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Magmatic zircon in high-grade metamorphic rocks is often characterized by complex textures as
revealed by cathodoluminenscence (CL) that result from multiple episodes of recrystallization, over-
growth, Pb-loss and modifications through fluid-induced disturbances of the crystal structure and the
original U-Th-Pb isotopic systematics. Many of these features can be recognized in 2-dimensional CL
images, and isotopic analysis of such domains using a high resolution ion-microprobe with only shallow
penetration of the zircon surface may be able to reconstruct much of the magmatic and complex post-
magmatic history of such grains. In particular it is generally possible to find original magmatic domains
yielding concordant ages. In contrast, destructive techniques such as LA-ICP-MS consume a large volume,
leave a deep crater in the target grain, and often sample heterogeneous domains that are not visible and
thus often yield discordant results which are difficult to interpret. We provide examples of complex
magmatic zircon from a southern Indian granulite terrane where SHRIMP II and LA-ICP-MS analyses are
compared. The SHRIMP data are shown to be more precise and reliable, and we caution against the use of
LA-ICP-MS in deciphering the chronology of complex zircons from high-grade terranes.

� 2014, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
1. Introduction

Zircon dating by quadrupole LA-ICP-MS has become a common
and widespread practice, and large numbers of analyses have been
produced in recent years due to the short time required for each
analysis and the growing number of zircon geochronology labora-
tories. This technique has proved reliable in dating relatively simple
magmatic rocks with homogeneous zircon populations and has
proved most effective in the dating of detrital zircon grains where
high precision is not required.

The main challenge for LA-ICP-MS analysis is a reliable correc-
tion for common Pb, due to the presence of mercury in the argon
gas used in many laboratories to produce the plasma that causes an
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isobaric interference by 204Hg on 204Pb (e.g., Andersen, 2002). Such
correction is particularly important for samples with low
206Pb/204Pb ratios. Different methods were developed to overcome
this problem (e.g., Horn et al., 2000; Ko�sler et al., 2002; Jackson
et al., 2004; Gehrels et al., 2008; Cottle et al., 2009), but most
users simply make no correction, assuming that zircon has no or
only insignificant common Pb. However, this is often not the case
for early Precambrian zirconwith a complex history (e.g., Table 4 in
Kröner et al., 1989). Alternatively, some users correct for common
Pb with a model calculation that assumes a coherent behaviour of
Th/Pb and U/Pb and estimates the time of the isotopic disturbance
(Andersen, 2002). The crater produced in the zircon by laser abla-
tion, depending on the laser energy density (normally 5e6 Hz and
100mJ), and assuming about 25e30 pulses during a single analysis,
is about 35e40 mm deep (Figs. 1 and 2), thus the technique is rather
destructive and, as further discussed below, the deep pit is likely to
analyze isotopically inhomogeneous domains in zircon with com-
plex histories. On the other hand, isotopically simple magmatic or
metamorphic zircon can be analyzed fast and with high precision
due to the large volume ablated.

An alternative, but more expensive and much more time-
consuming technique is dating of small zircon domains by a sen-
sitive high-resolution ion microprobe such as SHRIMP II or Cameca
eking University. Production and hosting by Elsevier B.V. All rights reserved.
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Figure 1. Size of a typical pit produced in zircon by using an ion microprobe during a
15 min analytical run (five cycles) (left) compared to the size of an ablation crater made
from about 10 pulses of an excimer laser (right). Bottom drawings show generalized
cross-sections of the excavations made by the two techniques (modified from Patchett
and Samson, 2011).

Figure 3. Cathodoluminescence images for zircons from a cpx- and opx-bearing
metadiorite gneiss of the high-grade late Archaean terrane in eastern Shandong,
North China craton (Wan et al., 2011). These zircons show banded, fir-tree, sector- and/
or oscillatory zoning. Positions of SHRIMP II analytical sites with ages (in Ga) are
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1280. The advantage of this technique is the shallow analytical pit,
only 1.5e2 mmdeep (based on Lee et al., 1997, see Figs. 1 and 2), and
the ability to precisely correct for common Pb, whereas the esti-
mate of total U is less precise than using ICP-MS.

Zircon populations from rocks with long and multiphase
tectono-metamorphic histories generally do not consist of homo-
geneous crystals but may contain multiple components such as old
cores, surrounded by magmatic overgrowth and further sur-
rounded by metamorphic overgrowth. However, the robustness of
zircon without radiation damage, even during ultra-high temper-
ature metamorphism, and the insignificance of Pb-diffusion have
been demonstrated in many studies, and careful CL- and trace
element-assisted investigations make it possible to extract reliable
age data from such grains (e.g., Möller et al., 2003; Kooijman et al.,
Figure 2. (a) SHRIMP II pit on metamorphic zircon as seen in back-scattered electron
(BSE) image; (b) laser pit in BSE image produced after LA-ICP-MS analysis.

indicated. Note strong luminescence in small, local domains, probably due to recrys-
tallization (RC). Palaeoproterozoic high-grade metamorphism at ca. 1.95 Ga (dark grey,
recrystallized domains in a and b) has caused strong recrystallization of magmatic
zircon (2.51 Ga, see b) and the formation of new metamorphic domains (b). Ages
between 1.95 and 2.51 are due to mixing of igneous and metamorphic components.
2011). In contrast, fluid-induced alteration is common in high-
grade metamorphic terranes (e.g., Geisler et al., 2007; Flowers
et al., 2010; Wan et al., 2011; Dong et al., 2013; Ma et al., 2012),
and recrystallization, combined with Pb-loss, will produce variable
discordance in a zircon population, particularly in granulite-facies
assemblages (e.g., Corfu, 2013; Kröner et al., 2013). Fig. 3 provides
two examples of complex zircon showing evidence of recrystalli-
zation within small domains.

More severely discordant data are generally the result of either
Pb-loss or mixing of two different zircon phases. Solid state diffu-
sion of Pb from zircon is extremely slow and unlikely to be effective
at normal crustal temperatures (Mezger and Krogstad, 1997;
Cherniak and Watson, 2001). Therefore, Pb-loss occurs either by
extraction of Pb from altered domains by fluids (e.g., Krogh and
Davis, 1974, 1975) or by expulsion and/or intragrain redistribution
of Pb during recrystallization (e.g., Pidgeon et al., 1998; Connelly,
2001; McFarlane et al., 2005). The former mechanism generally



Figure 4. Concordia diagram showing SHRIMP I zircon analyses from trondhjemitic gneiss of the Ancient Gneiss Complex in northeast Swaziland. Note large variation in isotopic
ratios shown by 6 analytical spots within grain 4 (reproduced from Kröner et al., 1989).
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implies the parallel existence of concordant and discordant do-
mains, as is often observed in high-resolution ion-microprobe an-
alyses (Fig. 4), and thus concordant or near-concordant ages can be
obtained.
Figure 5. Concordia diagram showing LA-ICP-MS analytical data for zircons from granulite-f
excellent linear distribution of isotopic ratios and two mean concordia intercept ages at 110
peak of high-grade metamorphism as defined by both SHRIMP II and LA-ICP-MS dating (fr
In contrast, Pb-loss by recrystallization and/or redistribution,
particularly under fluid conditions, often leads to partial or even
complete isotopic resetting and no closed-system domains
remain that can provide concordant ages. Reverse discordance, as
acies Vijayan Complex, southeastern Sri Lanka. Error ellipses are 68.3% confidence. Note
0 � 28 and 584 � 28 Ma that define the maximum age of Vijayan magmatism and the
om Kröner et al., 2013).



Table 1
SHRIMP II analytical data for zircon from two charnockite samples of the Nagercoil Complex, southernmost India.

Sample No. U (ppm) Th (ppm) 206Pb/204Pb 208Pb/206Pb 207Pb/206Pb 206Pb/238U 207Pb/235U 206Pb/238U
age � 1s (Ma)

207Pb/235U
age � 1s (Ma)

207Pb/206Pb
age � 1s (Ma)

NGB-1B-1 1046 249 119,474 0.0712 � 4 0.1206 � 3 0.2830 � 34 4.707 � 59 1606 � 17 1768 � 10 1965 � 4
NGB-1B-2 524 164 83,056 0.0841 � 6 0.1121 � 4 0.2173 � 26 3.359 � 43 1268 � 14 1495 � 10 1834 � 6
NGB-1B-3 983 256 78,247 0.0746 � 4 0.1222 � 3 0.2925 � 35 4.928 � 61 1654 � 17 1807 � 11 1989 � 4
NGB-1B-4 393 129 32,436 0.0955 � 6 0.1282 � 4 0.3753 � 45 6.631 � 85 2054 � 21 2064 � 11 2073 � 6
NGB-1B-5 553 182 50,327 0.0936 � 4 0.1285 � 3 0.3805 � 46 6.742 � 85 2079 � 21 2078 � 11 2077 � 4
NGB-1B-6 218 55 133,156 0.0655 � 8 0.1286 � 5 0.3848 � 47 6.822 � 92 2099 � 22 2089 � 12 2079 � 7
TB1-1 833 199 83,893 0.0677 � 3 0.1251 � 3 0.3268 � 39 5.635 � 70 1823 � 19 1921 � 11 2030 � 4
TB1-2 409 325 30,675 0.2238 � 8 0.1283 � 4 0.3705 � 45 6.555 � 84 2032 � 21 2053 � 11 2075 � 5
TB1-3 310 206 62,461 0.1953 � 10 0.1247 � 4 0.3182 � 38 5.471 � 72 1781 � 19 1896 � 11 2025 � 7
TB1-4 210 123 42,230 0.1655 � 11 0.1282 � 6 0.3773 � 46 6.670 � 90 2064 � 22 2069 � 12 2073 � 8
TB1-5 300 156 34,211 0.1467 � 9 0.1269 � 5 0.3482 � 42 6.091 � 80 1926 � 20 1989 � 11 2055 � 7
TB1-6 296 164 46,948 0.1503 � 8 0.1284 � 4 0.3840 � 47 6.797 � 89 2095 � 22 2085 � 12 2076 � 6
TB1-7 222 74 32,520 0.0976 � 9 0.1283 � 6 0.3769 � 46 6.668 � 90 2062 � 22 2068 � 12 2075 � 8
TB1-8 32 46 989 0.4400 � 190 0.0598 � 70 0.0910 � 13 0.750 � 90 561 � 8 568 � 52 595 � 255

Note: NGB-1A-1 is spot on grain 1, NGB-1A-2 is spot on grain 2, etc.
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occasionally observed in ion-microprobe analyses (e.g., Williams
et al., 1984) and more rarely in ICP-MS data (e.g., Xia et al.,
2004), may be due to within-grain redistribution (e.g., Kusiak
et al., 2013) or incorrect assessment of U/Pb calibration. These
cases are typical of high-grade metamorphic terranes where only
discordant data can be extracted from many zircons (e.g., Corfu
et al., 1994; Connelly, 2001; Moser et al., 2011). Such severe par-
tial resetting by recrystallization and associated new growth re-
sults in linear arrays of data points in the concordia diagram
between the time of crystallization and that of secondary
reworking and/or local new growth (Moser et al., 2009; Kröner
et al., 2013; see Fig. 5).

A further problem related to zircon discordance concerns the
interpretation of data that are nearly, but not fully, concordant,
and this is discussed in detail by Corfu (2013). In many cases the
slight discordance is due to ancient Pb-loss, and the ages can then
be extrapolated by projecting a line through the data from lower-
intercept ages corresponding to the time of the supposed event
(see Fig. 5). However, such events are often not evident from
geological considerations, and such upper intercept extrapola-
tions may thus be erroneous. In cases where the difference be-
tween the two concordia intercept ages is relatively small, the
discordia line becomes subparallel to the concordia curve and,
dependent on the magnitude of the uncertainty, indistinguishable
Table 2
LA-ICP-MS analytical data for zircon from two charnockite samples of the Nagercoil Com

Sample
No. and spot*

238U (ppm) 232Th (ppm) 206Pb/204Pb 207Pb/206Pb 206

NGB1-1 912 125 5473 0.1126 � 11 0.2
NGB1-2 231 90 1719 0.0953 � 10 0.1
NGB1-3 269 79 10,887 0.1204 � 12 0.3
NGB1-4 369 106 7578 0.1268 � 13 0.3
NGB1-5 2300 155 10,822 0.1063 � 11 0.1
NGB1-6 474 143 9101 0.1221 � 12 0.2
NGB1-7 242 69 2128 0.1155 � 13 0.2
NGB1-8 615 170 12,857 0.1273 � 13 0.3
NGB1-9 240 76 4636 0.1008 � 12 0.1
TB1-1 217 68 3586 0.1169 � 13 0.2
TB1-2 400 361 14,484 0.1364 � 14 0.3
TB1-3 349 194 12,451 0.1306 � 13 0.3
TB1-4 1539 148 3821 0.1350 � 14 0.2
TB1-5 947 207 3908 0.1277 � 13 0.2
TB1-6 405 14.2 2471 0.0646 � 8 0.1
TB1-7 750 39.3 2700 0.0640 � 7 0.0
TB1-8 72 51 710 0.0632 � 9 0.0
TB1-9 250 162 11,730 0.1255 � 13 0.3
TB1-10 454 128 13,468 0.1315 � 13 0.3

Note: *NGB1-1 is spot on grain 1, NGB1-2 is spot on grain 2, etc.
from it (e.g., Corfu et al., 1994; Corfu, 2007; Kröner et al., 2013; see
Fig. 5).

Such a case is demonstrated in Fig. 5 where LA-ICP-MS data for
zircons from granulite-facies gneisses in southeastern Sri Lanka
plot between the igneous emplacement age at ca. 1100 Ma and a
severe high-grade metamorphic event at 580 Ma (Kröner et al.,
2013). If these two events were not known, the data could easily
be interpreted as reflecting concordant ages implying multiple
growth periods, and the possibility that individual subconcordant
data may be recording partial resetting or mixing is not always
considered. The zircon isotopic systematics reported by Ashwal
et al. (1999) from a leuconorite in southwestern Madagascar
illustrate this point. These authors reported quasi-concordant
zircon analyses with ages between 631 and 549 Ma (Ashwal
et al., 1999, their Fig. 1) and conclude that these U-Pb ages are
indicative of high-temperature Pb-loss during one or more pro-
tracted periods of granulite-facies metamorphism with minor
episodic or continuous metamorphic zircon growth during a long-
lasting (ca. 80 Ma) high-grade metamorphic event. Such inter-
pretation is highly implausible since thermal considerations make
it unlikely that the lower crust can maintain a constant high
temperature of >800 �C for this long period of time. It is more
likely that the data are slightly discordant and follow a discordia
line almost indistinguishable from the concordia curve between a
plex, southernmost India.

Pb/238U 207Pb/235U 206Pb/238U
age � 1s (Ma)

207Pb/235U
age � 1s (Ma)

207Pb/206Pb
age � 1s (Ma)

053 � 10 3.188 � 16 1204 � 5 1454 � 4 1842 � 19
568 � 8 2.062 � 13 939 � 5 1136 � 4 1535 � 20
249 � 16 5.395 � 29 1813 � 8 1884 � 5 1963 � 18
278 � 16 5.731 � 30 1828 � 8 1936 � 5 2054 � 18
548 � 8 2.269 � 11 928 � 4 1203 � 4 1737 � 18
668 � 13 4.492 � 23 1524 � 7 1730 � 4 1988 � 18
350 � 13 3.742 � 26 1841 � 8 1581 � 6 1888 � 20
306 � 16 5.801 � 29 1019 � 5 1947 � 4 2061 � 18
713 � 9 2.382 � 17 1964 6 1237 � 5 1640 � 21
462 � 13 3.972 � 25 1419 � 7 1628 � 5 1910 � 19
239 � 16 6.092 � 33 1809 � 8 1989 � 5 2181 � 18
190 � 16 5748 � 30 1785 � 8 1939 � 5 2106 � 18
811 � 14 5.235 � 26 1597 � 7 1858 � 4 2164 � 17
787 � 14 4.909 � 25 1585 � 7 1804 � 4 2066 � 18
030 � 6 0.918 � 8 632 � 3 661 � 4 760 � 27
929 � 5 0.821 � 6 573 � 3 609 � 3 743 � 24
883 � 5 0.769 � 8 546 � 3 580 � 5 714 � 29
728 � 19 6.456 � 36 2043 � 9 2040 � 5 2036 � 18
243 � 16 5.883 � 30 1811 � 8 1959 � 4 2118 � 18



Figure 6. CL-images of zircons with complex internal textures from high-grade charnockitic gneisses of southern India. For explanation see text. RC e recrystallized domain; Fl e
fluid-induced recrystallization.

A. Kröner et al. / Geoscience Frontiers 5 (2014) 515e523 519
likely igneous emplacement event for the leuconorite at 631 Ma
and high-grade metamorphism at ca. 550 Ma. This metamorphic
event is widespread in Madagascar and neighbouring high-grade
areas of Sri Lanka and southern India that were all part of East
Gondwana during the Pan-African event (Kröner, 2001; Collins
et al., 2014).

Data such as reported by Ashwal et al. (1999) and those shown
in Fig. 4 demonstrate Pb-loss or recrystallization, and since a pre-
cise correction for common Pb cannot be made for LA-ICP-MS data,
it is often impossible to decide whether a particular analysis is
concordant or slightly discordant. This is most relevant for Phan-
erozoic to Neoproterozoic zircons where it is customary to report
206Pb/238U ages. Such ages, if the data are discordant, are geologi-
cally questionable and almost always too low. This analytical
problem can be overcome if different spots on a specific grain or
several grains from the same sample are analyzed because it is
unlikely that all grins or grain-domains contain the same amount of
common Pb or experienced the same amount of Pb-loss.

2. Comparative SHRIMP II and LA-ICP-MS isotopic data for
zircons with complicated internal textures from the high-
grade terrane of southern India

We present examples of complicated zircons from a high-grade
terrane in southern India as shown by their cathodoluminescence
(CL) images that have been dated by both SHRIMP II and LA-ICP-MS
techniques. The analytical procedures are summarized in the
Appendix. Zircons were extracted from charnockitic gneisses of the



Figure 7. Comparison of SHRIMP II (a) and laser ablation ICP-MS data (b) shown in concordia diagrams for zircon grains from massive charnockite sample NGB-1B, Nagercoil Block,
southern India. For analytical data see Tables 1 and 2.
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Nagercoil Complex in southernmost India that experienced strong
and pervasive granulite-facies metamorphism during the extensive
Pan-African event at about 540e580 Ma (Rajesh et al., 2011; Collins
et al., 2014). Details on the geology, zircon ages and Nd-Hf isotopic
systematics can be found in Kröner et al. (2014), and the SHRIMP
analytical data for two charnockite samples are shown in Table 1.
The results of the LA-ICP-MS analyses for zircons from the same
samples but a different sample mount are presented in Table 2.

First we illustrate and describe some of the zircons and their
CL-images. Grain (a) in Fig. 6 is of igneous origin, and some of the
original oscillatory zoning is preserved in several domains.
However, these magmatic domains exhibit recrystallization as
shown by dark grey zones (RC) that overprint the magmatic
zonation. Further recrystallization, probably associated with a U-
rich fluid phase is represented by almost black very low-
luminescent stripes that clearly cut the igneous zonation. The
youngest phase in this grain is represented by a dark grey banded
phase that surrounds the older domains and is most likely of late
metamorphic origin. It is likely that the complex texture of this
grain is 3-dimensional, but the interior of the grain is not visible. An
ion-microprobe analytical spot on the primary, igneous domain is
likely giving the age of magmatic crystallization of this zircon, but a



Figure 8. Comparison of SHRIMP II (a) and laser ablation ICP-MS data (b) shown in concordia diagrams for zircon grains from massive charnockite sample TB1, Trivandrum Block,
southern India. For analytical data see Tables 1 and 2.
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deep pit as produced by a laser is likely to sample at least two of the
above phases, and the resulting isotopic compositionwill represent
a mixture between several growth phases and will likely be
geologically meaningless.

Grain (b) is also of igneous origin and the original igneous
zoning in the light grey core domain is barely visible. Thismagmatic
core has at least three phases of recrystallization as shown by the
low-luminescent domain, the medium-grey domain and the highly
luminescent patch in the lower part of the core. Here again, a laser
beam would likely sample more than one phase of zircon growth.
Grain (c) shows a large domain of original magmatic zircon with
well-developed oscillatory zoning that is virtually “dissolved” by a
tongue of low-luminenscent high-Umaterial, most likely due to the
action of a fluid phase. Grain (d) is quite spectacular in that it
preserves a large finely oscillatory-zoned magmatic core, sur-
rounded by a broad, fairly homogeneous unzoned rim of likely
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metamorphic origin. These phases are cut by fluid-induced very
low-luminescent replacement material that is also present in small
specks within the magmatic phase. This relationship is similar to
that shown in Fig. 3a. It is difficult to judge from the CL image
whether the magmatic phase continues deep into the grain or
whether the interior is mainly composed of recrystallized zircon. In
any case, laser-ablation analysis is likely to sample more than one
phase.

Finally, there is the problem of dating metamorphic zircons that
may contain cores or fragments of inherited material. Fig. 6e
illustrates an example of one of the Indian charnockites where
near-spherical, multifaceted zircon of metamorphic origin include
fragments of older, igneous grains. Since the depth of such in-
clusions is not known it is possible that laser ablation will sample
such material and thus produce an age that will be too old. In
addition, as seen in the bottom grain of Fig. 6e, there may be several
phases of zircon growth related to a metamorphic event. The
complexity of the zircons discussed above underlines the need for
an analytical technique that only samples what is seen in CL images.

The effect of mixing of isotopic phases in zircon of the above
type is shown by the following examples. Charnockite NGB-1B is a
coarse-grained well foliated rock containing large igneous zircons
with well rounded terminations. SHRIMP II dating of carefully
selected igneous phases with oscillatory zoning yielded three
concordant analyses and three variable discordant results (Table 1)
that define a discordia line with a lower concordia intercept at
559 � 66 Ma (Fig. 7a). We interpret this as reflecting magmatic
crystallization of the concordant grains at 2067� 7Ma and Pb-loss,
probably combined with recrystallization during a pervasive high-
grade late Neoproterozoic event in the granulite terrane of south-
ern India (Collins et al., 2014). Zircons from the same sample
analyzed by LA-ICP-MS only provided discordant results (Table 2),
defining a widely dispersed array of analyses that can be fitted to a
similar discordia line as the SHRIMP data (Fig. 7b), but in view of
the considerable scatter in these results, both the upper and lower
concordia intercept ages have large errors. Nevertheless, the ages
obtained by both methods agree within their errors.

A more serious problem is shown by sample TB1, another
charnockite from southern India. Again the zircons are clearly of
igneous origin but show complex CL patterns. SHRIMP dating
(Table 1) yielded four concordant results with a mean 207Pb/206Pb
age of 2074.9 � 1.3 Ma (Fig. 8a). Three further discordant results
can, as in the previous sample, be explained as a combination of Pb-
loss and recrystallization during the high-grade late Pan-African
event. In contrast, the LA-ICP-MS analyses are all discordant
(Table 2, Fig. 8b) and again scatter considerably. A best-fit line
drawn through these data points results in an upper concordia
intercept age of 2175� 84Ma that is 100Ma older than the SHRIMP
age andmost likely reflects insufficient common Pb correction and/
or mixing of several zircon phases that did not all form during
magmatic crystallization or metamorphism but at other, unspeci-
fied times. This age is clearly erroneous. The lower-intercept age
naturally has a large error but is within the range of metamorphic
overgrowth as shown in Fig. 8a.

3. Conclusions

There is no doubt that LA-ICP-MS zircon geochronology has
considerable advantages over ion-microprobe analysis when
isotopically homogeneous crystals or detrital grains are dated
because it is fast, cheap and precise because of the large volume
ablated. However, we caution against the use of LA-ICP-MS dating
of zircons from high-grade metamorphic terranes where CL images
reveal complex internal textures resulting from multiple phases
of zircon growth and recrystallization. CL images often make it
possible to select specific phases for analysis, and as long as these
analyses reflect what can be seen in CL images, i.e. they do not
deeply penetrate the sample, such as analysis by high-resolution
ion microprobe, it may be possible to interpret these data
correctly. However, if the zircon is inhomogeneous in three di-
mensions, then LA-ICP-MS or conventional SIMS analysis samples a
mixed composition and is therefore not recommended. The same
problem may be encountered with Hf-in-zircon analyses of grains
from high-grade terranes with complex internal textures, and some
of the published strong variations in initial 3Hf isotopic values may
be due to this problem and wrong age assignment.
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Appendix. Analytical procedures

Zircon mounting and cathodoluminescence imaging

Heavymineral concentrates obtained from theWiley-tablewere
further purified by panning, and zircons were then handpicked and
mounted in epoxy resin together with chips of the zircon standard
M257 (Nasdala et al., 2008) in the Beijing SHRIMP Centre, Chinese
Academy of Geological Sciences. The mount was ground down and
polished so that the zircon interiors were exposed, and zirconswere
photographed under cathodoluminescence (CL) to enable easy and
best location on the mount during SHRIMP and ICP-MS analyses. CL
imaging was performed in the Beijing SHRIMP Centre, using a
Hitachi S-3000N scanning electron microscope (accelerating
voltage 9 kV, beam current 109 mA, pixel time 200; for high-
resolution images of Fig. 6 a pixel time of 400 was used).

Isotopic analysis

SHRIMP II zircon analyses were performed in the Beijing
SHRIMP Centre, Chinese Academy of Geological Sciences, and the
analytical procedures are detailed in Williams (1998) and Kröner
et al. (2012). Prior to each analysis, the surface of the analysis site
was rastered for 3 min, using the primary beam, to reduce or
eliminate surface common Pb. The reduced 206Pb/238U ratios were
normalized to 0.09101, which is equivalent to the adopted age of
561.3 Ma for standard M257. Pb/U ratios in the unknown samples
were corrected using the ln(Pb/U)/ln(UO/U) relationship as
measured in M257 and as outlined in Compston et al. (1992) and
Nelson (1997). The 1s error in the ratio 206Pb/238U during analysis
of all standard zircons during this study was 1.19%. Primary beam
intensity was 5.2 nA, and a Köhler aperture of 100 mmdiameter was
used, giving a slightly elliptical spot size of about 30 mm. Peak
resolution (at 1% peak height) was 5010, enabling clear separation
of the 208Pb-peak from the HfO peak. Analyses of samples and
standards were alternated to allow assessment of Pbþ/Uþ

discrimination. Raw data reduction and error assessment followed
the method described by Nelson (1997). Common Pb corrections
were applied using the 204Pb-correction method and assuming the
isotopic composition of Broken Hill, because common Pb is thought
to be surface-related (Kinny, 1986). The analytical data are



A. Kröner et al. / Geoscience Frontiers 5 (2014) 515e523 523
presented in Table 1. Errors given on individual analyses are based
on counting statistics and are at the 1s level and include the un-
certainty of the standard added in quadrature. Errors for pooled
analyses are at 2s.

The ICP-MS analyses were carried out on an Agilent 7500a in-
strument, connected to a Geolas-193 UV laser ablation system in
the State Key Laboratory of Continental Dynamics, Northwest
University, Xi’an. A 20 mm spot diameter was used with a laser
repetition rate of 6 Hz. The detailed analytical procedures are
described in Liu et al. (2007), and standards 91500 and GJ were
used for calibration. The analytical results are given in Table 2.
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