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Abstract 

Simple methods are presented to derive closed-form expressions for the errors involved in the Lagrange interpolation 
formula. As applications of this formula for the error in the interpolation, the corresponding errors in the quadrature 
formulae are also taken up. Few examples are considered for numerical experiments. @ 1998 Elsevier Science B.V. All 
rights reserved. 
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1. Introduction 

In many text books on numerical analysis, (see [2, 3]), the closed form for the error in Lagrange's 
interpolation formula, involving a given function f (x) ,  for x E [a,b], is derived by writing f ( x )  as 

f ( x )  = L,(x) + E,,(x), (1.1) 

where Ln(x) is the nth-order interpolation polynomial based on the nodal points Xo,X~ . . . . .  x,, with 
x0 = a < xt < x2 < " "  < x, = b and E,(x) is the error involved, which vanishes at the nodal points 
X/, J = 0, 1 . . . . .  n and is sought in the form 

En(x)=~n+,(x)r(x), (1.2) 

in which 7En_l(X ) denotes the product function as defined by 

~ , , + , ( x  ) = ( x  - xo  ) ( x  - x ,  ) . . .  ( x  - x ,  ) (1.3) 

and r(x) is an unknown function to be determined. 
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Then defining a function F(x )  as 

F(x )  = f ( x )  - L , (x)  - 7c,+l(x)r(x'), (1.4) 

for x' E (a,b), x' ~ x j , j =  1,2 . . . . .  n -  1, so that F ( x j ) = O = F ( x ' ) ,  for j = 0 ,  1 , . . . ,n  and by a repeated 
application of Rolle's theorem, (n + 1) times, we easily obtain that 

r(x)- f~.+l)(~) (1.5) 
(n+ 1)!' 

for some ~ E (a,b)  and f E C"+l([a,b]). 
An alternative approach (see [1]) to derive the above form of E,, as given by (1.2) and (1.5), 

is to look upon the error as a solution of an (n + 1 )th-order ordinary differential equation (ODE), 
with (n + 1) conditions prescribed. We have used the idea of Green's function technique, applicable 
to this ODE to obtain a closed form expression for E,(x),  without actually constructing the Green's 
function. The details of  this derivation are given in Section 2. 

In both the above descriptions of  the error formula, the function f ( x )  has been assumed to possess 
(n + 1 ) derivatives and thereby error bounds can be obtained by assuming that fl~+~)(x) is bounded 
by a constant M,, say, over the interval [a,b]. Then from relations (1.2) and (1.5), we get 

m. 
]E,(x)] ~< - - ] ~ z , + l ( x ) ] .  (1.6) 

( n +  1)! 

There are cases, where the function f ( x )  may not be differentiable (n + 1 ) times. In other words, 
the function f ( x )  may be differentiable only p times, say, for p<~n, or may not be differentiable at 
all, in which case the bound as given by (1.6) cannot be used. In this paper, for the former case, 
we have given the error bound, by first recognizing the error E,(x)  in the form 

En(x) = n,+1(x)f(x,  xo,...  , x , )  (1.7) 

and then utilizing some interesting properties of  the nth-order divided difference f ( x ,  xo,. . . ,xn),  
which can be easily proved. In the later case, that is, if f is not at all differentiable, but may just 
satisfy Lipschitz condition over [a,b], with the Lipschitz constant L, (i.e. I f ( x ) - f ( Y ) l  < L ] x - y ] ,  
Vx, y E (a,b)) ,  we have given a computable error bound. Also in some cases, where f may satisfy 
a special condition, called as "G-condition", (see [4]), we are still able to give an error bound and 
a detailed description about this has been given in Section 3. Before we proceed for any further 
study, we define the term "G-condition", as below. 

Definition. A function f ( x )  is said to satisfy the G-condition, if Vx, y , z  E (a,b), 3 G E ~ such that: 

I f ( x ) ( y  - z )  + f ( y ) ( z  - x) ÷ f ( z ) ( x  - Y)I < Gl(x - Y)(Y - z ) (z  - x)]. (1.8) 

A numerical example has been taken up to clarify the situation. 

In Section 4, we have used the ideas of Section 3, to get the error bounds in the various quadrature 
formulae. A numerical example is given in this context, for clarity purposes. 
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2. The Green's function approach 

From expression (1.1), we have that 

En(x) = f ( x )  - Ln(x). (2.1) 

Now, it is clear that the operator D n+~ , with D := d/dx, representing the ordinary differential operator, 
annihilates the Lagrange polynomial L,(x) ,  i.e. Dn+lLn(x)=O. Thus, operating by D n+l, on both sides 
of  relation (2.1) and noting that f ( x i )  = Ln(xj), for j = 0, 1 . . . . .  n, we arrive at the relations 

Dn+lE,(x ) = f~n+l)(x), (2.2) 
En(x/) = o. 

Using the idea of the well-known Green's function technique, we can express En(x) in the closed 
form as given by 

En(x)= Gn(x,s)f<n+l~(s)ds, x C  [a,b], (2.3) 

where Gn(x,s) is the Green's function of the operator D n+l, satisfying the conditions: 

(i) Dn+lGn(x,s) = ~(x - s), 
(ii) G(X/,S ) = O,j = O, 1 , . . . , n .  

On the assumption that Gn(x, s) maintains the same sign throughout the interval (a, b), we can express 
(2.3), in its simplified form, by using the mean value theorem of integral calculus (see [2, 3]), as 

En(x) = On(x)f~n+l)(~), ~ E ( a , b ) ,  (2.4) 

where 0n(x) is defined as 

F h 

On(x) = ] Gn(x ,s )ds  (2.5) 
/ a  

and satisfies the property that (cf. (i) and (ii), above) 

Dn+lOn(x ) = 1, 
0n(Xj) = 0. (2.6) 

The system in relations (2.6) can be solved, by assuming 0n(x) in the form 

We 

O n ( x ) = c o + c l x + . . . + c S +  

find that 

On(x) - 

xn+l 

( n +  1)!" 

~ n + l ( x )  

(n + 1)! 

Using relation (2.8) in relation (2.4), we get 

~n+, (x) ~ c (a,b) . En(x) f~n+l)(~)(n + 1)!' 

(2.7) 

(2.8) 

(2.9) 
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We could as well stop at relation (2.8), (after constructing the function ~gn(x)) and define a function 
Gg(x), for 2 E (a, b), 2 ¢ X/, J = 0, 1 . . . . .  n, such that 

C ~ ( x )  = E . ( ~ ) C , . ( x )  - E o ( x ) 0 . ( ~ ) .  (2.10) 

Now, it is clear that G d x j ) =  0, Gg(2)= 0 and hence by a repeated application of  Rolle's theorem, 
one arrives at the relation that 

D n+l G2(~) = 0, ~ E (a, b). (2.11 ) 

Using relations (2.11 ) in (2.10) and using the relations as given by (2.2) and (2.6), we easily derive 
that 

E.(2)  = f(~+')(~)On(2), (2.12) 

which is true for every 2E  (a,b). Thus, by using the relation in (2.8), we get the relation as given 
by (2.9). 

3. An approach for weaker classes of functions 

Normally, one may be interested in knowing the amount of  error incurred in the interpolation, 
even before interpolating the given data. In such cases, one uses the estimates of  the error, that are 
available. One such estimate of  the error is given by relation (1.6), which is based on a very strong 
condition that the function f ( x ) E  C"+l([a,b]). Now, as is clear, always we may not have a data, 
which has the above property. Suppose the function is differentiable p times, for p ~<n, then still an 
error bound can be obtained using the following art: 

From relation (1.7), we get 

IE~(x)I  = [ f ( x ,  Xo . . . .  , x n ) l l ~ . + , ( x ) l .  (3.1) 

By the principle of  mathematical induction, it can be easily proved that the nth-order divided dif- 
ference f ( x ,  xo , . . . ,xn)  can be expressed in the form as given by 

f ( x ,  Xo . . . . .  x,  ) = 
f (x, xo,. • . ,Xp-2,Xp-i  ) 

( x , _ , - x ~ ) ( X p _ l - x r + , ) . . . ( X , _ l - x n )  

f ( x ,  xo . . . . .  xp-2,Xp) -~ + . . .  
(x, ,  - x , _ ,  ) (x , ,  - x, ,+, ) . . .  (x,~ - x . )  

q f ( x .  xo . . . . .  xp 2 . x . )  ( 3 . 2 )  

( x .  - x , _  I ) ( x .  - x , , ) ' "  ( x .  - x . _ ,  ) '  

for any fixed p~> 1. For example, we can express f ( X ,  Xo,Xl,X2,X3) a s  equal to 

f (X, XO,Xl,X2,X3 ) : 
f (x, Xo, xl ) f (x, Xo, x2 ) f (x, Xo, x3 ) + + 

(x ,  - x2 ) (x ,  - x3 ) (x2 - x ,  )(x2 - x3)  (x3 - x,  )(x3 - x2 ) '  

by fixing p = 2 and n = 3. 
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It is interesting to note that the above representation of the nth-order divided difference is not 
unique. Since f is differentiable p times, we may express (3.2) in the form 

1 [ fIP)(~l ) 
f ( x ,  x o , . . . , x ° ) =  ~ L ( x p - 1 - x ~ ) ( x p _ ,  - x , , + , ) . - . ( x , , _ l  - x , )  

f ( P ) ( ~ 2 )  + ÷ . . .  
(x,,  - x~_ ,  )(x~ - x~+, ) . . .  (x~ - x , )  

f(P)(~,-p+l 
1 

) ] (3.3) 
+ (x .  - x~_  1 ) (x .  - x ~ ) . . .  (x,, - X ._ l  ) ' 

for some ~J,~2 . . . . .  ~,-t,+, E (a,b) . Now, assuming that, f Ip l (x )  is bounded on [a,b], by a constant, 
say, Alp, we get, 

Mp_~. Ix ~ 1 IE"(x)l~<~ I x ~ - , - x ~ l l x p -  X~+ll IX~_l x.I ]rr~+l (x)l. (3.4) 
p I , X p , . . , , X ~ j  } . . . . .  

Since, there is no unique way of representing the nth-order divided difference integers of sum of 
pth order difference ( p < n ) ,  for each such representation we get a bound for the error. 

Example 1. We consider a special example 

f ( x ) = x l x l ,  xc[-1 ,1] .  (3.5) 
It is clear that, f ( x )  is once differentiable and If '(x)l ~<2. By fitting a third-order Newton's inter- 
polation formula, we get 

3x 3 + x 
f 3 ( x )  - -  - -  ( 3 . 6 )  

4 

For some arbitrary point, say, x = ½, the exact error in the interpolation formula reads as ]E3(½)] = 
0.03125. Using the bound as given by relation (3.4), we get ]E3( / ) [  ~<0.9375, (M, = 2). 

We mention at this stage, that the following theorems have been proved in [4]: 

Theorem A. 1.1 ° a function f ( x )  satisfies the conditions: 

(i) f(k) c C([a,b]), k = O, 1 . . . .  ,n, 
(ii) f(") satisfies the Lipschitz condition with the constant Mn, on [a,b], then the bound IEn(x)l i.~ 

given to be 

M, lrc,+,(x)] 
]E,(x)] ~< (3.7) 

( n +  1)! 

and 

Theorem B. I r a  junction f (x ) satisfies the conditions: 

(i) .fik) E C([a,b]), k = O, 1 . . . .  ,n - 1, 
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(ii) f¢,-l)  satisfies the G-condition on [a,b], then the error IE,(x)l has the bound, as given to be 

IE,(x)l <. 2G I~z,,+,(x)] (3.8) 
(n + 1)! 

It is clear that, none of  the bounds given by (3.7) or (3.8), are applicable for the above example as 
in (3.5). 

It may so happen in practice, that f need not be differentiable at all. In such cases the bounds 
that are studied below, may come to the rescue. We assume that the given function satisfies the 
G-condition, on the interval [a,b]. From the relation (1.8), we derive that 

I f ( x ,  y , z ) l  <~ G, (3 .9 )  

where f ( x ,  y,z)  is the well-known second-order divided difference of  f (x ) .  From relation (3.2), we 
get for p = 2, that 

f (x ,  xo , . . . , x , )=  
f (x ,  xo,x,) 

(X 1 - - X 2 ) ( X  l - - X 3 ) ' ' ' ( X  1 - - X n )  

f ( x ,  xo,x2) + + . . .  
(x2 - x~ )(x~ - x3 ) . . . (x2 - x ,  ) 

f ( x ,  xo ,x , )  
4 (3 .10 )  

(x,  - x, ) (x ,  - x2 ) . . .  (x ,  - x°_ ,  ) 

Using relation (3.10) in (3.1) and assuming that f ( x )  satisfies the G-condition, we derive that 

IE,(x)[  ~ Gl~ ,+ , (x ) [  I x ,  - x 2 1 1 x ,  - x 3 1 .  . . I x ,  - x ~ l  ' 
XI, ,.;¢. 

<<. Glx2(x)],  n = 1. 

n>~2 

(3.11) 

If we assume that f satisfies the Lipschitz condition in (a,b),  with the Lipschitz constant L, we 
derive that 

IEn(x)l ~ Ll~ '+'(x) l  [x,,.x,...~x, [X o 

2L I£=(-x)-I I, n -- 1, ~< 
IX - -  X 0 

- x, llx0 - x 2 1 . . .  Ix0 - ) c ° l  ' 
n~>2 

( 3 . 1 2 )  

using a relation similar to that of  (3.10), for p = 1. 
For the sake of  completeness of  the present discussion, we give the error bounds for the case 

when the (n + 1) nodes xi (i = 0, 1 , . . . ,n )  are equidistant, i.e. xi =x0 + ih. 
From relation (3.4), we obtain 

]En(x)I KMphP [ (n -~  1/2 

P! k q=' 

2 
( q -  1 ) ! ( n - p + 2 - q ) !  + [ ( ( n -  p +  1)/2)!] 2 Ic°'+'(s)]' (3.13) 
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f o r n - p + l  even and 

]E,(x)]~< p! ( q - l ) ! ( n - p + Z - q ) !  ]~o,+,(s)], (3.14) 
[ q=l 

for n - p + 1 odd, wherein we have defined s = ( x -  Xo)/h and that 

= s ( s  - 1 ) - . . ( s  - n). 

Relations (3. l l ) give rise to the following results: 
For even n, we derive that 

[E.(x) I ~< 2Gh2lco.+~(s)[ 

<~ 2Gh 2 [oJ3(s)[, 

p=l ( P -  1 ) ! ( n -  p)! ' 

n = 2 ,  

n~>4, 

(3.15) 

For odd n, we derive that 

[¢,p~)/'2 2 1 J n >~ 3, 
[EAx)I ~ Gh2l~o.+~(s)[ (p  - 1)!(n - p)! + [(n - 1)/2!] 2 ' 

<. GhZ[coz(S)[, n = 1. (3.16) 

Similarly, for the case when n is even, we obtain from relation (3.12) that 

IE (x)l 
p=, ( p -  1 ) ! ( n - p + l ) !  

,] 
+ [(n/2)!]~ ' 

n>~2 (3.17) 

and for the case when n is odd, we obtain 

[g,,(x)l ~< 2Zh[~O,+l (s)[ n >~ 1 
L p=~ ( p - 1 ) ! ( n - p + I ) !  ' 

(3.18) 

For the example considered in relation (3.5), we see that relation (3.11) gives a bound IE3(½)] ~< 
0.46875 and the relation in (3.4) gives a bound, which is twice of this. Thus, it is clear that if 
the function f ( x ) =  xlx I is approximated by a third-order polynomial, or even higher, the previously 
known error bounds are not applicable, because of the fact that the given function is not differentiable 
p times , for p ~> 2, at the origin, in the interval [ -1 ,  1], or in any such interval which contains the 
origin. It is clear that the function f ( x )  satisfies Lipschitz condition with the constant L = 2. In this 
example G is computed to be 1, by a direct application of  the following theorem: 

Theorem C. I f  rip'(x) exists, O: [ a, b ] ~ ~ and O' (x ) satisfies Lipschitz condition with the constant 
L, then ~p(x) satisfies G-condition, with G = L/2. 
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Example 2. Consider the function 

f ( x )  = Ixl,x ~ [ -1 ,1] ,  

suppose that we fit a 4th-order Newton's forward interpolation polynomial as given by the relation 

7X 2 - -  4X 4 

f 4 ( x )  - -  
3 

3 Now, for some arbitrary point, say for x = 3, the exact error is calculated to be IE4(~)I = 0.0732. 
We observe that the function f ( x )  satisfies Lipschitz condition, with the Lipschitz constant L = 1, 
for x C [ -1 ,  1]. Using the error bound as given by relation (2.18), we obtain IE4(3)[ ~<0.3759, which 
is much more than the exact error. 

We must mention here that for the function f ( x ) =  Ix[, the previously known error bounds are 
not applicable, because of  the fact that f ( x )  is not differentiable at the origin in [ -1 ,  1]. 

In the next section, we have carried forward these ideas to the well-known Newton-Cotes formula 
(NCF), where we deal with equidistant points x~ = a + jh ,  j = 0, 1 . . . .  ,n, with b = a + nh. 

4. Error estimates in the quadrature formulae 

The error E, 0 in the quadrature formulae, based on an (n + 1 ) point interpolation formula, is 
generally estimated by integrating over the given interval, the corresponding error estimate of the 
interpolation formula. Thus, on integrating the relations as given by (3.4), (3.11) and (3.12) over 
[a, b], we get the estimates 

IE"~I~ . ~ Ixp_,-xpllxp_,-Xp+,l...LXp_,-x.l f I~.+,(x)ldx, 
X p  I ,Xp , . . . ,X j~  

(4.1) 

and 

IE°. I <. G ~-" Ix, - x211x, - x31--" IXl - x.I 
X l , X 2 ~ . . . , X n  

~< G 1~2(x)l dx, n = 1 

[rcn+l(x)[ dx, n>~2 

(4.2) 

IE~I~L ~ ixo_x, llxo_x21...lxo_x.i [~.+,(x)ldx, n>~2 
o , X l  , ...,XI~ 

2L 
~< ix, - x0~ Irc2(x)] dx, n = 1, (4.3) 

corresponding to the cases when the given function f ( x )  is such that (i) f ( x ) C  CP([a,b]),  for p<.n ,  
(ii) satisfies G-condition over [a,b], (iii) satisfies the Lipschitz condition, with the constant L over 
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[a,b]. For the sake o f  completeness, we give estimates (4.1), (4.2) and (4.3), when xj 's are such 
that XJ =x0  +jh ,  h = ( b -  a)/n, for j =  0, 1 . . . .  ,n. Thus, from relation (4.1), we get 

"~ p! 
2 l ]/o b 

( q -  1 ) ! ( n -  p +  Z - q ) !  + [ ( ( n -  p +  l)/2)!] 2 
I(Dn__I(S)I dx, (4 .4)  

for n - p + l  even and 

2 M p h P [ ~ " - ~  2)/2 
IE"~I ~< p---V- L ~=, (q - l )!(n - p ÷ 2 - q)! 

f f  I~o.+,(s)l at, 

for n - p + 1 odd. 
From relation (4.2), we get 

(4.5) 

L p = l ( p -  1)!(n - p)! 

eb 
<~ 2Gh2j, [co3(s)[ dx, n = 2, 

for n even and 

I~o.+,(s)l dx, n~>4 

(4.6) 

lEVI <~ ah 2 
(n-J ),,'2 2 1 

~ ,  (p  - 1)!(n - p)! [((n - 1)/2)!] 2 
+ Z b I~o.+,(s)l dx, n>~3 

b 
ah2J, l~o2(s)l dx, n = 1, 

for n odd. 
Similarly, the relation in (4.3) gives, for n odd, 

IE,~, I <~ 2Lh 
L P--' ( P -  1)!(n - p +  I)! 

and for n even, 

leo,,+t (s)l dx, n~>l 

(4.7) 

(4.8) 

IE,QI <~Lh [ ~  2 1 
Lp=l (p  - 1)!(n - p +  1)! + [(n/2)!] 2 

f f  [¢o,+l(s)] &r, n>~2. (4.9) 

Example  3. We consider the same function f ( x )  as before, i.e., f ( x ) =  xlxl, x E [ - 1 ,  1], giving 

/ I = f ( x )  dx = O. 
1 
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Also, if we fit a third-order Newton's forward interpolation formula and integrate over [ -1 ,  1], 
we get 

/3 = f3(x)  dx = 0 
1 

which is equal to the actual value. That is, if we employ Simpson's (3)th rule we get 13 = 0. Also, 
for this function, it can be easily verified that G =  1. The error estimates as given by relations (4.5), 

3 )th rule), gives, (n--3,  p - - 1 )  and the first of  relations (4.7), (i.e. the error estimate in Simpson's (~ 
respectively, 

16 lEVI (4.10) 

8 IE3 I (4.1 l) 

5. Conclusions 

We have given a new approach to derive the error term (in a closed form), in the classical 
Lagrange interpolation formula. We have also been able to give error bounds for the class of  
functions, which need not be (n + 1) times differentiable, as it has been required earlier. In short, 
we have given the error bounds for those class of  functions, which are only p times differentiable, 
for p ~< n. We have also been able to give error bounds, for even those classes of  functions, which 
are not differentiable at all. Though the error bounds may be much larger than the actual error 
incurred, in practice, it is observed that the data available to us, may not say anything about the 
differentiability aspects of  the function, in that range. In such cases our bounds are the only ones to 
provide some idea about the accuracy of  the interpolation formula used for approximating the given 
data. We have also examined the error estimates, for such weaker class of  functions, in the case 
of  quadrature formulae. A special numerical example is dealt with, showing the practical utility of  
such error bounds. 
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