heat generation/absorption.
They took into account the development of nanoparticles con-
centration gradient due to slip and the effects of Brownian

motion and thermophoresis. Dehsara et al. [25] investigated
the entropy generation of MHD mixed convection flow of
nanofluid over a nonlinear stretching inclined transparent

plate embedded in a porous medium. Using a numerical algo-
rithm, they solved the governing equations, in the presence of
the effects of viscous dissipation, variable magnetic field and
solar radiation. More literature survey makes it clear that
the entropy generation has not been investigated for the flow
and heat transfer of a Jeffrey non-Newtonian fluid over a
stretching surface.

The purpose of the present study was to venture further in
the area of entropy generation for the steady two-dimensional
laminar flow of a Jeffrey fluid over a linearly stretching sheet.

To the best of the author’s knowledge, the investigation of
entropy generation for the steady flow of Jeffrey fluid over a
linearly stretching sheet is presented for the first time in the

present study. The boundary layer flow and heat transfer equa-
tions are transformed using the similarity transformations to a
system of two nonlinear ordinary differential equations which
are then solved by using Keller’s box method. Various profiles

of dimensionless velocity, temperature and entropy generation
number are plotted and the effects of various parameters such
as Deborah number, ratio of relaxation to retardation times,

Prandtl number, Reynolds number and Brinkman number
on velocity, temperature and entropy generation number are
analyzed.

2. Mathematical formulation

The steady two-dimensional laminar flow of a non-Newto-

nian fluid over a flat horizontal sheet is considered. The
non-Newtonian fluid is considered to be an incompressible
viscous Jeffrey fluid. The sheet is assumed to be linearly

stretching, isothermal and impermeable. The viscous dissipa-
tion effect is also taken into consideration. The governing
equations including mass, momentum and energy conserva-
tions are as follows:
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where u and v are the velocity components in x and y directions

respectively, t is the kinematic viscosity of the fluid, a is the
thermal diffusivity of the fluid, Cp is the specific heat at con-
stant pressure of the fluid, k is the ratio of relaxation to retar-
dation times, and k1 is the relaxation time. The boundary

conditions are as follows:

u ¼ uwðxÞ ¼ ax; m ¼ 0; T ¼ Tw at y ¼ 0

u! 0; @u
@y
! 0; T! T1 as y!1 ð4Þ

where uw is the velocity by which the sheet is being stretched, a
is the stretching rate of sheet which is a constant with

dimension of (time)�1, and finally Tw and T1 are the temper-
ature of isothermal sheet and the free-stream temperature
respectively.

The following similarity transformations are used to trans-
form the boundary layer flow and heat transfer equations to
nonlinear ODEs:
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g ¼ y
a

t

� �0:5
; fðgÞ ¼ �m

ðatÞ0:5
; f 0ðgÞ ¼ u

ax
; hðgÞ ¼ T� T1

Tw � T1
ð5Þ

where g and f are the similarity variable and the dimensionless
stream-function respectively. f 0 and h are the dimensionless

velocity and dimensionless temperature as well. The continuity
equation is directly satisfied as:

u ¼ @w
@y

; m ¼ � @w
@x

ð6Þ

where w is the stream-function. Using the similarity transfor-
mations of Eq. (6), Eqs. (1)–(3) are transformed to:

f 000 þ ð1þ kÞðff 00 � f 02Þ þ bðf 002 � f f 0000Þ ¼ 0 ð7Þ

h00 þ Prfh0 þ Pr � Ec
ð1þ kÞ f 002 þ b f 0f 002 � ff 00f 000

� 	
 �
¼ 0 ð8Þ

where b = ak1 is Deborah number, Pr = lCp/k is Prandtl
number and Ec = (uw)

2/Cp(Tw � T1) is the Eckert number.

The transformed boundary conditions are as follows:

fð0Þ ¼ 0; f 0ð0Þ ¼ 1; hð0Þ ¼ 1

f 0ð1Þ ¼ 0; f 00ð1Þ ¼ 0; hð1Þ ¼ 0
ð9Þ

The parameters of engineering interest are the local skin fric-

tion coefficient and the local Nusselt number, which are
defined as follows:

Cf;x ¼
1þ b
1þ k

f 00ð0Þ
Re0:5x

ð10Þ

Nux ¼ �
h0ð0Þ
Re�0:5x

ð11Þ

where Rex = uwÆx/t is the local Reynolds number. The exact

solution for the dimensionless velocity, using Eq. (7) with
boundary conditions of Eq. (9), is as follows [6]:

fðgÞ ¼ 1� e�mg

m
; m ¼ 1þ k

1þ b

� �0:5

ð12Þ

where the second derivative of the exact solution for dimen-

sionless velocity is f 00(g)= �me�mg which gives the dimension-
less velocity gradient at the sheet surface using the exact
solution to be f 00(0)_exact = -m.

3. Entropy generation analysis

The local entropy generation rate per unit volume for the

Jeffrey fluid is as follows:
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k

T2
1
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where the first term on the right-hand side of Eq. (13) is the
entropy generation due to heat transfer, and the second term
is the entropy generation due to viscous dissipation and Jeffrey

fluid effect. In order to define the dimensionless entropy gener-
ation number, a characteristic entropy generation rate (Sgen)0
is defined as follows:

ðSgenÞ0 ¼
k

T2
1

ðDTÞ2

x2
ð14Þ
Thus, the dimensionless entropy generation number is defined

as the ratio of local volumetric entropy generation rate to the
characteristic entropy generation rate:

NS ¼
Sgen

ðSgenÞ0
ð15Þ

Therefore, the dimensionless entropy generation number is

obtained as follows:

NS ¼ Re � h02 þ Br � Re
Xð1þ kÞ � f 002 þ b f 0f 002 � ff 00f 000

� 	
 �
ð16Þ

where Re, Br and X are the Reynolds number, the Brinkman
number and the dimensionless temperature difference which
are defined as:

Re ¼ uw � x
t

; Br ¼ l � ðuwÞ2

k � DT ; X ¼ DT
T1

ð17Þ
4. Numerical method of solution

The numerical finite-difference implicit Keller’s box method is

used to solve Eqs. (7) and (8) with the boundary conditions of
Eq. (9). To apply the method, the nonlinear ODEs (7-8) are
first transformed to a system of first order ODEs. Then, using
backward finite differences, the difference equations are

obtained. In order to linearize the problem, the Newton’s
method of linearization is employed [26]. Afterward, by the
use of a block-three diagonal matrix algorithm, the system of

linearized difference equations is iteratively solved. The step
size of Dg = 0.05 and the convergence criterion of 10�4 is
applied to take into account the boundary layer effect.

5. Results and discussion

Boundary layer flow and heat transfer of a Jeffrey fluid over a

linearly stretching sheet is considered. The governing equations
are transformed to two nonlinear ODEs and then solved using
a numerical implicit finite-difference Keller’s box algorithm.

Table 1 compares values of dimensionless velocity gradient of
fluid at the sheet surface f 00(0) using the numerical solution of
the present paper with the exact solution [6] for various values
of the physical parameters b and k. It is seen that the numerical

values of f 00(0) are in excellent agreement within a relative error
of 0.05% with the ones from the exact solution of Eq. (12). It is
also observed that f 00(0) increases with the increase of Deborah

number b for a constant value of k. It may also be seen that, at
the constant value of b = 0.2, the dimensionless velocity gradi-
ent at sheet surface f 00(0) reduces with an increase in the ratio of

relaxation to retardation times k.
Table 2 shows the values of dimensionless local skin friction

group Cf,xRex
0.5 for various values of physical parameters b

and k using Eq. (10) and the numerical values of f 00(0) from

Table 1. For a constant b, it can be observed that Cf,x Rex
0.5

increases with the increase of k. With the increase of the ratio
of relaxation to retardation time k, due to the augmentation of

relaxation duration of the non-Newtonian fluid, the velocity of
the fluid near the sheet surface declines. Hence the thickness of
hydrodynamic boundary layer increases which causes the local

skin friction coefficient to increase. It is also observable that, at
a constant k, Cf,x Rex

0.5 reduces with increase of b. The reason
is that the increase of the Deborah number b leads to a higher



Table 1 Values of f00(0) for various values of the physical parameters using the present numerical solution and the exact solution [6].

f00(0) for various b: k = 0.2 f00(0) for various k: b = 0.2

b f00(0) f00(0)_exact k f00(0) f00(0)_exact

0.0 �1.09641580 �1.09544512 0.0 �0.91468190 �0.91287093
0.2 �1.00124052 �1.00000000 0.2 �1.00124052 �1.00000000
0.4 �0.92724220 �0.92582010 0.4 �1.08100090 �1.08012345
0.6 �0.86755715 �0.86602540 0.6 �1.15533663 �1.15470054
0.8 �0.81808091 �0.81649658 0.8 �1.22521512 �1.22474487
1.0 �0.77618697 �0.77459667 1.0 �1.29134772 �1.29099445
1.2 �0.74010502 �0.73854895 1.2 �1.35427540 �1.35400640
1.4 �0.70859214 �0.70710678 1.4 �1.41442077 �1.41421356
1.6 �0.68074654 �0.67936622 1.6 �1.47212137 �1.47196014
1.8 �0.65589608 �0.65465367 1.8 �1.52765178 �1.52752523
2.0 �0.63352833 �0.63245553 2.0 �1.58123895 �1.58113883
2.2 �0.61324514 �0.61237244 2.2 �1.63307294 �1.63299316
2.4 �0.59473195 �0.59408853 2.4 �1.68331479 �1.68325082
2.6 �0.57773665 �0.57735027 2.6 �1.73210240 �1.73205081
2.8 �0.56205463 �0.56195149 2.8 �1.77955488 �1.77951304
3.0 �0.54751791 �0.54772256 3.0 �1.82577595 �1.82574186
3.2 �0.53398720 �0.53452248 3.2 �1.87085660 �1.87082869
3.4 �0.52134592 �0.52223297 3.4 �1.91487716 �1.91485422
3.6 �0.50949569 �0.51075392 3.6 �1.95790896 �1.95789002
3.8 �0.49835287 �0.50000000 3.8 �2.00001569 �2.00000000
4.0 �0.48784584 �0.48989795 4.0 �2.04125449 �2.04124145
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motion of fluid particles inside the boundary layer, especially
in the vicinity of the sheet surface. Thus the velocity boundary
layer thickness lessens which results in lower values of skin
friction coefficient.

Table 3 presents the numerical values of dimensionless local
Nusselt group �h’(0) = Nux Rex

�0.5 for various values of the
physical parameters k, b, Pr and Ec. It can be seen that, in

the case of the absence of viscous dissipation (i.e. Ec = 0),
Nux Rex

�0.5 decreases for the higher values of k. Nevertheless,
for a nonzero Eckert number, Nux Rex

�0.5 increases with the

increase of k. This different trend of variation for the Nusselt
number with k can be attributed to the thermal boundary layer
thickness. In the case of the absence of viscous dissipation (i.e.
Ec = 0), the increase of ratio of relaxation to retardation times

k adds to the thickness of thermal boundary layer, and, as a
result, the Nusselt number reduces. However, in the case of
the presence of viscous dissipation, the increase of thermal

boundary layer thickness due to increase of k cannot overcome
the reduction of boundary layer thickness caused by viscous
dissipation. Thus the thickness of the thermal boundary layer

reduces and consequently the dimensionless Nusselt group
rises. The variation of Nux Rex

�0.5 with Deborah number b
is observed to be exactly opposite of that of k. The Nu

increases with the increase of b in no-viscous-dissipation case
(i.e. Ec = 0) while it reduces with increase of b in viscous-dis-
sipation-present case (i.e. Ec > 0). The dimensionless Nusselt
group Nux Rex

�0.5 is also observed to augment with the

increase of Prandtl number when Ec = 0, but it is decreased
with a rise in Pr when Ec > 0. It is finally seen that the
increase of Ec causes Nux Rex

�0.5 to quickly diminish when

the other physical parameters are kept constant.
Fig. 1 shows the variation of the dimensionless velocity gra-

dient at the sheet surface f 00(0) with the Deborah number b for

k = 0.2. The solid line indicates the numerical solution of the
present study while the black circles indicate the exact solution
(i.e. Eq. (12)). It is seen that an excellent agreement between
the numerical solution of the present study and the exact solu-
tion is obtained. It can also be seen that f 00(0) increases with
the increase of the Deborah number b. The variation of

f 00(0) with the ratio of relaxation to retardation times k is dem-
onstrated in Fig. 2 for b = 0.2. Here again a very good agree-
ment is observed between the numerical and exact solutions. It

is also revealed that the fluid dimensionless velocity at the sheet
surface f 00(0) reduces with the increase of k.

Fig. 3 shows the dimensionless velocity profiles f 0(g) for

various values of the Deborah number b for k = 0.2. It can
be observed that the increase of the Deborah number b causes
the fluid velocity inside the boundary layer to increase. Since
the Deborah number is proportional to the stretching rate of

the sheet (b = ak1), the increase of Deborah number results
in a higher fluid motion in the boundary layer especially adja-
cent the surface of sheet. This higher fluid motion increases the

thickness of the hydrodynamic boundary layer and conse-
quently raises the fluid velocity. Fig. 4 illustrates the dimen-
sionless velocity profiles f 0(g) for several values of k when

b = 0.2. It is seen that the increase of k causes the reduction
of boundary layer velocity of fluid. The physical parameter k
is inversely proportional to the retardation time of the non-

Newtonian fluid. Hence, an increase in k means a decrease in
fluid retardation time which in effect prevents the hastening
of fluid motion. As a result, the thickness of velocity boundary
layer diminishes and the velocity of the fluid is increased.

Fig. 5 shows the dimensionless temperature profiles h(g) for
various values of the Deborah number b for k = 0.2,
Ec = 1.0, Pr = 1.0. It is observable that, in the vicinity of

the sheet surface, the temperature slightly boosts with the
increase of b. However, it can be said the Deborah number
b does not have much effect on the temperature at some dis-

tance from the sheet inside the boundary layer. The increase
of temperature by an increase in b in sheet surface vicinity
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Figure 1 Variation of f00(0) with Deborah number b for k = 0.2;
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Table 2 Numerical values of Cf,x Rex
0.5 for various values of

the physical parameters.

b k Cf,x Rex
0.5

0 0.0 �1.00147175
0.6 �0.79086006
1.2 �0.67428162
1.8 �0.59764222

0.5 0.0 �1.22786453
0.6 �0.96901469
1.2 �0.82598351
1.8 �0.73203014

2.0 0.0 �1.73569391
0.6 �1.37082453
1.2 �1.16846343
1.8 �1.03546901
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may be a reason of vaster motions of the fluid particles which
in effect thicken the thermal boundary layer. These motions

result in a slight temperature increase for fluid near the sheet
surface because the highest temperature difference between
the free-stream and the boundary layer occurs at the sheet sur-

face. However, further from the sheet surface inside the bound-
ary layer, there is not much temperature difference for the fluid
in a point inside the boundary layer and another point outside

the boundary layer. Thus the increased motion of fluid parti-
cles does not considerably affect the thermal boundary layer
thickness further from the sheet surface, and as a result the
temperature does not noticeably vary. The dimensionless tem-

perature profiles for various values of k when b = 0.2,
Ec = 1.0, Pr = 1.0 are demonstrated in Fig. 6. The fluid
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Figure 3 Dimensionless velocity profiles f0(g) for various values
of Deborah number b; k = 0.2.
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Figure 2 Variation of f00(0) with k for b = 0.2; solid line:

numerical solution; black circles: exact solution.

Table 3 Numerical values of �h’(0) = Nux Rex
�0.5 for

various values of the physical parameters.

Pr b k Ec= 0.0 Ec= 1.0 Ec= 3.0

1.0 0 0.0 0.58750803 0.16918200 �0.66747006
0.6 0.54217805 0.19789280 �0.49067770
1.2 0.50948539 0.20874837 �0.39272568
1.8 0.48442692 0.21356226 �0.32816706

0.5 0.0 0.62230372 0.13020184 �0.85400191
0.6 0.58165832 0.17476862 �0.63901076
1.2 0.55093356 0.19403963 �0.51974824
1.8 0.52648523 0.20395391 �0.44110871

2.0 0.0 0.67185164 0.03616084 �1.23522076
0.6 0.64025457 0.10762118 �0.95764560
1.2 0.61516518 0.14412953 �0.79794177
1.8 0.59422219 0.16588697 �0.69078348

1.3 0 0.0 0.69419553 0.16472204 �0.89422492
0.6 0.64319794 0.20488527 �0.67174008
1.2 0.60489880 0.22057361 �0.54807678
1.8 0.57466019 0.22757977 �0.46658107

0.5 0.0 0.73182104 0.11210009 �1.12734182
0.6 0.68774242 0.17232704 �0.85850372
1.2 0.65323279 0.19935278 �0.70840723
1.8 0.62497537 0.21359235 �0.60917368

2.0 0.0 0.78345160 �0.01058070 �1.59864531
0.6 0.75070112 0.08172075 �1.25623999
1.2 0.72413662 0.13023044 �1.05758191
1.8 0.70150511 0.15982364 �0.92353929
temperature is seen to be somewhat unaffected by the ratio
of relaxation to retardation times k particularly in the neigh-
borhood of the sheet surface (i.e. g = 0). Nevertheless, further
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Figure 4 Dimensionless velocity profiles f0(g) for various values
of ratio of relaxation to retardation times k; b = 0.2.
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Figure 5 Dimensionless temperature profiles h(g) for various

values of Deborah number b; k = 0.2, Ec= 1.0, Pr= 1.0.
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Figure 6 Dimensionless temperature profiles h(g) for various

values of ratio of relaxation to retardation times k; b = 0.2,

Ec= 1.0, Pr= 1.0.
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Figure 7 Dimensionless temperature profiles h(g) for various

values of Eckert number Ec; b = 0.2, k = 0.2, Pr= 1.0.
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Figure 8 Dimensionless temperature profiles h(g) for various

values of Prandtl number Pr; b = 0.2, k = 0.2, Ec= 1.0.
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away from the sheet inside the boundary layer, k has a small
effect on temperature, such that the temperature slightly
increases with the increase of k.

The effect of variation of Eckert number on temperature
profile is illustrated in Fig. 7 for b = 0.2, k = 0.2, Pr = 1.0.
It is viewed that the Ec variation vastly influences the fluid

temperature inside the boundary layer such that the higher
the Ec, the greater the temperature. It is also seen that, for
Ec values higher than Ec = 2, the dimensional temperature
at the close vicinity of sheet goes above the sheet surface tem-

perature Tw. It is seen from its definition that the Eckert num-
ber is directly proportional to the square of stretching velocity
of the sheet, (uw)

2. Hence, an increase in Ec means a great

increase in the stretching rate of the sheet, and thus a large
augmentation in motion of fluid particles near the sheet, which
in effect increases the temperature of the fluid, especially at the

sheet close vicinity. Fig. 8 shows the temperature profiles h(g)
for various values of Pr in b = 0.2, k = 0.2, Ec = 1.0. It can
be observed that the increase of Prandtl number causes the

fluid temperature to reduce, while the temperature reduction
is more pronounced at distances further away from the sheet
in the boundary layer domain. An increase in Pr is equivalent
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Figure 9 Dimensionless entropy generation number profiles

NS(g) for various values of Deborah number b; k = 0.2, Ec= 1.0,

Pr= 1.0, Re = 500, BrX�1 = 10.
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Figure 10 Dimensionless entropy generation number profiles

NS(g) for various values of ratio of relaxation to retardation times

k; b = 0.2, Ec = 1.0, Pr = 1.0, Re = 500, BrX�1 = 10.
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Figure 11 Dimensionless entropy generation number profiles

NS(g) for various values of Eckert number Ec; b = 0.2, k = 0.2,

Pr= 1.0, Re = 500, BrX�1 = 10.
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with a decrease in the thermal diffusion of fluid layers
resulting in a thinner thermal boundary layer and lower
temperature.

Fig. 9 shows the dimensionless entropy generation number
profiles NS(g) for various values of Deborah number b, when
k = 0.2, Ec = 1.0, Pr = 1.0, Re = 500, BrX�1 = 10. It is

revealed that the increase of Deborah number causes the
dimensionless entropy generation number to boost. The reason
is that the increase of Deborah number leads to higher motion

of fluid particles inside the boundary layer. Higher motion of
fluid particles itself can significantly increase the thickness of
velocity boundary layer and so elevate fluid velocity. Higher
motion of fluid particles can also make the thermal boundary

layer slightly thicker and consequently promote the tempera-
ture. Thus the accumulated effects of velocity and temperature
due to the b augmentation cause the increase of the entropy

generation number. Fig. 10 demonstrates the dimensionless
entropy generation number profiles NS(g) for various values
of k, for b = 0.2, Ec = 1.0, Pr = 1.0, Re= 500, BrX�1 = 10.

It can be observed that higher values of k lead to lower values
of NS. The increase of NS with an increase in the ratio of relax-
ation to retardation times k is due to the fact that the velocity

inside the boundary layer increases with an increase in k, as
observed in Fig. 4. However, it should be mentioned that a
very low reduction in temperature with the increase of k
(Fig. 6) is not able to neutralize the velocity effect, and hence

the entropy generation number increases.
Fig. 11 indicates NS(g) profiles for various values of Eckert

number when b = 0.2, k = 0.2, Pr = 1.0, Re= 500,

BrX�1 = 10. It is seen that the entropy generation number is
slightly higher for larger values of Eckert number in distances
far enough from the sheet in the boundary layer domain. This

result is due to the effect of Eckert number on temperature
(Fig. 7) in which the increase of Eckert number leads to the
increase of temperature gradients. However, it can be said that

the variation of Ec does not considerably influence NS. For
instance, when the Eckert number increases from 1.0 to 2.0,
entropy generation number rises from the value of 780.85 to
797.66 which is a 2.15% increase in NS for 100% increase in

Ec. The dimensionless entropy generation number profiles
NS(g) for various values of Pr at b = 0.2, k = 0.2, Ec = 1.0,
Re= 500, BrX�1 = 10 are shown in Fig. 12. It is observed

that NS presents a very small increase with the increase of
Pr, for distances not very close to or not too far from the sheet
in vertical direction. Nevertheless, it can be concluded that

Prandtl number variations do not have much effect on the
entropy generation number values. It is observed that the
entropy generation number varies from 816.34 to 839.79 when
the Prandtl number increases from 1.5 to 2. This is an increase

of 8.5% in NS due to an increase of 100% in Pr.
Fig. 13 illustrates entropy generation number profiles NS(g)

for various values of Brinkman number Br while b = 0.2,

k = 0.2, Ec = 1.0, Pr= 1.0, Re= 500, X�1 = 10. It should
be mentioned that the Brinkman number determines the rela-
tive importance of viscous effect. It is seen that the higher the

Br values, the higher the NS, although this outcome is more
observable in the sheet surface vicinity (i.e. g < 1.5). This aug-
mentation in NS with the Br increase is due to the fact that for

higher values of Br, the entropy generation number due to the
fluid friction is higher. It should also be noticed that the
entropy generation effects are more prominent near the sheet
surface. These effects reduce as the distance from the surface
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Ec= 1.0, Re = 500, BrX�1 = 10.
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of the sheet increases. Since the Brinkman number is directly
proportional to the square of sheet stretching velocity, on
the surface of the sheet (g = 0) the dimensionless entropy gen-

eration number is higher for larger values of Br. The stretching
velocity of the sheet also influences the fluid near the surface of
sheet such that the fluid accelerates and the entropy generation

number is increased. It can also be seen that for Br P 0.04 the
NS values decrease by getting further in distance from the sheet
(i.e. increase of g). However, for Br 6 0.02 with the increase of

g the entropy generation number experiences an initial increase
and then a slow reduction toward the distances far from the
sheet.

In Fig. 14, the NS(g) profiles for various values of the Rey-

nolds number when b = 0.2, k = 0.2, Ec = 1.0, Pr = 1.0,
BrX�1 = 10 are given. It is seen that increasing the Reynolds
number boosts the values of the entropy generation number.

The increase of the Reynolds number augments the contribu-
tion of entropy generation number due to fluid friction and
heat transfer inside the boundary layer. The reason is that

the increase of the Reynolds number disturbs the fluid, and
thus chaotic movements appear inside the fluid. With the
increase of the Reynolds number, the inertia forces of the flow

over the sheet are increased while the viscous forces are
reduced. Hence, the fluid on the sheet is more accelerated
and the resistance on the flow due to the sheet friction is dimin-
ished which consequently hoists the values of the entropy gen-

eration number. It is observed that the value of NS at g = 1
increases from 156.17 to 780.86 when Re is increased from
100 to 500 which shows that the increase of Reynolds number

by 100% causes the increase of entropy generation number by
80%. It can also be seen that with the increase of similarity
variable (g) (i.e. going along the longitudinal direction of

sheet) at a constant Reynolds number, the entropy generation
number decreases monotonically.
6. Conclusions

The steady 2-D flow of a Jeffrey non-Newtonian incompress-
ible fluid over a flat horizontal sheet is considered where the

sheet is assumed to be an isothermal linearly stretching one.
The boundary layer equations are transformed by using simi-
larity transformations to two nonlinear ODEs and then solved
using a numerical technique called Keller’s box. The effects of

various flow and thermal parameters, namely, Deborah num-
ber, ratio of relaxation time to retardation time, Prandtl num-
ber, Brinkman number and Reynolds number on velocity,

temperature and entropy generation number are investigated.
The results obtained are as follows:

(1) The dimensionless fluid velocity inside the boundary
layer boosts with the increase of the Deborah number,
while with the increase of the ratio of relaxation to retar-
dation times the dimensionless fluid velocity reduces.

(2) With the increase of both Deborah number and the ratio
of relaxation to retardation times, the dimensionless
temperature of fluid inside thermal boundary layer

slightly increases.
(3) The entropy generation number increases with the

increase of Deborah number. However, the entropy gen-

eration number reduces with the increase of the ratio of
relaxation to retardation times.
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(4) Both the increase in Brinkman number and the increase

in Reynolds number cause the increase of entropy gener-
ation number, and this increase in entropy generation
number is more pronounced in adjacent of the sheet

surface.
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