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a b s t r a c t

We say that a symmetric noncommutative (nc) polynomial is nc plurisubharmonic (nc
plush) on an nc open set if it has an nc complex hessian that is positive semidefinite when
evaluated on open sets of matrix tuples of sufficiently large size. In this paper, we show
that if an nc polynomial is nc plurisubharmonic on an nc open set then the polynomial is
actually nc plurisubharmonic everywhere and has the form

p =


f Tj fj +


kjkTj + F + F T (0.1)

where the sums are finite and fj, kj, F are all nc analytic.
Greene et al. (2011) [1] has shown that if p is nc plurisubharmonic everywhere then p

has the form in Eq. (0.1). In other words, [1] makes a global assumption while the current
paper makes a local assumption, but both reach the same conclusion. We show that if p
is nc plurisubharmonic on an nc ‘‘open set’’ (local) then p is, in fact, nc plurisubharmonic
everywhere (global) and has the form expressed in Eq. (0.1).

This paper requires a technique that is not used in [1]. We use a Gram-like vector
and matrix representation (called the border vector and middle matrix) for homogeneous
degree 2 nc polynomials. We then analyze this representation for the nc complex hessian
on an nc open set and positive semidefiniteness forces a very rigid structure on the border
vector and middle matrix. This rigid structure plus the theorems in [1] ultimately force the
form in Eq. (0.1).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In [1], it is shown that if p is nc plush everywhere then p has the form in Eq. (0.1). In this paper, we prove a stronger
result on a ‘‘local implies global’’ level. We show that if p is nc plush on an nc ‘‘open set’’ (local) then p is, in fact, nc plush
everywhere (global) and has the form expressed in Eq. (0.1). Since this paper is a close companion of [1], we refer the reader
there, see Section 1.4, for background and motivation.

This paper requires a technique that is not used in [1]. We use a Gram-like vector and matrix representation (called
the border vector and middle matrix) for homogeneous degree 2 nc polynomials and apply it to the nc complex hessian
of p. When p is convex, its hessian is positive semidefinite and this forces a simple rigid structure on the middle matrix.
Analysis of this structure leads to proving, in [2], that p must have degree not greater than 2. Here, we are concerned with
a considerably less stringent requirement than convexity, namely that p has a positive semidefinite nc complex hessian.
This forces a considerably more complicated structure on our Gram representation. The meat of our proofs is analyzing this
structure. Combined with the main theorems in [1], this forces the form in Eq. (0.1).
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Wemention that one (open ended) direction for free nc algebras heads toward a geometry for an nc variety V . It concerns
the zero set of an nc polynomial, p, and a notion of curvature defined in terms of the hessian, p′′, of p restricted to a ‘‘tangent
plane’’ to V . If it is positive and p is irreducible in a certain sense, then p has degree 2. This type of geometry is introduced and
analyzed in [3,4] using themiddlematrix representation heavily. Suppose now that onewants to understand nc varieties on
which an nc Levi form is positive semidefinite, an nc analog of what one sees with pseudoconvexity in the subject of several
complex variables. This would entail restriction of the nc complex hessian to a type of complex tangent plane and assuming
it positive semidefinite. Then, one would use the middle matrix analysis done in this paper. Work has not seriously begun
along these lines, but it is a natural extension of the techniques developed in this paper.

Section 1 of [1] provides the necessary background for this paper. [1] introduces the basics such as noncommutative
variables, monomials, and polynomials; as well asmatrix positivity. In addition, [1] provides details about nc differentiation,
the nc complex hessian, and nc plurisubharmonicity. Hence, we begin this paper with direct sums and nc open sets.

1.1. Direct sums

Our definition of the direct sum is the usual one, which for two matrices X1 and X2 is given by

X1 ⊕ X2 :=


X1 0
0 X2


.

Given a finite set of matrix tuples {X1, . . . , X t
} with

X j
= {Xj1, Xj2, . . . , Xjg} ∈ (Rnj×nj)g

for j = 1, . . . , t , we define
t

j=1

X j
:=


t

j=1

Xj1,

t
j=1

Xj2, . . . ,

t
j=1

Xjg


.

For example, if X1
= {X11, . . . , X1g}, X2

= {X21, . . . , X2g}, and X3
= {X31, . . . , X3g}, we get

X1
⊕ X2

⊕ X3
= {X11 ⊕ X21 ⊕ X31, . . . , X1g ⊕ X2g ⊕ X3g}.

Now let

B =

∞
n=1

Bn

where Bn ⊆ (Rn×n)g for n = 1, 2, . . . is given. The graded set B respects direct sums if for each finite set

{X1, . . . , X t
} with X j

∈ Bnj and n =

t
j=1

nj,

with repetitions allowed, ⊕t
j=1 X

j
∈ Bn.

1.2. Noncommutative open set

A set G ⊆ ∪n≥1(Rn×n)g is an nc open set if G satisfies the following two conditions:

(i) G respects direct sums, and
(ii) there exists a positive integer n0 such that if n > n0, the set Gn := G ∩ (Rn×n)g is an open set of matrix tuples.

We say that an nc polynomial, p, is nc plush on an nc open set, G, if the nc complex hessian, q, of p satisfies

q(X, XT )[H,HT
] ≽ 0 (1.1)

for all X ∈ G and all H ∈ (Rn×n)g for all n ≥ 1.

1.3. Main results

As we will see, in Section 4, the nc complex hessian, q, if matrix positive on an nc open set, can be factored as

q = V (x, xT )[h, hT
]
T L(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT

] (1.2)

where D(x, xT ) is a diagonal matrix, L(x, xT ) is a lower triangular matrix with ones on the diagonal (we call this a unit lower
triangular matrix), and V (x, xT )[h, hT

] is a vector of monomials in x, xT , h, hT .
When we take the transpose of a matrix with monomial or polynomial entries (e.g., L(x, xT )T or V (x, xT )[h, hT

]
T ), we get

the matrix obtained by taking the transpose (as a matrix) and applying the transpose (involution) to every entry.
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Example 1.1. If

v =

hxx
hx
h


,

then

vT
=

xT xThT xThT hT  .

The next theorem shows the surprising result that the diagonal matrix, D(x, xT ), in Eq. (1.2) does not depend on x, xT and
that L(x, xT ) has nc polynomial entries.

Theorem 1.2. If p is an nc symmetric polynomial that is nc plurisubharmonic on an nc open set, then q, the nc complex hessian
of p, can be written as

q = V (x, xT )[h, hT
]
T L(x, xT )DL(x, xT )TV (x, xT )[h, hT

]

where V (x, xT )[h, hT
] is a vector of monomials in x, xT , h, hT , D = diag(d1, d2, . . . , dN ) is a positive semidefinite constant real

matrix, and L(x, xT ) is a unit lower triangular matrix with nc polynomial entries.

Proof. The proof of this theorem requires the rest of this paper and culminates in Section 4.5. �

This gives rise to an extension of the main theorem from [1]. In [1], it is shown that an nc polynomial which is nc plush
everywhere has the specific form given in Eq. (1.3). In this paper, Theorem 1.3, is a stronger, ‘‘local implies global’’, result in
that an nc polynomial that is nc plush just on an nc open set is actually nc plush everywhere (and has the form in Eq. (1.3)).

Theorem 1.3. If an nc symmetric polynomial, p, is nc plurisubharmonic on an nc open set, then p is, in fact, nc plurisubharmonic
everywhere and has the form expressed in [1]

p =


f Tj fj +


kjkTj + F + F T (1.3)

where the sums are finite and each fj, kj, and F is nc analytic.

Proof. That D = D(x, xT ), in Theorem 1.2, is a positive semidefinite constant real matrix immediately implies

q(X, XT )[H,HT
] ≽ 0

for all X,H ∈ ∪n≥1(Rn×n)g ; that is, p is nc plush at all X ∈ (Rn×n)g . Consequently, Theorem 1.7 in [1] gives that p is of the
desired form

p =


f Tj fj +


kjkTj + F + F T

where the sums are finite and fj, kj, F are nc analytic. �

Note that with an nc polynomial, p, as in Eq. (1.3), the nc complex hessian, q, of p is

q =


(f Tj )xT [h

T
](fj)x[h] +


(kj)x[h](kTj )xT [h

T
], (1.4)

which is obviously matrix positive as it is a sum of squares. From Eq. (1.4), we see that the nc complex hessian for an nc
polynomial that is nc plush on an nc open set has even degree.

1.4. Guide to the paper

In Section 2, we introduce a Gram-like representation of nc quadratics. In Section 3, we study this Gram-like
representation for the nc complex hessian and prove some properties for this representation. In Section 4, we introduce
the LDLT decomposition of the nc complex hessian and conclude that D is constant.

2. Middle matrix representation for a general NC quadratic

In this section, we turn to a special representation for nc symmetric quadratic polynomials called the middle matrix
representation (MMR).We represent nc quadratics in a factored form, vTMv. This representation greatly facilitates the study
of the positivity of nc quadratics by letting us study the positivity ofM . Now we give details.
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Any noncommutative symmetric polynomial, f (x, xT , h, hT ), in the variables x = (x1, . . . , xg), xT = (xT1, . . . , x
T
g ), h =

(h1, . . . , hg), and hT
= (hT

1, . . . , h
T
g ) that is degree s in x, xT and homogeneous of degree two in h, hT admits a representation

of the form

f (x, xT , h, hT ) = V (x, xT )[h, hT
]
TM(x, xT )V (x, xT )[h, hT

] (2.1)
where M(x, xT ), called the middle matrix, is a symmetric matrix of nc polynomials in x, xT and V (x, xT )[h, hT

], called the
border vector, is given by

V (x, xT )[h, hT
] =



Vs(x, xT )[h]
...

V0(x, xT )[h]
Vs(x, xT )[hT

]

...

V0(x, xT )[hT
]


. (2.2)

The Vk(x, xT )[h] (resp. Vk(x, xT )[hT
]) are vectors of nc monomials of the form hjm(x, xT ) (resp. hT

j m(x, xT )) where m(x, xT )
runs through the set of (2g)k monomials in x, xT of length k for j = 1, . . . , g . Note that the degree of the monomials in Vk is
k + 1.

We note that the vector of monomials, V (x, xT )[h, hT
], might contain monomials that are not required in the

representation of the nc quadratic, f . Therefore, we can omit all monomials from the border vector that are not required.
This gives us a minimal length border vector and prevents extraneous zeros from occurring in the middle matrix. The next
lemma, Lemma 2.1, says that a minimal length border vector contains distinct monomials.

Lemma 2.1. If f (x, xT , h, hT ) is an nc symmetric polynomial that has a middle matrix representation, then there is a middle
matrix representation for f such that the border vector contains distinct monomials. Here, distinct precludes one monomial being
a scalar multiple of another.

Proof. Suppose we have f with the representation

f (x, xT , h, hT ) =

 m
αm
n

T p11 p12 p13
p21 p22 p23
p31 p32 p33

 m
αm
n


with α a real number andm and n distinct monomials. Write f as

f = mT (p11 + α2p22 + αp21 + αp12)m + mT (p13 + αp23)n + nT (p31 + αp32)m + nTp33n

which leads to the representation

f (x, xT , h, hT ) =


m
n


p11 + α2p22 + αp21 + αp12 p13 + αp23

p31 + αp32 p33


m
n


which has distinct monomials in the border vector. �

To aid us in the following sections, we cite a theorem (Theorem 8.3 in [5] and Theorem 6.1 in [2]). Note that in [5], the
following theorem is stated for a positivity domain but the proof only uses the fact that positivity domains are nc open sets
(satisfy the two conditions in Section 1.2). Hence, we slightly generalize the statement of the theorem to work on a more
general nc open set as defined in Section 1.2.

Theorem 2.2. Consider a noncommutative polynomial Q(x, xT )[h, hT
] which is quadratic in the variables h, hT that is defined

on G ⊆ ∪n≥1(Rn×n)g . Write Q(x, xT )[h, hT
] in the form Q(x, xT )[h, hT

] = V (x, xT )[h, hT
]
TM(x, xT )V (x, xT )[h, hT

]. Suppose
that the following two conditions hold:
(i) the set G is an nc open set as defined in Section 1.2;
(ii) the border vector V (x, xT )[h, hT

] of the quadratic function Q(x, xT )[h, hT
] has distinct monomials.

Then, the following statements are equivalent:
(a) Q(X, XT )[H,HT

] is a positive semidefinite matrix for each pair of tuples of matrices X and H for which X ∈ G;
(b) M(X, XT ) ≽ 0 for all X ∈ G.

Wewill also need the followingwell known lemma (c.f. [2]). Just for notational purposes of stating the lemma, letB(H)g

denote all g-tuples of operators on H , where H is a Hilbert space.

Lemma 2.3. Given d, there exists a Hilbert space K of dimension
2d

0 (2g)j such that if G is an open subset of B(K)g , if p has
degree at most d, and if p(X) = 0 for all X ∈ G, then p = 0.

Next we proceed to study this middle matrix representation for the nc complex hessian.
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3. Middle matrix representation for the NC complex hessian

In Section 2, we introduced the middle matrix representation for a general nc quadratic polynomial, and this section
specializes it to the nc complex hessian. The requirement that the nc complex hessian be positive on an nc open set forces
rigid structure to the border vector and middle matrix.

3.1. Border vector for a complex hessian: choosing an order for monomials

Let p be an nc symmetric polynomial in g free variables such that the degree of its nc complex hessian is d. Then the
complex hessian will be homogeneous of degree two in h, hT .

For a fixed degree k, there are gk nc analytic monomials and gk nc antianalytic monomials in x, xT . That means there are
(2g)k − gk

− gk
= (2g)k − 2gk ‘mixed’ monomials of degree k (i.e., monomials that are not nc analytic nor nc antianalytic).

3.1.1. Analytic border vector
For 0 ≤ k ≤ d−2, let Ak = Ak(x)[h] be the vector of nc analytic monomials with entries hjm(x)wherem(x) runs through

the set of gk nc analytic monomials of length k for j = 1, . . . , g . The order we impose on the monomials in this vector is
lexicographic order. Thus, the length of Ak = Ak(x)[h] is gk+1 and the vector

A(x)[h] = col(Ad−2, . . . , A1, A0) (3.1)

has length gd−1
+ · · · + g2

+ g = gν where ν = gd−2
+ · · · + g2

+ g + 1.

3.1.2. Antianalytic border vector
Let At

k = Ak(xT )[hT
] be the same as Ak = Ak(x)[h] except replace each hj with hT

j and replace each xi by xTi . So At
k is the

vector of nc antianalytic monomials with entries hT
j m(xT )wherem(xT ) runs through the set of gk nc antianalytic monomials

of length k for j = 1, . . . , g (again, the order is lexicographic). Thus, the length of At
k = Ak(xT )[hT

] is gk+1 and the vector

A(xT )[hT
] = col(At

d−2, . . . , A
t
1, A

t
0) (3.2)

also has length gν.

3.1.3. Mixed term border vector
Next, we define notation to handle all nonanalytic and nonantianalytic monomials. Let B1 = B1(x, xT )[h] be the vector of

monomials with entries hjxTi for i = 1, . . . , g and j = 1, . . . , g . The length of B1 is g2. For 2 ≤ k ≤ d−2, let Bk = Bk(x, xT )[h]
be the vector of monomials with entries hjm(x, xT ) wherem(x, xT ) runs through the set of (2g)k − 2gk monomials of length
k that are not nc analytic nor nc antianalytic for j = 1, . . . , g . Again, we put the same lexicographic order on themonomials.
Thus, the length of Bk = Bk(x, xT )[h] is g((2g)k − 2gk) and the vector

B(x, xT )[h] = col(Bd−2, . . . , B2, B1)

has length g2
+
d−2

k=2 g((2g)
k

− 2gk). Then we can also define Bt
1 = Bt

1(x, x
T )[hT

] to be the vector of monomials with
entries hT

j xi for i = 1, . . . , g and j = 1, . . . , g . This also has length g2. Then we define, for 2 ≤ k ≤ d − 2, the vector
Bt
k = Bk(x, xT )[hT

] to be the same as Bk except hj is replaced by hT
j . In other words, each entry looks like hT

j m(x, xT ). Then the
vector

B(x, xT )[hT
] = col(Bt

d−2, . . . , B
t
2, B

t
1)

has the same length as B(x, xT )[h].
Note that the degree of the monomials in Ak, At

k, Bk, Bt
k is k + 1.

3.2. The middle matrix of a complex hessian

Now we can represent the nc complex hessian, q, of a symmetric nc polynomial p as

q(x, xT )[h, hT
] =


A(x)[h]

B(x, xT )[h]
A(xT )[hT

]

B(x, xT )[hT
]


T 

Q1 Q2 0 0
Q T
2 Q4 0 0
0 0 Q5 Q6

0 0 Q T
6 Q8




A(x)[h]
B(x, xT )[h]
A(xT )[hT

]

B(x, xT )[hT
]

 (3.3)

where Qi = Qi(x, xT ) are matrices with nc polynomial entries in the variables x1, . . . , xg , xT1, . . . , x
T
g .

Again, we wish to stress that the vectors A(x)[h], A(xT )[hT
], B(x, xT )[h], and B(x, xT )[hT

] may contain monomials that are
not required in the representation of the complex hessian, q. Therefore, we omit all monomials from the border vector that
are not required. This gives us a minimal length border vector and prevents extraneous zeros from occurring in the middle
matrix. Lemma 2.1 says that a minimal length border vector contains only distinct monomials.
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The next subsection provides some necessary background on nc differentiation.

3.3. Levi-differentially wed monomials

An extremely important fact about the nc complex hessian, q(x, xT )[h, hT
], is that it is quadratic in h, hT and that each term

contains some hj and some hT
k . If a certain monomialm is in q, then any monomial obtained by exchanging hj with some xℓ in

m and/or exchanging some hT
k with some xTj inm is also in q. We say two such monomials are Levi-differentially wed. Indeed,

being Levi-differentially wed is an equivalence relation on the monomials in qwith the coefficients of all Levi-differentially
wed monomials in q being the same.

Often we write that terms (rather than monomials) in the nc complex hessian are Levi-differentially wed. When we
write this, we mean that the nc complex hessian, q, contains the terms αm and αm̃ where the monomials m and m̃ are
Levi-differentially wed and they have the same coefficient, α ∈ R.

Example 3.1. The monomials hThxT x, hT xxTh, xThhT x, and xT xhTh are all Levi-differentially wed to each other.

Example 3.2. None of the monomials hThxT x, hT xhT x, xThxTh are Levi-differentially wed to each other.

The next theorem gives necessary and sufficient conditions as to when an nc polynomial is an nc complex hessian. This
theorem is proved in [1] but gets used extensively in this paper.

Theorem 3.3. An nc polynomial q in x, xT , h, hT is an nc complex hessian if and only if the following two conditions hold:

(P1) Each monomial in q contains exactly one hj and one hT
k for some j, k.

(P2) If a certain monomial m is contained in q, any monomial m̃ that is Levi-differentially wed to m is also contained in q with
the same coefficient.

Proof. The proof is provided in [1]. �

Theorem 3.3(P1) shows that every term in the complex hessian, q, has an hj and hT
k for some j and k. This structure forces

the zeros in the middle matrix in Eq. (3.3).

3.4. Structure of the middle matrix

In this subsection, we prove some properties about the structure of the middle matrix in the MMR for a matrix positive
nc complex hessian.

Lemma 3.4. Let p be an nc symmetric polynomial that is nc plush on an nc open set, G. Then, the MMR in Eq. (3.3) for its nc
complex hessian, q, of p has Q2 = Q4 = Q6 = Q8 = 0. Thus,

q =


A(x)[h]

A(xT )[hT
]

T 
Q1(x, xT ) 0

0 Q5(x, xT )


A(x)[h]

A(xT )[hT
]


. (3.4)

Proof. We consider the upper left block of the middle matrix in Eq. (3.3)
A(x)[h]

B(x, xT )[h]

T 
Q1(x, xT ) Q2(x, xT )
Q2(x, xT )T Q4(x, xT )


A(x)[h]

B(x, xT )[h]


with the goal of showing Q2 = 0 and Q4 = 0. Thus, suppose the border vector contains a nonzero monomial which is an
entry in the vector of mixed monomials, B(x, xT )[h]; i.e., the border vector contains a term

hkm1(x, xT )xTj m2(x, xT ) (3.5)

for some monomialsm1 and m2 in the variables x1, . . . , xg , xT1, . . . , x
T
g .

Soon we shall look at the diagonal entry, P (0), in the middle matrix corresponding to this border vector monomial in
(3.5) and show it is 0. By Theorem 2.2, we have the middle matrix positive semidefinite for every X in the nc open set, G.
By Lemma 2.3, if an nc polynomial is zero on an open set of matrix tuples with sufficiently large dimension, then the nc
polynomial is identically zero. Hence, if there is ever a diagonal entry in the middle matrix that is zero on an open set of
matrix tuples of large enough dimension, then that diagonal entry is identically zero. Hence, to force matrix positivity, the
corresponding row and column in the middle matrix must be zero. This implies that the particular monomial in the border
vector is not needed in the representation, thereby contradicting the border vector being of minimal length. Thus, showing
P (0) is 0, a contradiction.
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The term(s) in the nc complex hessian corresponding to the diagonal entryP (0) of themiddlematrix andmonomial (3.5)
in the border vector are

mT
2xjm

T
1h

T
kP

(0)hkm1xTj m2

where P (0) is some matrix positive polynomial in x1, . . . , xg , xT1, . . . , x
T
g . By Theorem 3.3(P2), q must also contain the Levi-

differentially wed term(s)

mT
2hjmT

1h
T
kP

(0)xkm1xTj m2.

This means the border vector must contain the monomial(s)

{hT
kP

(0)xkm1xTj m2}mon (3.6)

where {hT
kP

(0)xkm1xTj m2}mon is the list of the monomials that appear as terms in the nc polynomial hT
kP

(0)xkm1xTj m2.
Again, we shall look at the term(s) in q corresponding to the diagonal in the middle matrix corresponding to any one of

the border vector monomial(s) in (3.6). Pick hT
k
P (0)xkm1xTj m2 as a specific border vector monomial in the list in (3.6). Then,

the term(s) in q look like

mT
2xjm

T
1x

T
k (
P (0))ThkP

(1)hT
k
P (0)xkm1xTj m2

where P (1) is a matrix positive polynomial in x1, . . . , xg , xT1, . . . , x
T
g , which is a diagonal entry of the middle matrix.

Theorem 3.3(P2) implies q must also contain the Levi-differentially wed term(s)

mT
2hjmT

1h
T
k (
P (0))T xkP (1)xTk P (0)xkm1xTj m2

which means the border vector must contain the monomial(s)

{hT
k (
P (0))T xkP (1)xTk P (0)xkm1xTj m2}mon (3.7)

where {hT
k (
P (0))T xkP (1)xTk P (0)xkm1xTj m2}mon is the list of the monomials that appear as terms in the nc polynomial

hT
k (
P (0))T xkP (1)xTk P (0)xkm1xTj m2.
Note that the border vector monomial in (3.7) has degree at least 2 more than the degree of the border vector monomial

in (3.6) which has degree at least 2 more than the degree of the border vector monomial in (3.5). We can continue this
process and the degree of the successive border vector monomials will keep increasing by at least 2 at each step. At some
step, the degree of the border vector monomial will exceed d−1. This contradicts the fact that the border vector monomials
must have degree at most d−1. Thus, we have shown that Q4 = 0. A similar argument shows that Q8 = 0. Since the middle
matrix is positive semidefinite, we also get Q2 = 0 and Q6 = 0, by the argument in the previous paragraph. Hence, the nc
complex hessian has the representation in Eq. (3.4), as claimed by the theorem. �

We call an nc polynomial hereditary if all xT1, x
T
2, . . . , x

T
g variables appear to the left of every x1, x2, . . . , xg variable.

Similarly, we call an nc polynomial antihereditary if all xT1, x
T
2, . . . , x

T
g variables appear to the right of every x1, x2, . . . , xg

variable.

Theorem 3.5. The nc complex hessian, q, of an nc symmetric polynomial that is nc plush on an nc open set can be written as in
Eq. (3.4)

q(x, xT )[h, hT
] =


A(x)[h]

A(xT )[hT
]

T 
Q1(x, xT ) 0

0 Q5(x, xT )


A(x)[h]

A(xT )[hT
]


where every nc polynomial entry in Q1(x, xT ) is hereditary and every nc polynomial entry in Q5(x, xT ) is antihereditary.

Proof. Suppose, for the sake of contradiction, Q1 contains an nc polynomial entry which is not hereditary. Without loss of
generality, this nc polynomial contains a term of the form

m1(xT )xjxTkm2(x, xT ) (3.8)

wherem1 is amonomial in xT andm2 is amonomial in x and xT . Since this is part of an entry in themiddlematrix, this means
that the nc complex hessian must contain a term of the form

m3(xT )hT
ℓm1(xT )xjxTkm2(x, xT )hsm4(x)

where m3(xT )hT
ℓ is a specific monomial entry from the vector A(x)[h]T and hsm4(x) is a specific monomial entry from the

vector A(x)[h]. Then, Theorem 3.3(P2) implies that the nc complex hessian must also contain the Levi-differentially wed
term

m3(xT )hT
ℓm1(xT )hjxTkm2(x, xT )xsm4(x).
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This implies that the border vector must contain the monomial

hjxTkm2(x, xT )xsm4(x)

which contradicts having annc analytic or nc antianalytic border vector, as required by Lemma3.4. The proof thatQ5 contains
antihereditary nc polynomial entries is similar. �

For a real number, r , we define ⌊r⌋ as the largest integer less than or equal to r and we define ⌈r⌉ as the smallest integer
greater than or equal to r . The next theorem puts an upper bound on the degree of the monomials in the border vector for q.

Lemma 3.6. Suppose p is an nc symmetric polynomial that is nc plush on an nc open set. If the degree of its nc complex hessian,
q, is d, then the degree of the border vector monomials is at most

 d
2


.

Proof. Write the MMR for q(x, xT )[h, hT
] as

q = V TMV =

V T
1 V T

2

 M1 M2

MT
2 M4


V1
V2


with the following property. If d is odd, V1 contains monomials of degree 1, . . . ,

 d
2


and V2 contains monomials of degree d

2


, . . . , d−1. If d is even, V1 containsmonomials of degree 1, . . . , d

2 and V2 containsmonomials of degree d
2 +1, . . . , d−1.

In either case, polynomials in M4 correspond to terms in q having degree strictly greater than d. Hence M4 = 0. By
Theorem 2.2, M(X) ≽ 0 for all X in an nc open set. This forces M2(X) = 0 for all X in an nc open set. Then, by taking X
to have large enough size, Lemma 2.3 impliesM2 = 0. �

3.4.1. Consequences of positivity of the complex hessian
Now we turn from a description of the middle matrix to describing the structure of the nc complex hessian of an nc

polynomial that is nc plush on an nc open set.

Proposition 3.7. The nc complex hessian, q, of an nc symmetric polynomial that is nc plush on an nc open set is a sumof hereditary
and antihereditary polynomials.

Proof. This follows immediately from Lemma 3.4 and Theorem 3.5. �

Finally, we show that the degree of qmust be evenwhen p is nc plush on an nc open set. This fact is obvious if p is assumed
nc plush everywhere because then the nc complex hessian is a sum of squares.

Theorem 3.8. Suppose p is an nc symmetric polynomial that is nc plush on an nc open set. Then, the degree of its complex hessian,
q, is even.

Proof. Suppose the degree of q is 2N+1.Without loss of generality, Proposition 3.7 and Theorem3.3, requiring the presence
of Levi-differentially wed monomials, imply that qmust contain a hereditary term of the form

xTi1x
T
i2 · · · hT

ishj1xj2 · · · xjℓ
where s, ℓ > 0, s+ ℓ = 2N + 1, and i1, . . . , is, j1, . . . , jℓ ∈ {1, . . . , g}. This means that in the middle matrix representation
for q, the border vector must contain hj1xj2 · · · xjℓ and hisxis−1 · · · xi1 which have degree ℓ and s, respectively. But since
s + ℓ = 2N + 1 and s, ℓ > 0, one of either s or ℓ is at least

 2N+1
2


. This contradicts Lemma 3.6. �

4. LDLT decomposition has constant D

This section concerns the ‘‘algebraic Cholesky’’ factorization, LDLT , of the middle matrix. We will show that for an nc
polynomial that is nc plush on an nc open set, this D is a positive semidefinite matrix whose diagonal entries are all
nonnegative real constants, and L is unit lower triangularwith entrieswhich are nc polynomials. This is a stronger conclusion
than one would expect because, typically, such factorizations have nc rational entries; see [5,6]. In our approach, the LDLT
factorization of a symmetric matrix with noncommutative entries will be the key tool for the determination of the matrix
positivity of an nc quadratic function.

4.1. The LDLT decomposition

Begin by considering the block 2 × 2 matrix

M =


A BT

B C
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where A is a constant real symmetric invertible matrix and B and C are matrices with nc polynomial entries with C
symmetric. Then,M has the following decomposition

M =


I 0

BA−1 I


A 0
0 C − BA−1BT


I A−1BT

0 I


, (4.1)

where all matrices in this decomposition contain nc polynomial entries. If C − BA−1BT contains a constant real symmetric
invertible matrix somewhere on the diagonal, then we can apply a permutation, Π , on the left of M and its transpose, Π T ,
on the right ofM to move this constant real symmetric invertible matrix to the first (block) diagonal position of C −BA−1BT .
We then pivot off this constant real symmetric invertible matrix, factor C − BA−1BT as L̂D̂L̂T , and we get

ΠMΠ T
=


I 0

BA−1 L̂


A 0
0 D̂


I A−1BT

0 L̂T


.

This can be continued, provided at each step, a constant real symmetric invertiblematrix appears somewhere on the diagonal
to obtain ΠMΠ T

= LDLT where L is a unit lower triangular matrix with nc polynomial entries and D is a (block) diagonal
matrix with real constant blocks. This special situation is the one which turns out to hold in the derivation which follows.

Indeed, we shall only care about the case where A is a constant real symmetric invertible matrix. For the case where A
contains nc polynomial entries and is considered to be ‘‘noncommutative invertible’’, see [5]. In this case, we also have the
notion of ‘‘noncommutative rational’’ functions (see [6]). However, as we soon shall see, while nc rationals are mentioned,
they never actually appear in any calculations in this paper.

We recall an immediate consequence of Theorem 3.3 in [5]:

Theorem 4.1. SupposeM(x, xT ) is a symmetric r×r matrixwith noncommutative rational function entries and that M(X, XT ) ≽

0 for all X in some nc open set. Then, there exist a permutation matrix, Π , a diagonal matrix, D(x, xT ), with nc rational entries,
and a unit lower triangular matrix, L(x, xT ), with nc rational entries such that

ΠM(x, xT )Π T
= L(x, xT )D(x, xT )L(x, xT )T .

Remark 4.2. In this paper, we care about the positivity of the middle matrix, M(x, xT ). If Π is a permutation matrix, it is
clear that

ΠM(X, XT )Π T
≽ 0 ⇐⇒ M(X, XT ) ≽ 0

for any X ∈ Rn×n and any n ≥ 1. As a result, for ease of exposition, we will often, without loss of generality, omit the
permutation matrix, Π .

Also, there will be some instances where we will, without loss of generality, assume a specific order in the border vector,
V (x, xT )[h, hT

]. For example, we may assume a given monomial, say, hm(x, xT ), is the first monomial in V (x, xT )[h, hT
]. This

assumption also amounts to a permutation of V (x, xT )[h, hT
] which, again, does not affect positivity ofM(x, xT ) so we omit

it from the discussion.

We now proceed to apply the LDLT factorization to themiddlematrix of the nc complex hessian. Let p be an nc symmetric
polynomial and let q denote the nc complex hessian of p. Since q is homogeneous of degree 2 in h, hT , q admits the MMR

q = V (x, xT )[h, hT
]
TM(x, xT )V (x, xT )[h, hT

]. (4.2)

If p is nc plush on an nc open set, thenM(x, xT ) is symmetric andmatrix positive on an nc open set andwe can factorM(x, xT )
following the process underlying Eq. (4.1) and Theorem 4.1, thus converting Eq. (4.2) to

q = V (x, xT )[h, hT
]
T L(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT

] (4.3)

up to a harmless rearrangement of the border vector.
In Section 4.5, we prove one of the main theorems of this paper, Theorem 4.13, which was stated in Section 1.3 as

Theorem1.2.We recall that this theorem says thatD(x, xT ) in Eq. (4.3) does not depend on x, xT and is a positive semidefinite
constant real diagonal matrix for an nc polynomial that is nc plush on an nc open set. In addition, we will prove that L(x, xT )
contains nc polynomials instead of nc rationals. Now we start the buildup to Section 4.5.

4.2. Properties of LDLT for NC polynomials that are NC plush on an NC open set

In this subsection, we present properties of the LDLT factorization of the nc complex hessian for an nc polynomial that is
nc plush on an nc open set.

Recall from Section 1.2 that a set G ⊆ ∪n≥1(Rn×n)g is an nc open set if:

(i) G respects direct sums, and
(ii) there exists a positive integer n0 such that if n > n0, the set Gn := G ∩ (Rn×n)g is an open set of matrix tuples



490 J.M. Greene / J. Math. Anal. Appl. 396 (2012) 481–496

and an nc symmetric polynomial, p, is nc plush on an nc open set, G, if p has an nc complex hessian, q, such that
q(X, XT )[H,HT

] is positive semidefinite for all X ∈ G and for all H ∈ (Rn×n)g for every n ≥ 1.
Theorem 3.8 shows that the nc complex hessian has even degree; denote it 2N . We will use this fact throughout the

duration of the paper. The next lemma is a stepping stone for Lemma 4.4.

Lemma 4.3. Suppose p is an nc symmetric polynomial that is nc plush on an nc open set, G. Let 2N denote the degree of its nc
complex hessian, q. Then, q must contain a term of the form

αmThThm (or αmhhTmT )

where m is an nc analytic monomial of degree N − 1 and α is a positive real constant.

Proof. Proposition 3.7 implies q is a sum of hereditary and antihereditary polynomials. Let w be a term of degree 2N in q.
Without loss of generality, suppose w is hereditary; i.e., w has the form

w = αmT
1h

TmT
2m3hm4

where α ∈ R,m1,m2,m3,m4 are nc analytic monomials in x, and

deg(m1) + deg(m2) + deg(m3) + deg(m4) = 2N − 2.

By Theorem 3.3(P2), qmust contain the Levi-differentially wed term

w̃ = αm̃T
1h

Thm̃2

where m̃1, m̃2 are nc analytic monomials in x and deg(m̃1) = deg(m̃2) = N − 1.
If m̃1 = m̃2, we are done (except for showing α > 0). If the conclusion of the lemma is false, so that q contains no term

of the form αmThThm, then this implies m̃1 ≠ m̃2. Since q is symmetric, qmust also contain the term

w̃T
= αm̃T

2h
Thm̃1.

If we partition the border vector so that eT1V = hm̃1 and eT2V = hm̃2, then we get that

q =

hm̃1
hm̃2

...


T 0 α · · ·

α 0 · · ·

...
...

. . .


hm̃1
hm̃2

...

 .

This middle matrix is not positive semidefinite for any X ∈ G. Hence, Theorem 2.2 implies that q is not positive semidefinite
for allX ∈ G. This contradicts the positivity of q on the nc open set,G. Hence, qmust contain some termof the formαmThThm.

We now show α > 0. Sincewe know that q contains a term of the form αmThThmwithm an nc analytic or nc antianalytic
monomial of degree N − 1, the real constant α will appear on the diagonal in the middle matrix. Then, Theorem 2.2 implies
that this α must be positive. �

When we write ei, we mean the vector whose ith entry is 1 and every other entry is 0. From Eq. (4.3), we can write q as a
sum of outer products

q = V (x, xT )[h, hT
]
T


N
i=1

(Lei)di(Lei)T

V (x, xT )[h, hT

]

=

N
i=1

V (x, xT )[h, hT
]
T (Lei)di(Lei)TV (x, xT )[h, hT

]. (4.4)

We stress that in Eq. (4.4), each Lei and di depends on x and xT . However, the next lemma shows that one element of D is
constant and one column of L contains nc polynomials rather than nc rationals.

Lemma 4.4. Let p be an nc symmetric polynomial that is nc plush on an nc open set. Let 2N denote the degree of its nc complex
hessian, q. Then, we can write the nc complex hessian, q, as in Eqs. (4.3) and (4.4) where L(x, xT ) is unit lower triangular and
D(x, xT ) = diag(d1, . . . , dN ) with d1 a positive real constant.

Hence, each entry in Le1, the first column of L(x, xT ), is an nc polynomial rather than an nc rational.

Proof. Theorem 4.1 implies D(x, xT ) is a diagonal matrix. Without loss of generality, Lemma 4.3 implies that q contains a
term of the form

αmThThm

where α > 0 is a positive real constant andm is an nc analytic monomial of degree N − 1. The MMR of q can be written as

q =


hmV
T 

α ℓT

ℓ M


hmV


.
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Since α > 0, we can first pivot off α in computing the LDLT factorization of the middle matrix to get

q =


hmV
T


1 0
1
α

ℓ I


α 0

0 M −
1
α

ℓℓT


1

1
α

ℓT

0 I


hmV


.

Now we see that d1 = eT1De1 = α > 0 and that

Le1 =


1
1
α

ℓ


and M −

1
α

ℓℓT

contain only nc polynomials as entries. �

The next lemma provides even more specific structure to Le1 and maintains the nc polynomial structure.

Lemma 4.5. Under the same hypotheses of Lemma 4.4, either:

(i) every entry of Le1 (the 1st column of L(x, xT )) is an nc antianalytic polynomial, d1 (the 1st diagonal entry of D(x, xT )) is a
positive real constant, and the corresponding monomials in V (x, xT )[h, hT

] are nc analytic; or
(ii) every entry of Le1 (the 1st column of L(x, xT )) is an nc analytic polynomial, d1 (the 1st diagonal entry of D(x, xT )) is a positive

real constant, and the corresponding monomials in V (x, xT )[h, hT
] are nc antianalytic.

Proof. Lemma 3.4 implies that q can be written as

q = A(x)[h]TQ1(x, xT )A(x)[h] + A(xT )[hT
]
TQ5(x, xT )A(xT )[hT

]

where each entry of A(x)[h] is an nc analytic monomial and each entry of A(xT )[hT
] is an nc antianalytic monomial. Also, Q1

contains hereditary nc polynomials and Q5 contains antihereditary nc polynomials. Then, we have that

q = A(x)[h]T L1D1LT1A(x)[h] + A(xT )[hT
]
T L2D2LT2A(xT )[hT

]

=


A(x)[h]

A(xT )[hT
]

T

  
V (x,xT )[h,hT ]T


L1 0
0 L2


  

L


D1 0
0 D2


  

D


L1 0
0 L2

T

  
LT


A(x)[h]

A(xT )[hT
]


  

V (x,xT )[h,hT ]

. (4.5)

By Lemma 4.3, we know that there are two cases to consider: either q contains a term of the form d1mThThm or q contains
a term of the form d1mhhTmT . We proceed with the former and assume that q contains a term of the form

d1mThThm

wherem is an nc analytic monomial in x (so that hm is an entry in A(x)[h]) of degree N − 1 and d1 is a positive real constant.
Lemma 4.4 implies that eT1D1e1 = d1 and that each entry of Le1 is an nc polynomial. From Eq. (4.5), we have that

Le1 =


L1e1
0


and (Le1)TV = (L1e1)TA(x)[h].

Next, write q as in Eq. (4.4) and see that the first term in this sum becomes

V T (Le1)d1(Le1)TV = d1((L1e1)TA(x)[h])T ((L1e1)TA(x)[h]).

Proposition 3.7 implies that q is a sum of hereditary and antihereditary polynomials. Therefore, since A(x)[h] contains only
nc analytic monomials, this forces (L1e1)T to contain only nc analytic polynomials (which means that L1e1 contains only nc
antianalytic polynomials). This completes the proof of Case (i).

The proof of Case (ii) works the same way when, by Lemma 4.3, we assume that q contains a term of the form

d1mhhTmT

wherem is an nc analytic monomial in x of degree N − 1 and d1 is a positive real constant. �

The next lemma is a technical lemma that is used as a stepping stone to help prove Proposition 4.11.

Lemma 4.6. Let p be an nc symmetric polynomial that is nc plush on an nc open set. Let 2N denote the degree of its nc complex
hessian, q. Then, we can write q as in Eq. (4.4)

q =

N
i=1

V (x, xT )[h, hT
]
T (Lei)di(Lei)TV (x, xT )[h, hT

]
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with

V (x, xT )[h, hT
]
T e1 = xTiN · · · xTi2h

T
i1 (resp. V (x, xT )[h, hT

]
T e1 = xiN · · · xi2hi1)

in which case, any term in q that has the form

d1γ xTiN · · · xTi2h
T
i1m(x, h) (resp. d1γ xiN · · · xi2hi1m(xT , hT ))

where γ is a real constant andm(x, h) is some nc analyticmonomial in x, h of degree 1 in h (resp. m(xT , hT ) is some nc antianalytic
monomial in xT , hT of degree 1 in hT ), is a term in the nc polynomial

d1V (x, xT )[h, hT
]
T (Le1)(Le1)TV (x, xT )[h, hT

].

Moreover, γm(x, h) (resp. γm(xT , hT )) is a term in the nc analytic (resp. nc antianalytic) polynomial

(Le1)TV (x, xT )[h, hT
].

Proof. Proposition 3.7 implies q is a sum of hereditary and antihereditary polynomials. Since the degree of q is 2N , there
exists a term, w, in q of degree 2N . By Lemma 4.3, there are two cases to consider: either w looks like

w = d1xTiN · · · xTi2h
T
i1hi1xi2 · · · xiN

or w looks like

w = d1xiN · · · xi2hi1h
T
i1x

T
i2 · · · xTiN

with d1 ∈ R+. We proceed and supply the details of the former, as the latter is similar. We partition the border vector
V (x, xT )[h, hT

] as

V (x, xT )[h, hT
] =


hi1xi2 · · · xiNV


where hi1xi2 · · · xiN is not a monomial entry in the vectorV . Then, q becomes

q =


hi1xi2 · · · xiNV

T 1 0
ℓ L


d1 0
0 D


1 ℓT

0 LT


hi1xi2 · · · xiNV


= d1(

V (x,xT )[h,hT ]
T (Le1)(Le1)T V (x,xT )[h,hT ]=(xTiN

···xTi2
hTi1

+V T ℓ)(hi1 xi2 ···xiN +ℓTV )  
xTiN · · · xTi2h

T
i1hi1xi2 · · · xiN + xTiN · · · xTi2h

T
i1ℓ

TV +V Tℓhi1xi2 · · · xiN +VℓℓTV ) +V TLDLTV . (4.6)

Since xTiN · · · xTi2h
T
i1
is not amonomial entry in the vectorV T , this shows that any term in q of the form d1γ xTiN · · · xTi2h

T
i1
m(x, h),

where γ is a real constant andm(x, h) is an nc analytic monomial of degree 1 in h, is a term in the nc polynomial

d1V (x, xT )[h, hT
]
T (Le1)(Le1)TV (x, xT )[h, hT

].

Eq. (4.6) implies that either

d1γ xTiN · · · xTi2h
T
i1m(x, h) = d1xTiN · · · xTi2h

T
i1hi1xi2 · · · xiN

or that d1γ xTiN · · · xTi2h
T
i1
m(x, h) is a term in the nc polynomial

d1xTiN · · · xTi2h
T
i1ℓ

TV .

This implies that either γ = 1 and m(x, h) = hi1xi2 · · · xiN or that γm(x, h) is a term in the nc polynomial ℓTV . Hence,
γm(x, h) is a term in the nc polynomial

hi1xi2 · · · xiN + ℓTV = (Le1)TV (x, xT )[h, hT
]

and Lemma 4.5 implies that (Le1)TV (x, xT )[h, hT
] is nc analytic. �

4.3. 1-differentially wed monomials and NC directional derivatives

Earlier, in Section 3.3, we introduced Levi-differentiallywedmonomials and provided necessary and sufficient conditions
as to when an nc polynomial is an nc complex hessian. Now, we introduce 1-differentially wed monomials and state
Proposition 4.10, which gives necessary and sufficient conditions as to when a given nc polynomial is an nc directional
derivative. This machinery is needed to prove Proposition 4.11.
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4.3.1. Notation
Let m be a monomial that is degree one in h or hT . This means m contains some hi or some hT

i . If m contains some hi, we
denote

m|hi→xi

as the monomial only in x and xT where xi replaces hi in m. Ifm contains some hT
i , we denote

m|hTi →xTi

as the monomial only in x and xT where xTi replaces hT
i in m.

Sometimes, we may write hγ

i or xγ

i where γ is either ∅ or T . When γ = ∅, we define

h∅

i := hi

x∅

i := xi
and when γ = T , we mean hT

i or xTi .

Example 4.7. If m = x1hT
2x

T
1 thenm|hT2→xT2

= x1xT2x
T
1 .

4.3.2. 1-differentially wed monomials
For α, β either ∅ or T , two monomialsm and m̃ are called 1-differentially wed if both are degree one in h or hT and if

m|hα
i →xαi

= m̃|hβ
j →xβj

.

Example 4.8. The monomialsm = h1xT2x1 and m̃ = x1hT
2x1 are 1-differentially wed.

Example 4.9. The monomialsm = x2h2x2 and m̃ = x1x2h2 are not 1-differentially wed.

The following theorem gives necessary and sufficient conditions for an nc polynomial to be an nc directional derivative.

Proposition 4.10. A polynomial p in x = (x1, . . . , xg) and h = (h1, . . . , hg) is an nc directional derivative if and only if each
monomial in p has degree one in h (i.e., contains some hj) and whenever a monomial m occurs in p, each monomial which is 1-
differentially wed to m also occurs in p and has the same coefficient.

Proof. This is proved in [1]. �

4.4. Part of the NC complex hessian is an NC complex hessian

In this subsection, we focus on writing the nc complex hessian, q, as in Eq. (4.4)

q =

N
i=1

V (x, xT )[h, hT
]
T (Lei)di(Lei)TV (x, xT )[h, hT

].

This subsection culminates with the result that the nc polynomial

d1V (x, xT )[h, hT
]
T (Le1)(Le1)TV (x, xT )[h, hT

],

is the nc complex hessian for some nc polynomial that is nc plush on an nc open set. In order to do this, we first show that
the nc polynomial

(Le1)TV (x, xT )[h, hT
]

is the nc directional derivative for some nc analytic or nc antianalytic polynomial.

Proposition 4.11. Let p be an nc symmetric polynomial that is nc plush on an nc open set, G. Let 2N denote the degree of its nc
complex hessian, q. If we write q as in Eq. (4.4) and d1 is constant, then the nc polynomial

(Le1)TV (x, xT )[h, hT
]

is the nc directional derivative for an nc analytic polynomial or an nc antianalytic polynomial.
In addition, the nc polynomial

d1V (x, xT )[h, hT
]
T (Le1)(Le1)TV (x, xT )[h, hT

]

is the nc complex hessian for some nc polynomial that is nc plush on G.

Proof. By Lemma4.5, there are two cases to consider.We proceed and supply the details for the first, as the second is similar.
We assume that

(Le1)TV (x, xT )[h, hT
]
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is an nc analytic polynomial where V (x, xT )[h, hT
] and Le1 are partitioned as

V (x, xT )[h, hT
] =


VN

VN−1
...
V1

 , Le1 =


ℓ0
ℓ1
...

ℓN−1

 , ℓ0 =


1
⋆
...
⋆

 , (4.7)

where ⋆ is any nc polynomial and Vj is a vector that contains only nc analytic monomials of the form hi1xi2 · · · xij having total
degree j. Each ℓj is a vector with the same length as Vj and, by Lemma 4.5, ℓj contains only nc antianalytic polynomials (ℓT

j
contains only nc analytic polynomials). With this setup, we have that

F (x, h) := (Le1)TV (x, xT )[h, hT
] =

N−1
j=0

ℓT
j VN−j

is an nc analytic polynomial in x and h. We define this as F (x, h) for convenience.
Lemma 4.4 implies d1 ∈ R+ is a constant and Eq. (4.4) implies that q contains the terms

d1V (x, xT )[h, hT
]
T (Le1)(Le1)TV (x, xT )[h, hT

] = d1


N−1
j=0

ℓT
j VN−j

T N−1
j=0

ℓT
j VN−j


. (4.8)

Then, since the degree of q is 2N and the degree of each border vector monomial in VN−j is N − j, it follows that the degree
of each nc analytic polynomial in ℓT

j is at most j.
Lemma 4.3 implies that q contains some term of the form

α2xTiN · · · xTi2h
T
i1hi1xi2 · · · xiN (4.9)

with α a nonzero real constant. This implies that the vector VN contains the monomial hi1xi2 · · · xiN as an entry. Without loss
of generality, assume this monomial is first in lexicographic order. Then,

eT1V (x, xT )[h, hT
] = eT1VN = hi1xi2 · · · xiN .

As in the proof of Lemma 4.4, if M represents the middle matrix of q, then eT1Me1 = α2 and, after one step in the LDLT

algorithm, we see that α2
= d1. Then, by Theorem 3.3(P2), q also contains the Levi-differentially wed terms

d1xTiN · · · xTi2h
T
i1xi1hi2xi3 · · · xiN

d1xTiN · · · xTi2h
T
i1xi1xi2hi3 · · · xiN

...

d1xTiN · · · xTi2h
T
i1xi1xi2 · · · xiN−1hiN .

Since q contains these terms and the term in (4.9), Lemma 4.6 implies that F (x, h) contains the term

hi1xi2xi3 · · · xiN (4.10)

and the terms

xi1hi2xi3 · · · xiN
xi1xi2hi3 · · · xiN
...

xi1xi2 · · · xiN−1hiN .

Hence,F (x, h) contains all 1-differentially wedmonomials to hi1xi2xi3 · · · xiN as terms. Proposition 4.10 implies thatF (x, h)
contains the nc directional derivative of xi1xi2xi3 · · · xiN .

Now we pick any other term in F (x, h) and show that F (x, h) contains all other 1-differentially wed monomials to it
and that they all occur with the same coefficient. Suppose F (x, h) contains the term

γ xs1 · · · xskhβ1xβ2 · · · xβN−j .

We already showed that F (x, h) contains the monomial in (4.10), hi1xi2 · · · xiN , as a term so F (x, h)T must contain the
monomial xTiN · · · xTi2h

T
i1
as a term. This implies that d1F (x, h)TF (x, h) contains the terms

d1xTiN · · · xTi2h
T
i1(hi1xi2 · · · xiN + γ xs1 · · · xskhβ1xβ2 · · · xβN−j).
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Hence, q contains the term

d1γ xTiN · · · xTi2h
T
i1xs1 · · · xskhβ1xβ2 · · · xβN−j

and Theorem 3.3(P2) implies that q contains the Levi-differentially wed terms

d1γ xTiN · · · xTi2h
T
i1hs1xs2 · · · xskxβ1xβ2 · · · xβN−j

d1γ xTiN · · · xTi2h
T
i1xs1hs2 · · · xskxβ1xβ2 · · · xβN−j

...

d1γ xTiN · · · xTi2h
T
i1xs1xs2 · · · hskxβ1xβ2 · · · xβN−j

d1γ xTiN · · · xTi2h
T
i1xs1xs2 · · · xskxβ1hβ2 · · · xβN−j

...

d1γ xTiN · · · xTi2h
T
i1xs1xs2 · · · xskxβ1xβ2 · · · hβN−j .

Since q contains all of these terms with xTiN · · · xTi2h
T
i1
on the left, Lemma 4.6 implies F (x, h) must contain the terms

γ hs1xs2 · · · xskxβ1xβ2 · · · xβN−j

γ xs1hs2 · · · xskxβ1xβ2 · · · xβN−j

...

γ xs1xs2 · · · hskxβ1xβ2 · · · xβN−j

γ xs1xs2 · · · xskhβ1xβ2 · · · xβN−j

γ xs1xs2 · · · xskxβ1hβ2 · · · xβN−j

...

γ xs1xs2 · · · xskxβ1xβ2 · · · hβN−j .

All of these terms in F (x, h) have the same coefficient, γ , and the monomials are 1-differentially wed to each other. Thus,
Proposition 4.10 implies that they sum to the nc directional derivative of

γ xs1xs2 · · · xskxβ1xβ2 · · · xβN−j .

Hence, we have shown thatF (x, h) = (Le1)TV (x, xT )[h, hT
] is an nc directional derivative, where, without loss of generality,

we assumed that F (x, h) was nc analytic.
Now we have that

F (x, h) := (Le1)TV (x, xT )[h, hT
]

is the nc directional derivative of some nc analytic or nc antianalytic polynomial. Suppose, without loss of generality, that
F (x, h) is the nc directional derivative of some nc analytic polynomial, F (x). Then, F (x, h) is nc analytic and

d1F (x, h)TF (x, h) = d1V (x, xT )[h, hT
]
T (Le1)(Le1)TV (x, xT )[h, hT

]

is the nc complex hessian of the nc polynomial

d1F (x)TF (x).

Hence, for any n ≥ 1, any X ∈ G, and any H ∈ (Rn×n)g , we have

d1F (X,H)TF (X,H) ≽ 0. �

4.5. Constant D result

In this subsection, we show that for an nc symmetric polynomial, p, that is nc plush on an nc open set, thematrix D(x, xT )
in Eq. (4.3) has no dependence on x or xT and is actually a positive semidefinite constant real matrix. First, we require a
helpful lemma.

Lemma 4.12. If p is an nc symmetric polynomial that is nc plush on an nc open set, G, then its nc complex hessian, q, can be
written as in Eq. (4.3)

q = V (x, xT )[h, hT
]
T L(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT

]

where D(x, xT ) is a diagonal matrix of nc rationals and D(X, XT ) ≽ 0 for all X ∈ G.
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Proof. This follows immediately from Theorem 4.1. �

Theorem 4.13. Suppose p is an nc symmetric polynomial that is nc plush on an nc open set, G. Let 2N denote the degree of its nc
complex hessian, q. Then q can be written as in Eq. (4.3)

q = V (x, xT )[h, hT
]
T L(x, xT )D(x, xT )L(x, xT )TV (x, xT )[h, hT

]

where D(x, xT ) = diag(d1, d2, . . . , dN ) is a positive semidefinite constant real matrix (i.e., di ∈ R≥0 for all i = 1, . . . , N ) and
L(x, xT ) is a unit lower triangular matrix of nc polynomials.

Proof. Lemma4.12 impliesD(X, XT ) ≽ 0 for everyX ∈ G. Thismeans di(X, XT ) ≽ 0 for everyX ∈ G and every i = 1, . . . , N .
It remains to show that each di is a nonnegative constant real number. We proceed by induction.

First, write the nc complex hessian, q, as in Eq. (4.4)

q =

N
i=1

V (x, xT )[h, hT
]
T (Lei)di(x, xT )(Lei)TV (x, xT )[h, hT

].

Lemma 4.4 shows d1 ∈ R+ is a constant, Le1 contains nc polynomial entries, and Proposition 4.11 shows that

d1V (x, xT )[h, hT
]
T (Le1)(Le1)TV (x, xT )[h, hT

]

is the nc complex hessian for some nc polynomial that is nc plush on G. Since nc differentiation is linear, we know that the
difference of two nc complex hessians is an nc complex hessian. This implies thatq := q − d1V (x, xT )[h, hT

]
T (Le1)(Le1)TV (x, xT )[h, hT

]

=

N
i=2

V (x, xT )[h, hT
]
T (Lei)di(x, xT )(Lei)TV (x, xT )[h, hT

]

is an nc complex hessian. Since di(X, XT ) ≽ 0 for all X ∈ G and for all i, we have thatq is the nc complex hessian for
an nc symmetric polynomial that is nc plush on G. Therefore, we inductively continue this same process and subtract off
appropriate terms to conclude that each di is a nonnegative constant real number. �

Now we give a partial list of references. For a complete list, see [1].
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