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1. INTRODUCTION 

A weakly normal variety X can be characterized by the fact that any 
variety which is birationally homeomorphic to X is actually isomorphic to X. 
Various other characterizations of weakly normal varieties exist but to date 
there is no characterization from the point of view of local cohomology. It is 
well known that the vanishing of the first local cohomology groups with 
supports in the singular locus is a criterion for normality and it is natural to 
ask if there is a similar criterion for weak normality. 

In [ 71 this author and J. V. Leahy defined a generic type singularity for 
weakly normal varieties called the multicross. Briefly, a point .1’ E X is a 
multicross for X if the point y on X is analytically isomorphic to a point J,’ 
on X’ where X’ is the union of linear subspaces of afftne space all meeting 
transversally along a common linear subspace. For a weakly normal variety 
X the complement Z of the set of multicrosses is a closed subset of the 
singular locus of X and has codimension at least two [7], Theorem 3.81. We 
say a variety is C-weakly normal if the first local cohomology groups with 
supports in Z are identically zero. By a Hartogs-like result 
[ 71, Corollary 3.111 it was shown that a C-weakly normal variety is weakly 
normal but there are simple examples of weakly normal varieties that are not 
C-weakly normal [ 71, Example 4.5 1. 

In this paper we give, within the class of weakly normal varieties. a 
topological criterion for the vanishing of the first local cohomology groups 
with supports in an arbitrary closed subset of the singular locus. Our 
techniques also enable us to prove the converse of Hartshorne’s depth- 
connectivity result [5], Proposition 2.11 in the case of a reduced complete 
seminormal local ring with rational normalization. 
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2. PRELIMINARIES AND NOTATION 

By ring we mean a commutative ring with identity. If A is a ring, we let 
R(A) denote the Jacobson radical of A. We let R(A) denote the maximal 
spectrum of A and Spex(A) denote Spec(A) - Q(A). If (A, m) is a noetherian 
local ring and M is an A-module, we let &? denote the m-adic completion of 
M. If A is a ring, x E Spec(A) corresponds to the prime ideal p, and M is an 
A-module, we let M, = S-‘M where S = A - p,. For m E M we let m,y 
denote its image in M,. We let K(X) denote A,/p,A,. 

If a is an ideal of A, we let T,(M) = {m E MI a”m = 0 for some n). If A is 
noetherian, r,(.) is a left exact functor from the category of A-modules to 
itself. We denote its right derived functors by Ha(.). For more details one 
can consult [4 1. 

Let A be a ring and B be an overring integral over A. The seminor- 
malization of A in B, denoted B+A is defined by 

,tA=(bEBjb,EA.+R(B,),VxESpec(A)}. 

If B is the normalization of A, then we call BfA the seminormalization of A 
and denote it by ‘A. A ring A is said to be seminormal if A = + A. 

For some of the fundamental results on seminormality the reader can 
consult Traverso’s original paper [9] or [6]. We now recall Traverso’s 
notion of gluing. 

For a point x E Spec(A) we define :A by 

;A= (bEBIb,EA,+R(B,)}. 

We say that :A is obtained by gluing B over x and that A is its own gluing 
in B over x if A = .: A. The glued ring :A is characterized by that fact that 
is the largest subring A’ of B containing A such that 

(i) There is precisely one point x’ E Spec(A’) lying over X, and 

(ii) the canonical inclusion K(X) + K(x’) is an isomorphism. 

Suppose that A is a reduced noetherian ring with finite normalization B. 
Let p, ,..., pr denote the associated primes of B/A indexed so that htp, < ... < 
hfp,. Let xi ,..., x, denote the corresponding points of Spec(A) and let :A 
denote the ring obtained from B by gluing over xk for k = l,..., r. Let B” = B 
and define B’ = (B’-’ n ,t A) for i = l,..., r. Then B’ = njcifA and we have 
the following structure theorem. 

THEOREM 2.1 [6, Theorem 1.131. With notation and hJ,potheses as 
above, if A is seminormal but is not normal then: 

(i) B’ is obtainedfrom B’-’ bJ) gluing over xi, i= I,..., r. 



ON GRADE AND FORMALCONNECTIVITY 25 

(ii) Ass,~(B’/A) = (pi+, ,..., p,}, i = l,..., Y. 

(iii) A = B’ < ... < B” = B. 

We now recall some of Hartshorne’s results relating depth and connec- 
tivity. 

PROPOSITION 2.2 15. Proposition 2.11. Let A be a noetherian local ring. If 
depth A > 2, then Spex(A) is connected. 

THEOREM 2.3 [S, Theorem 2.21. Let (X, Fx) be a connected, local& 
noetherian scheme and let Y be a closed subset of X such that for each y E Y, 
the local ring ctfy,? has depth at least two. Then X- Y is connected. 

We now turn our attention to weakly normal varieties over a fixed 
algebraically closed field k of characteristic 0. When we use the term variety 
we assume that the underlying topological space is the set of closed points of 
a reduced, separated scheme of finite type over k. 

Let U be an open subset of a variety (X, F,). A k-valued function on I/ is 
said to be c-regular if it is continuous and is regular on the nonsingular 
points of Ii. Let Fx denote the sheaf of c-regular functions on X. 

We say that X is weakly normal at x E X if <,., = p>.,. X is said to be 
weakly normal if F;. = Fi. 

We recall that an affine variety is weakly normal if and only if its afflne 
coordinate ring is seminormal 16, Theorem 2.2 and (2.7)). Another useful 
fact about weakly normal varieties is the following result. 

PROPOSITION 2.4. Let X be a weakly normal variety and suppose that 
f: Y + X is a birational morphism and is a homeomorphism of the underlying 
topological spaces. Then f is an isomorphism of varieties. 

ProoJ It suffices to see that f - ' : X + Y is a morphism of varieties. Let V 
be any nonempty open subset of Y and let v, E f (V, Fy). Then cp 0 f ' is a 
continuous k-valued function on f(V) and is regular on some dense open 
subset off(V), hence is regular on f(V) [ 6, Proposition 2.61. Thus f - ' is a 
morphism and f is an isomorphism of varieties. 

3. MAIN THEOREM 

Before we state our main result we need to establish some terminology. 

DEFINITION 3.1. Let X be a variety and Y be a closed subvariety with 
ideal sheaf 3,. We say that X is formally Y-connected if for all points y E Y, 
Spec(Rx.,)” - V(Ty,,)̂  is connected. 
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THEOREM 3.2. Let X be a weakly normal variety and YC S(X) be a 
closed subvariety with ideal sheaf &. Then X is formally Y-connected if and 
only if H&,.(U, @xIC,) = 0 for every open subset U of X. 

ProoJ Since both properties are local in nature it suffices to assume that 
X is affme. Let A = Z(X, eV) and I = Z(X, &). Since Y c S(X) we know that 
ht Z = codim(Y, X) > 1 so that r,(A) = 0. 

Suppose that 0 = H:(X, Fx) ? H:(A). Then grade I> 2 and hence 
grade(ZA,,)A > 2 for every point y E Y. Therefore Spec(A,) - I’@!) is 
connected for all 4’ E Y by (2.3). 

Conversely, assume that X is formally Y-connected. Suppose to the 
contrary that H:(A) # 0. Then grade Z = 1 so that there exists an A-regular 
element a E Z such that Z is contained in the set of zero divisors for A/aA. 
Thus ZG p for some associated prime p of A/aA. Let B denote the 
normalization of A. We claim that p E AssA(B/A). If ht p = 1, then A, is not 
normal (as Y c S(X)) and hence p is a minimal prime of B/A. If ht p > 2, 
then depth A, = 1 implies that p E Ass,~(B/A) [3, Theorem 5.61. 

Let S = (z E Spec(A)I p, E Ass,~(B/A) and htpL<htp} and let 
A’ = nTEs fA. Then p is a minimal prime for A’/A by (2.1) so that we may 
choose an element f E A - p such that 

Ass,l(A;P,)= IPA,}. 

Let X’ be the affine variety determined by A’ and let p: X;- X, be the 
induced morphism. Then p is finite and birational but is not an isomorphism. 
By (2.4) there exists a point x E X, such that pP’(.u) = (x,,..., xd} where 
d >, 2. We note that x E V(pA,) c Y n Xf. 

Let R = A, and R’ = (A:)“. Then R’ is complete in the (m,l n . . . n mJ- 
adic topology. Hence R’ z RI x . . . x R; where R( = (A!+)’ for i = I...., d. 
Since (R: R’) = (A,: A:.)” = pR we know that Spec(R’) - V(pR’) and 
Spec(R) - V(pR) are homeomorphic. Hence Spec(R’) - V(ZR’) and 
Spec(R) - V(ZR) are homeomorphic. However the former is the disjoint 
union of the nonempty closed subsets Spec(R I) - V(ZR ;),.... 
Spec(R;) - V(ZRA). contradicting the fact that Spec(R)- V(ZR) is 
connected. Hence grade Z > 2 as asserted. 

EXAMPLE 3.3. Let U. X, Y, Z, W be transcendentals over k and let A = 
k I 0: X. Y, Z. WI/Q, n Qz where Q, = (X’Z- W’, II- W) and 
Q2 = (U. X. Z). Let U, x, J’, z and n’ denote the images of U, X, Y, Z and W, 
respectively, in A. Then A is weakly normal [6, Example 3.71 and its 
normalization B = kjx,y. w/x] x k[ z, ~1 is the product of two polynomial 
rings. Then (A: B) = (x. 11. r~) = p is a prime ideal of A and as an ideal of B 
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is (s) x k[z. W] f’k[,u.y. W/S] x (w). Let p be the point in Spec(A) 
corresponding to m,, = (u, ~,y, z. w), let mP, = (x,4’, W/X) x k[z, W] and mPI = 
k[?c, .v, W/X] x (z, w). Finally let R=a,,R’=I?,?l?,,xti,?. Then 
Spec R - V(pR) is disconnected as it is homeomorphic to 

Spec(R’) - V(pR’) z Spec(B,,) - V(pi,,) Ll Spec@,!) - V(pg,?). 

Also grade p = 1 since p = (A: (I, 0)). 
Let A be a noetherian ring and let B denote its normalization. A is said to 

have rational normalization if A/n n A = B/n for every maximal ideal n of 
B. 

For a complete local ring with rational normalization the techniques of 
(3.2) yield the following result (cf. [ 1, Theorem 3.1). 

PROPOSITION 3.4. Let (A, m. k) be a reduced complete noetherian local 
ring \tYth rational normalization B. Assume that A is seminormal of 
dimensiort at least two. Then depth A > 2 if and only if Spex(A) is connected. 

Proof: If depth A > 2, then Spex(A) is connected by Hartshorne’s result 
(2.2). 

Assume that Spex(A) is connected but that depth A < 2. Since A is 
complete. B is a finite A-module [8, Corollary 2, p. 2341. Then 
m E Ass,~(B/A) as in the proof of (3.2). 

Let S = (z E Spec(A)(p; E AssA(B/A) - {m)} and set A’ = nZ,, ,fA. 
Then A is its own gluing in A’ over m and Ass,~(A’/A) = {m) by (2.1). 

Since A has rational normalization we know that A/m = A’/m’ for each 
maximal ideal m’ of A’. Thus by Traverso’s description of gluing, Q(A’) = 
im , . . . . . m,l where d>2. Thus A’zA{x...xA:, where Aj=(A&)A and 
Spex(A’) is the disjoint union of the nonempty closed subset 
Spex(A;)..... Spex(A;). 

However Spex(A’) and Spex(A) are homeomorphic since A-,= A,! for all 
f E m. This is a contradiction so that depth A > 2. 
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