View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Embedding First-Order Tableaux into a Pure
Type System

Michael Franssen

Co-operation Centre Tilburg and Findhoven Universities
Department of Mathematics and Computing Science
FEindhoven University of Technology
P.O.Bozx 513, 5600 MB EINDHOVEN, THE NETHERLANDS
FE-mail mfranssen@usa.net

Abstract

We consider Pure Type Systems (PTSs) extended with a mechanism for parametric
terms. In this paper we introduce a PTS called AP— utilizing this extension. AP—
exactly corresponds to first-order predicate logic, unlike the usual embedding of
this logic in PTSs. Next, we show how tableaux-based proofs can, in a structured
way, be converted into A-terms representing proofs in AP—. The result is an in-
teractive theorem prover combined with powerful tableaux-based automatic proof
construction.

Key words: Conversion Algorithms, First-Order Predicate Logic,
Pure Type Systems, Tableaux

1 Introduction

The proof system AP— and the conversion algorithm presented in this pa-
per form the basis for a proof construction system intended for use within
a programming tool. This programming tool, the final goal of our project,
must support the derivation of correct programs in a Dijkstra/Hoare like cal-
culus [1]. Deriving programs in such a calculus involves proving many logical
formulas (proof obligations), hence the quest for correct programs becomes a
quest for correct proofs.

The quest for correct proofs has been addressed (among others) by de Bruijn
by creating systems that can mechanically check the validity of proofs: the Au-
tomath systems [11]. Later, many systems have been classified in a framework
called Pure Type Systems by Berardi [3] and Terlouw [12]. The connection
between these systems and various logics is described by Geuvers in [7].

Modern implementations of such systems do not only verify proofs, but also

(© 1998 Published by FElsevier Science B. V. Open accessunder CCBY-NC-ND license

https://core.ac.uk/display/82578564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

A LA AN T AL N

help to interactively construct proofs, e.g. Coq [5], LEGO [9], Yarrow [13].
However, many of the proof obligations are simple and hence, their proofs
should be constructed automatically to allow the programmer to concentrate
on the more difficult ones. Unfortunately, automatic proof construction is not
easy in these systems [6].

Aiming at a higher degree of automatic proof construction, we looked at
both tableaux and resolution methods as well as algebraic systems. Tableaux
seemed to be the natural choice, since

* They support full first order predicate logic, unlike algebraic proof systems.

o They follow the syntax of the formula, unlike resolution, hence it is conceiv-
able to construct a natural deduction proof from a closed tableau.

To easily support interactive theorem proving, we embed tableaux based the-
orem provers in a PTS. The system AP— and the conversion algorithm form
exactly this: an interactive theorem prover in which automatically generated
proofs can be safely used.

In section 2 we present the framework of Pure Type Systems and an extension
of this framework by T.Laan [8]. Next, we use this extension to construct the
system AP— which is the formalism of the interactive theorem prover. We
argue that our system AP— corresponds exactly to first-order logic, unlike
other type systems known from the literature. In section 3 an algorithm is
presented that translates in a structured way tableau based proofs into A-terms
of our system AP—. This allows us to use in AP— automatically generated
proofs from a tableau-based theorem prover. The algorithm is formalized in
section 4 and properties of the converted proofs are described in 5.

2 Pure Type Systems

The framework of Pure Type Systems (PTSs) is a systematic description of
many typed A-calculi found in the literature. Due to the Curry-Howard-
deBruijn isomorphism between propositions and types, many of these A-calculi
can also be used to represent propositions and their proofs. Also, this iso-
morphism makes PTSs very suitable for interactive theorem proving, since
manipulating proofs corresponds to manipulating syntactical terms in a PTS.

This has led to systems like Coq, LEGO, Yarrow etc.

In this section we first give the definitions of PTSs and demonstrate the propo-
sitions-as-types isomorphism by an example. Then we introduce an extension
of the PTS-framework as described in [8]. In this section we use the idea of ex-
tending PTSs with parameters to construct the system AP— that corresponds
exactly to many-sorted first order logic.

2

A LA AN T AL N

2.1 The definition of PTSs

A PTS is specified by a triple (S, A4, R) of sets, where A C S xS and R C
S x 8§ x S. The elements of § are called sorts, the elements of A are called
axioms and the set R contains (II-formation) rules. Given a specification of

a PTS, say (S, A, R), the terms, contexts and type judgment relation of the
PTS are defined as follows:

Definition 2.1 (Terms) Given a set V of variables, the set T' of PTS terms
is defined by the following abstract syntax:

To=S|V|AV:T.T|OV:T.T|TT

Definition 2.2 (Contexts) A context is a list of the form xy : Ay,... @, :
A,, where z; € V and A; are terms as defined in 2.1 forv = 1,....,n. The
empty context is denoted as <>. By convention we use I')A,... as meta
variables for contexts. IfI' = x1 : Ay,..., 2, : A, is a context and v € V, then

v is called T'-fresh if v & {xq,...,2,}.

Definition 2.3 (Type judgment relation) The type judgment relation de-
seribes the actual PTS. A judgment always has the form I' = A 1 B, where A
and B are terms and ' is a context. ' = A : B should be read as: ’A has
type B in context I'". The type judgment relation = is defined by the rules in
figure 1. We give a brief description of each rule.

start This is the only rule without premises in a PTS. It supplies, starting
from the axioms in A, basic typing judgments from which all the other typing
Judgments are derived.

intro Intro is used in a much more general sense than the intro-rule in natural
deduction. In natural deduction intro allows one to add assumptions to the
context. In a PTS intro allows one to add assumptions, constants (which
in a PTS are equal to variables), functions and propositional variables (in-
cluding predicates) to the context. This depends on the form of A. The type
of the introduced item x depends on s, which is the type of the type of x.

weaken Weaken is needed to preserve existing derivations in extended contexts.
It states that everything that can be derived in a certain context can also be
derived in a more extended context.

[I-form This rule allows the construction of function types, predicates, uni-
versal quantifications ete. The set of rules R of a PTS determines the ways
in which Il-form can be used. Actually, the set R states which abstractions
are allowed.

[I-intro One needs this rule to actually construct terms of a type built with the
previous rule. Without this rule, we could only assume that there are terms
of this type by using intro.

A LA AN T AL N

[I-elim Once a term with a l-type is constructed or assumed, it can be used
to create a term with a more concrete type. The ll-elim rule, also referred
to as the application rule, instantiates the body of an abstract 1l-type by
substituting a term for the bound abstract variable.

conversion States that we don’t distinguish 3-equal types. In several PTSs a
term A can have type B where B can be rewritten to B' by G-reduction. In
the propositions-as-types isomorphism, B and B’ then represent the same
propositional formula (we will come back to this in our example below) and
hence, A is a proof of B' just as well as it is a proof of B. To support this
switch of representation the conversion rule is needed. B=gB’ is read as B
is B-equal to B', which means that there exists a B" such that B and B’ can
both be reduced to B"” by B-reduction. A problem with the conversion rule is
that it does not affect the term A, which makes type-checking more difficult.

With this definition of PTSs, we are ready to demonstrate the propositions
as types isomorphism. We consider the PTS for first order predicate logic as
proposed by Berardi (presented in definition 5.4.5 of [2]). The specification is:

S = {*87 *p, kg, U, Dp}
A= {(*57 DS)? (*pv Dp)}

R = {(*57 *s5 *f)v (*87 *fs *f)v (*87 Dpv Dp)v (*pv *ps *p)v (*87 *p, *p)}

The sorts S have the following intended meaning: Terms of type *; correspond
to sets of multi-sorted first order logic. Terms of type *; are themselves types
of functions. Terms of type *, represent propositional formulas. Terms of type
O, represent types of predicates. Note that since (*,,0,) € A, propositional
formulas are predicates with arity 0.

We introduce the following shorthand: ' A : B : s, with s € § denotes that
I'FB:sand ' A: B. Then, if we have ' = A: B : %,, A corresponds to a
term with a value in the set B. If we have I' = A : B : x; then A is a function
with type B. If I' = A : B : %, then A is a proof of the propositional formula

B.IIT'FA:B:0, then A is a predicate.

To make these correspondences more visible, we will use different notations for
various [I-types. A term (Ilx : A.B) formed by H-form with (*,,*,,%,) € R is
denoted as A = B. A term (Ilz : A.B) formed with rule (x4, *,, %,) is denoted

as (Vo : A.B). A proof of (Vo : U.(Px = Px)) can then be derived as depicted
in figure 2.

A LA AN T AL N

start <> Fsl:s2 (sl,s2) e A

' A:s

intro z is ['-fresh

a:AFz: A

'FA:BLEFC:s

weaken z is ['-fresh

I'Ne:CFA:B

'FA:sl1a:AF B:s2
[I-form (sl,s2,83) € R

I'F (Mz:A. B) : s3

e:AFb:BT'FB:s

II-intro
I'F (Aa:A. D) - (Ia:A. B)
) 'FF:(Ila:A.B)T'Fa: A
I-elim
't Fa: Blx:=d]
. I'FA:BTFB:s B=sb
conversion

r-A:B5

Fig. 1. The type judgment derivation rules of a PTS.
The example above is quite dull, but already requires a derivation of 17 lines.
Equally, we could derive the type judgement:
U:sg, P:(Ha:Ux,),Q : (Ila: Ux,) F
(Ap: (Vo : U(Px = Qx)).(Aq: (Vo : UPx).(Ax : Upx(qz))))
t (Vo : U(Pxr = Q) = (Vo : U.Px) = (Vo : U.Qx))
However, then the derivation becomes no less than 47 lines. The reason for

this is the necessity to derive type correctness judgements (II-form) and the
step-by-step usage of weakening (see lines 3,4,5).

In A-calculus the proof object (Ax : U.(Ap : Px.p)) is a function that returns for
each element @ of U a proof of Pz = Px. This proof is given by (Ap: Px.p),

5

A LA AN T AL N

1 <> g @ O, (start)

2U @ % FU : %, (intro on 1)

3 <> bk, 0 O, (start)

AU :*g Fx, O, (weaken on 1,3)

5U i xg,2:U b, O, (weaken on 2,4)

6 U : g F(Ilz : Uky) 0 O, (II-form on 2,5)

TU :xg, P (e : Uxy,) FP (L : Usy) (intro on 6)

8 U g, P (s Uxyp) FU : %, (weaken on 2,6)

QU 14, P (Ha: Uskp),z: U FP (L : Usy) (weaken on 7,8)
10U s #g, P (llz : Usy),2: U Fa: U (intro on 8)
11U 45, P: (Ilw : Uky), 2 : U FPx @ %, (I1-elim on 9,10)
12U 2 %5, P: (Ilz : Usy), 2 : Uyp: Peb-Px ot %, (weaken on 11,11)
13U %5, P:(Ile: Uxy),2:Up: Pabp: Px (intro on 11)
14U %5, P (Ilz : Usy),2: U FPx = Px : %, (Il-form on 11,12)
15U t#g, P (Ilz : Usy),2: U F(Ap : Pz.p) : Px = Pz (ll-intro on 13,14)
16 U : 5, P (Ilz : U.x,) F(Vz : U.(Pz = Pz)) : *,(ll-form on 8,14)
17U : %5, P (Ilz : U.xy) F(Az : U.(Ap: Pz.p)): (ll-intro on 15,16)

(Vo : U.(Pz = Puz))

Fig. 2. A sample derivation in a Pure Type System.

which in turn is a function that given a proof of Pz returns a proof of Px
(the identity function). Intuitively the existence of such a function is indeed
a proof of (Va : U.(Px = Pux)). Given a context I', a proof term p and
a proposition P, an entire derivation of I' = p : P can be automatically
constructed (see e.g. [4]), hence the proof-term represents the entire proof.
This has two advantages:

(i) Even if a large and complex proof system is used, correctness of the proofs
is assured by type-checking. This algorithm is relatively simple and can
be proved to be correct.

(ii) Communicating proofs corresponds to communicating a syntactical proof
term. This proof term can then be checked by another proof system based
on A-calculus.

A LA AN T AL N

Note that the set U and the unary predicate P occur explicitly in the context
of the PTS. Hence, the functions and predicates of the logic can be modeled
by elements in the context and do not need to be defined beforehand. This
allows flexible logics to be handled by proof systems based on PTSs.

However, this PTS does not model first order logic exactly. There are a few
differences that are not always desirable:

(i) Constants, like the natural number 0, are modeled in a context by I'y, N :
*5,0 1 N, I'y. Therefore they are indistinguishable from ordinary variables
like the = : U in line 9 of our example derivation.

(ii) Functions themselves have types. More precisely, a binary function f
with arguments from sets A and B yielding a value from C' has type
(Il : A.(Ily : B.C)). If f is applied to an argument a : A then fa has
type (Ily : B.C'), while in first order logic f applied to just one argument
does not have a meaning at all. The same holds for predicates.

(iii) A single proposition corresponds to several types. For instance: in con-
text U : *5, P @ *,,a : U the term P represents a predicate of the logic
with arity 0, but in this context the same predicate is represented by
(Ax : U.P)a. This is why the rule conversion is needed: a proof p : P
should also be a proof of (Az : U.P)a, since it represents the same propo-
sition. The problem appears to be caused by the rule (*,,0,, 0,), which
allows the creation of such A-terms. This rule is absolutely necessary,
however, to construct types of predicates of arities larger than zero.

2.2 FKxtending PTSs with parametric constants

The awkward properties of the PTS for first order logic given in the previous
part of this section can be avoided by using an extension of the PTS definition
described in [8]. The extension introduces parametric constants added to the
terms of a PTS. A parametric constant is kept in the context and can only be
used if all the required parameters are supplied at once. This corresponds to
the way predicates and functions are used in first order logic. PTSs extended
with parametric constants are called PPTSs.

A PPTS is specified by a tuple (S, A4, R, P), where S, A and R are the sorts,
axioms and rules of a regular PTS and P is a subset of & x §. P is called the
set of parametric rules.

Definition 2.4 (Parametric Terms) Given a set V of variables and a set
C' of constants, the set Tp of PPTS terms is defined by the following abstract

7

A LA AN T AL N

syntaz:

Tp =8 | |% | AV Tp.Tp | IIv . Tp.Tp | Tpr | C(Lp)

Lp == ¢ |< Lp,Tp >

The lists of terms produced by Lp are usually denoted as < Ay,..., A, > or
Aq, .. AL instead of < .. << e, Ay >, A > LA, >

Definition 2.5 (Contexts of PPTSs) A context is a list of the form x; :
Ay, oo, x, 0 A, such that every A; is a term as defined in definition 2.4
and either x; € V or x; has the form c(y; : Bi,...,Ym : Bn), where ¢ € C,
Y1y s Ym € V and By,..., B, are terms as defined in definition 2.4. A
constant ¢ is called I'-fresh if it does not occur in I

Definition 2.6 (Type judgment relation of a PPTS) The type judgment
relation of a PPTS uses all rules of a reqular PTS (see figure 1) and two addi-
tional rules to make use of parametric constants. Let A denote 1 : By,...,x, :
B, and A; denote x1: By,...,x;_1: B;_1. Then the additional rules are:

I'Eb:BIU,A;FBi:s; AR A:s (s,8) €P

C-weaken
[e(A)AFbL: B ¢ is I'-fresh
Iy, e(A):A Ty b Bilay = bj]é;ll fori=1,....n
C-application Ty, c(A):A, Ty F A:s ifn=20

Ui e(A)A Do b e(b, ..o ,) + Al = b5]7_,

We give a brief description of the additional rules:

C-weaken The C-weaken rule allows us to add a parametric constant to the
context. In contrast to other extensions of the context this rule does not
allow us to type the parametric constant itself, while the intro-rule (used for
reqular extensions of the context) allows the typing of every newly added
item.

C-application Since a parametric constant itself cannot be typed in a PPTS
it cannot be used with the usual ll-elim (sometimes called application) rule.
The rule C-application allows us to use a parametric constant, but only if
we supply all the required arguments at once. This corresponds to the use
of functions and predicates in first order logic: these too can only be used
after all the arquments have been supplied. The special premise for the case
n =0 is needed to assure that the context I'y,c(A) : A, 'y is a valid one.

8

A LA AN T AL N

2.3 AP—: A PPTS for First Order Logic

We are now ready to introduce the system AP—. AP— is a PPTS that exactly
models many sorted first order predicate logic.

Definition 2.7 (AP—) AP— is the PPTS specified by:

S = {,%p. 0,5, 0,}

A = {(*5,0,), (%5, 0,) }
Ro= {(ps #p%p)5 (%5, %y)
P = {(ke, %s), (4, Tp) }

Note that the sort *;, used by Berardi to model function types, is not present
in AP—. Also, the only rules in AP— are those corresponding to implication
and universal quantification.

Functions and predicates are now added to the context by using the rule
C-weaken, using parametric rule (*g,*,) for functions and (%, 0,) for predi-
cates. A function or a predicate can only be used to form a proposition using
the rule C-application. For instance, a function of arity 2 can only be used
when 1t is applied to 2 arguments at once.

Essentially the propositions-as-types isomorphism and the intended meanings
of the sorts of this system are equal to those of the regular PTS of Berardi.
However, AP— corresponds more closely to first order logic:

(i) Constants are now modeled by a parametric constant with zero param-
eters. The natural number 0 is then modeled in a context as '}, N :
#5,0() : N, I'y. Since the 0 is now a constant from C, it cannot be con-
fused with a parameter from V, since it is not possible to build a term
like (AO() : N.X).

(ii) Functions themselves do not have types. A binary function f with argu-
ments from sets A and B yielding a value from ' occurs in the context
as f(x: A,y: B):C. Since f is a parametric constant with 2 arguments
it cannot be applied to a single argument a : A. The same holds for
predicates.

(iii) A single proposition corresponds to a single type. The rule (x4, 0,,0,)
allowing the typing of lambda terms representing predicates is no longer
available. Therefore, a predicate P is no longer represented by (Ax :
U.P)a, where U corresponds to a set of first order logic and a : U. The
rule conversion is no longer needed, allowing a simpler and faster imple-
mentation.

A LA AN T AL N

Proofs of these properties are given by T. Laan and the author of this paper
in [10].

So far, we were considering minimal first order logic with only implication
and universal quantification. To model negation, conjunction, disjunction
and existential quantification we would need a more powerful PTS allowing
higher order constructs. However, this would destroy our close correspondence
with first order logic. Another possibility is to further extend the abstract
syntax of A-terms and adding more rules to the type judgment relation. These
extended A-terms can then easily be translated into regular A-terms of a PTS
allowing higher order logic. However, our proof system itself then keeps its
close correspondence to first order logic. The required extensions are given in
appendix A.

Except for the extensions for propositional constructs, we also need a context
containing the set-, function- and predicate symbols of the logic. This context
is defined as follows:

Definition 2.8 (I';) Let L be a logic with set symbols Uy, ..., U, function
symbols f1,.... f, and predicate symbols Py, ..., P,. Furthermore, let 'V, ; de-
note the set symbol representing the type of the jth argument of function f;
and let V; denote the set symbol representing the type of the result of function
fi. Finally, let T; ; denote the set symbol corresponding to the type of the j'th

arqgument of predicate P;. Then the context Iz, modeling this first order logic
in AP—, is defined as:

Uy koo, Up ook,
Filey :Vig, oo mg Vi) s Voo, ol s Vo, oo, 0 Vi,) 0 Va,
Pr(ay:Toa,eesae s Thmy) vk, oo, Po(wr s Toay oo cyae, 2 Tory) s %y

s; and r; are the arities of f; and P; respectively.

The close correspondence of logic £ to AP— with context 'z is given by the
following theorems:

Theorem 2.9 ' = U : *, if and only if U is a set symbol of L.

Theorem 2.10 For any set symbol U of L we have Uz =t : U if and only if
t is a term in L whose type is represented by set symbol U.

Theorem 2.11 I'; = P : x, if and only if P is a proposition of L.

Theorem 2.12 For any proposition P of L we have U'y = p: P if and only
if =c P.
10

A LA AN T AL N

Theorems 2.9 till 2.11 are proved by induction on the term structure. The
completeness part of theorem 2.12 follows from the algorithm we present in
the next section: the method of tableaux is complete and every closed tableau
can be converted to a proof in AP— in context I'..

The converse is also true: if I' is a valid context of AP—, then there exists a
logic £ such that theorems 2.9 till 2.11 with I'; replaced by I' hold. Hence,
AP— has a one-to-one correspondence with many-sorted first-order predicate
logic (for a proof see [10]).

To present the conversion algorithm, we need the following two theorems:

Theorem 2.13 Let A, A : B, Ay be a legal context (i.e. it is possible to
derive Ay, A: B, Ay %, :0;). Then Ay, A: B,AyF A: B.

Theorem 2.14 Let Ay, A : B, A, be a legal context such that Ay, Ay is also
a legal context. If Ay, Ao b C : D then Ay, A: B,A; - C: D.

Theorem 2.13 is proved by induction on the length of the context, using intro
and weaken rules. Theorem 2.14 is proved by induction on the derivation of

C:D.

3 From Closed Tableaux to A-terms

In this section we will describe an algorithm to convert closed tableaux into A-
terms of AP—. These A-terms can easily be transformed into A-terms of other
PTSs, provided that these other PTSs are powerful enough. AP— merely
states the minimal requirements for the conversion.

The closed tableau may be produced by any tableau-based theorem prover,
allowing us to use existing tableau-based theorem provers as a module in an
implementation of AP—. This yields more powerful automated theorem prov-
ing than the usual exhaustive search used in PTSs (e.g. Coq’s ’Auto’ and
[sabelle’s fast_tac’ tactics.). If there is enough trust in the correctness of the
implementation of the automatic theorem prover we can also use a special
token to encode that the proof can be constructed using the automated theo-
rem prover (ATP). We then do not have to actually convert the tableau and
store the large A-term that is the result of converting the tableau. The ATP
can then reconstruct the tableau and convert it into a A-term on request; for
instance, if we want to communicate our proof to somebody using a different
theorem prover based on A-calculus.

Using A-terms to encode proofs allows us to concentrate on the structure of
the conversion: for similar rules of the tableau method, similar conversion
steps are performed. The classes of similar rules of the tableau method are
the usual a-, G-, v- and d-rules. In figure 3 for each class the structure of the

11

A LA AN T AL N

rules is depicted. Our conversion algorithm will have one case for every class
of rules. Without A-terms, every rule would have to be treated explicitly.

||P

special

6 new variable of type U ¢ a term of type U
Fig. 3. Structure of the different classes of tableau rules.

We will now show how to model each step of a tableau-proof of the formula
A in AP—. We assume that we have the basic context I'z (definition 2.8)
to model the first order logic. Also we will intensively use the axiomatic
extension for first-order constructs given in appendix A. In the conversion
algorithm the labels of the tree correspond roughly to a context for AP—.
The propositions in a label are used as types of assumptions in the context,
but we will also have a few variables. To modify contexts of AP— we will
intensively use theorem 2.13 and theorem 2.14.

3.1 Converting the Initial Tableau

The tableau starts with a node labeled by —=A and the initial context for
AP— will be I'z, p : = A. The tableau represents a contradiction derived from
—A and hence, converting the tableau should result in a contradiction ¢ : L
derived from the context I'z,p: 7 A. The validity of A in AP— is then given
by 'z b elassic A (Ap: = A.c) : A (see appendix A). (classic A (Ap: —A.c) is
read as A is proved in classical logic by (Ap : = A.c), which actually is a proof
of == A4).

3.2 Converting Applications of Tableau Rules

Derivation of the contradiction is done recursively: first a contradiction is
derived from the successor nodes and then a term is constructed for the current

12

A LA AN T AL N

node. How this final construction of the contradiction is done depends on the
tableau rule used to extend the node. We denote the context corresponding
to the current node as I'z, Ay, 2 : X, Ay, where X is the proposition to which
the tableau rule was applied. The context of the successor-node(s) will be
stated for each case separately. For each type of node we will describe the
construction of the contradiction.

3.2.1 Conversion for the Special Rule
Our first case will deal with the special tableau-rule:

—|—|P
P

We have to derive a contradiction ¢ from a node with context I'z, Ay o :
—— P, A,. For the successor-node we create the corresponding context I'z, Ay,
A, p: P. By recursion, we derive a contradiction ¢ from this successor node,
hence we have 'z, Ay, Ag,p : P F ¢ :L. Then the contradiction we seek is
derived as follows:

(0) T Ay, Agp: PEc:L induction

(1) Te, A, A2 F(Ap: Pe): P=1 I-intro on (0)

(2) Tz, Ajyo: (P=1)=1,AsFo:(P=1)=_L1 see remark below
and theorem 2.13

(3) I'g,Ayo: (P=L1)=1L, Ao (Ap: Pec):L Il-elimon (1) and (2)

Remark: Formally we also need to derive types in order to apply the PTS-
rules. For instance in step (2), we use theorem 2.13 to insert a variable of the
type (P =L1) =L in the context, but for this we also need a type judgment
saying 'z, Ay (P = 1) = 1: %,. Such a type judgment can be derived by:

(a) Te, Ak P, Theorem 2.11 and P € #&

(b) Tes A p: PHL:x, Axiom of AP— and repeated weaken
(¢) Toy Ak P =1t x, I-form on (a) and (b)

(d) Tg,Ar,p: (P =1)FL:+, Axiom of AP— and repeated weaken
() To, Ak (P =1)=L:%, Iformon (c)and (d)

For reasons of space and simplicity, we will omit these type derivations. Usu-

13

A LA AN T AL N

ally it will be evident that the types are correct.

3.2.2 Conversion for a-rules

Before we present the general scheme to convert a-rules, we describe the con-
version of the typical case of an a-rule: conjunction. The tableau rule is:

PAQ
P,Q

We have to derive I'z, A0 0 PAQ,Ay B 7 : 1. To the successor node,
we assign the context 'z, Ay, Ag.p @ Pg @ (). By recursion, we get from
this context a contradiction: 'y, A1, Ao,p @ Pog: Q F ¢ :L. To derive a
contradiction from the original context we use the following derivation:

(0) I'g, A1, Agyp:Pg:QFc:L induction

(1) Tz, Ay Agyp: PE(Ag:Quc): Q =L II-intro on (0)

(2) Ty, A, A0k (Ap: P(Aqg:Q.0)): P = (Q=1) I-intro on (1)

(3) I'g,Ar,0: PANQ,AsFo: PAQ theorem 2.13

(4) I'g,A,0: PAQ, Ay mq(0) : P A-elimy on (3)

(5) I, A,0: PAQ, Ay F (o) 1 Q A-elimy on (3)

(6) Ty Ay,0: PAQ,AoE (Ap: P.(Aq:Q.c)): P= (Q =L1) theorem 2.14 on (2)
(7) Tz, Ao PAQ,AsE (Ap: P.(Aq:Q.c)) (o) : Q =L Tl-elim on (4,6)

(8) I'g,Aj,0: PAQ, Ay E (Ap: P(Aq:Q.c)) mi(0) m2(0) :L Il-elim on (5,7)

Hence, the solution is given by 7 := (Ap: P.(Aq: Q.c)) m1(0) m=2(0).
In the general case we consider the tableau rule:

E(P,Q)
Ei(P), E5(Q)

We have to derive a contradiction from the context 'z, A1, 0 1 E(P,Q), As.
To the successor node we assign the context 'z, Ay, Ag, p: E1(P),q: Ea(Q)
from which we get a contradiction ¢ : L by recursion. In order to obtain a con-
tradiction from the original context, we use a modified version of the scheme
given above: Steps (0) till (2) remain unchanged, except that P has now be-
come F;1(P) and @ has become F3(Q). In step (3) we introduce o : E(P,Q),
but to continue with steps (4) till (8) we need I'z, Ay,0 @ E(P,Q), Ay F 7

14

A LA AN T AL N

E1(P) A Ex(Q). How this is accomplished depends on the actual rule that is
applied. For every rule we can construct a derivation and hence a A-term to
fill in for 7. The derivation of the individual A-terms is omitted here, but the
results are given in table 1. In this table, the conversion function 7' gives for
a term o : E(P,Q) a term with type Ei(P) A E3(Q). Since steps (4) till (8)
are performed after using the conversion function 7', the appearances of o in
these steps become T'(0). Note that the conversion functions produce A-terms
and that they are not A-terms themselves.

E(P,Q) |Ei(P)Ey(Q)[(0) : Ey(P)A Ey(Q) with o: E(P,Q)

PAQ Q o
-(P = Q) =@ |(classic P (Ap:=Po(Aq: P.pq@)),(Aqg: Q.o(Ap: Pgq)))
S(PVQ)| <P | =@ [Po (ingl (PN Q) p)Aq: Quo (injr (P Q))

P
P

Table 1
Conversion functions for a-rules.

3.2.3 Conversion for (-rules

Again, we start with the typical case as an example. For f-rules the typical
case is a disjunction, which has the tableau rule:

PVQ
PlQ

If the current context is I'z, Aj,0 @ PV (), Ay then its successors will have
contexts 'z, Ay, Agyp 0 P oand Tz, Ay, Ag g 0 () respectively. From the
successor contexts we have derived contradictions ¢; and ¢; by recursion.
The derivation of a contradiction from the current context is then given by:

0z, A1, Agyp: Pyt L induction

(DT, A1, A0, q: Qb et L induction

)z, A1, Ax - (Ap: Piey) : P=1 l-intro on (0)

Bz, A, Agk (Mg :Que2) 1 Q =L [-intro on (1)

Dz, A1, Ag (Ap: Pier)V(Ag: Q.c2)) : (PV Q) =L V-elim on (2,3)

Bz, A1,0: PVQ, Ao PVQ theorem 2.13

6)['z,A1,0: PVQ, Ayt ((Ap: Pcr) V(Mg : Q.ca)) theorem 2.14 on (4)
(PVvQ)=1

(M, A1,0: PV QA (Ap: Pcr)V(Aq: Q.c2)) o:L Il-elim on (5,6)
15

A LA AN T AL N

To convert the general case we consider the tableau rule:

E(P,Q)
Ei(P) | E2(Q)

We use the same strategy we used for a-rules: The derivation above is used as
a scheme in which we have to replace P by F1(P) and @ by Ey(@Q) in lines (0)
to (4). Instead of introducing o : PV @ in line (5), we introduce o : E(P,Q)
and then insert a derivation between line (5) and line (6) that results in a A-
term of type F1(P)V E3(Q). These A-terms depend on o and can be obtained
by applying a transformation function T' to o. The transformation functions
for f-rules are given in table 2 but their derivation is omitted. Again, the
transformation functions T' produce A-terms but are not A-terms themselves.

E(P,Q) |E(P)|Ex(Q)|T(0) : Ex(P)V E5(Q) with o1 E(P,Q)

~(PAQ)| =P | =Q |cassic (<P =Q) M : ~(=P V =Q).

r(injl (=P V =Q) (Ap : Par(injr (=P V =Q)

(Aq: Q.0(p,q)))))

P=Q | -P | Q |dassic(~PVQ)Ar:~(=PVQ).

r(injl (=P Vv Q) (Ap: Pr(injr (=P V Q) (0 p))))

PVQ P Q o

Table 2
Conversion functions for S-rules.

The remainder of the general case (the new lines (6) and (7)) then follows
easily.

3.2.4 Conversion for ~v-rules

The typical case for a vy-rule is existential quantification, with the tableau rule:

do : U.P
Py

The current context is 'z, Ay, 0 @ (Jz @ U.P),Ay. For ~-rules we have to
extend the context more than for the other cases: we do not only add p: P
to the successor’s context, but also a fresh variable § : UU. The successor’s
context then reads 'y, Ay, Ay, 8 : U;p : P. By recursion we have derived a

16

A LA AN T AL N

contradiction ¢ from this context. A contradiction from the current context
is derived as follows:

0z, A1, A0, 0:Up: PHc:L induction
(W2, A1, Ag,0: U (Ap: Pc): P=1 l-intro on (0)
)Lz, A1, Ag = (A U.(Ap: Pc)) : (V8 : U.(P =1))ll-intro on (1)

Bz, A1, Ay O (2 : UP) (A U.(Ap: Pc)) 3-elim on (2) for L
:(Jz:UP) =1L
Dl Av,0: (Fz : UP), Ay o: (Fz: U.P) theorem 2.13
BG)lz,Ary0: (Fz : UP), Ay <O (Fz - UP) (A : U.(Ap: P.c)) theorem 2.14 on (3)
:(Jz:UP)=1
6)[z,Ar,0: (Fz : UP), Ay (O (Fz : U.P) H-elim on (4,5)

(A :U.(Ap: Pc)))o:L

Like before, we use the above derivation to obtain a scheme for the general
case. The tableau rule is:

LU, P)

E'(P)g
First, we replace P in the derivation above by E'(P)§ in lines (0) to (2). In
line (3), P is replaced by just E'(P) , which is allowed, since the occurrences
of in P that were bound within E(U, P) are now explicitly bound by the
Jdx : U... occurring before E'(P). Next, we change the intro in line (4) to an
introduction of o : E(U, P). Finally, we insert a derivation of a A-term of type
(Ja : U.E'(P)) between line (4) and line (5). Also like before, these A-terms

are given by a transformation function 7' . The transformation functions for
~-rules are given in table 3.

E(U,P) |E'(P)|T(0): (3x: U.E'(P)) with o: E(U,P)
(3z:UP)| P |o
~(Va : U.P)| =P |classic (3x : U.~P) (A : =(3x : U.=P).
oAz : Uclassic P (Ap : =P.r(inj (32 : U~P) p x))))

Table 3

Conversion functions for v-rules.

17

A LA AN T AL N

3.2.5 Conversion for d-rules

In case of d-rules the most typical example is the rule for universal quantifi-
cation, with tableau rule:

Vao:U.P
Vo :UP, P

Given the current context I'z, Ay 01 (Vo : U.P), Ay and the term ¢ used to
extend the tableau, we construct for the successor node the context I'z, Ay, 0
(Vo : U.P),Ay,p : PP. Note that the original universal quantifier is still
present in this context. After the contradiction ¢ has been derived from the
successor’s context by recursion we derive a contradiction from the original
context as follows:

())F,C,Al,
I,

2,

3, Ay, o
)

)

Ag,p: PP el induction
F(Ap: Pr.c): PP =L Il-intro on (0)
Ay Fo: (Ve :UP) theorem 2.13
Ayt U theorem 2.10
AyFot: P? -elim on (2,3)
F(Ap:Pre)(ot):L Tl-elim on (1,4)

),
P), A
),
),
28] VAN P),
P), A

(
(
(
(
(
(5)L'c, Ay, 0

To make this derivation suitable for the general case, consider the rule:

E(U, P)
E(U, P), E'(P);

We replace (Vo : U.P) by E(U, P) and PP by E’'(P)7 in the entire derivation.
We then have to insert a derivation of a term of type (Va : U.E'(P)) from
o: E(U, P) after line (2). The resulting A-term of this derivation is given by
the transformation functions T given in table 4.

EWU,P) |E'(P)|T(o): (Vo :U.F'(P)) with o: E(U, P)
(Ve:UP)| P |o
=(Ja: U.P)| =P |(Ax:U(Ap: P.o (inj (3x: U.P) p x)))

Table 4
Conversion functions for §-rules.

18

A LA AN T AL N

3.3 Conversion of Closed Leafs

Recursion ends when we convert a leaf of the tableau. At a leaf we cannot
use a contradiction derived from successor-nodes, since there are no successor-
nodes. However, at a closed leaf we have a context in which both a variable
of type P and a variable of type =P occur. In AP— negation is modeled by
implication and L. Hence, in the context I'z, Ay, p: P, Ay, p' : =P, A3z we can
derive the contradiction p'p.

4 Formalizing the Algorithm

The conversion algorithm can also be described as a function C from closed
tableaux to A-terms. Although this allows us to formally prove correctness
of the conversion, we chose for the previous presentation since it is more
descriptive in how the A-terms are obtained. For the sake of completeness, we
will now illustrate how the formal definitions are constructed.

Definition 4.1 (Conversion function ') Let C :Closed Tableauzr — T be
the conversion function defined as

C(T) = classic P (A\p : =P.C'(Tz,p: —P;T))

where L(T) = {=P} is the label of the root of the tableauw and C’ :Contextsx

Tableauz— T is an auzxiliary function to be defined neaxt.

Definition 4.2 (Auxiliary function C') The auziliary function C" :Contex-
tsx Tableauz— T is defined recursively by distinction between the type of rule
applied to the label of the tableaux. The definition of C" follows the description
given in the presentation of the algorithm.

We can now state the correctness of the algorithm by the following theorems.
We only give sketches of the proofs of these theorems, since the proofs can
easily be extracted from the presentation of the algorithm.

Theorem 4.3 (Correctness of contradictions) Let T' be a closed tableau
and let T be a valid context such that L(T)={P e P|dpeV(ip: P)eTl}
(P denotes the set of propositional formulas of the logic L) then

Ik C(D,T):L

Proof. By induction on the depth of the tableau. We will need cases for leafs
and cases for nodes to which the special rule or one of the a-, 3-, §- or y-rules
is applied. It is easy to verify that the premises hold for the recursive function
calls. O

19

A LA AN T AL N

Theorem 4.4 (Correctness of conversion) Let T' be a closed tableau for

P (i.e. L(T)={-P}) then

Lo FC(T): P

Proof. See converting the initial tableau and use theorem 4.3. O

5 Properties of Converted Tableaux

The converted proof may be much longer than a proof that is constructed
directly in AP—. For example: a direct proof of R = R in AP— looks like
I (Ap: Rp): R= R. However, if we convert the tableau

$ e
X

we get a much larger M\-term. Following the algorithm, we start with 'y F
classic (R = R) (Mo : (R = R).c) : R = R, where ¢ is a contradiction
extracted from the initial context I'z, 0 : =(R = R). The tableau rule applied
is an a-rule for implication. The resulting A-term of this conversion in general
is (Ap @ FEi(P).(Aq : E2(Q).c")) mi(T(0)) ma(T(0)) :L, in which ¢ is the
contradiction derived from the successor’s context I'z,p: E1(P),q: F2(Q). If
we fill in P, @), Ey, E; and T for our example and then use the result of
this substitution in our proof, we get

classic (R = R) (Ao: ~(R= R).(Ap: RAq:—~R.c)

m(classic R (Ap : = R.o(Aq: R.pgR)),(Aq: R.o(Ap: R.q)))

ma(classic R (Ap : = R.o(Aq: R.pgR)),(Aq: R.o(Ap: R.q)))): R= R
and ¢ is the contradiction derived from the context 'z, p : R,q : =R. This

corresponds to the context in which the tableau gets closed by R and —R,
hence the algorithm gives us ¢ = gp. The final proof then reads:

Iz F cassic(R= R) (Ao:=(R= R).(Ap: R.Aq:~R.qp)
m(classic R (Ap: = R.o(Aq: R.pgR)),(Aq: R.o(Ap: R.q)))
ma(classic R (Ap: = R.o(Aq: R.pgR)),(Aq: R.o(Ap: R.q)))): R= R

Note that if during the construction of a tableau needless steps are taken these
will also be translated, which makes matters even worse.

20

A LA AN T AL N

This ’explosion’ of the proof term is certainly a drawback of this proof method.
However, we do not need to really convert each proof. We can use a short
representation in a A-term to indicate that the required term can be found
with the tableau prover built in the system. We can then construct the A-term
on request, by reconstructing the tableau and then convert it according to the
method we described.

A Type Judgement Rules for additional Logical Con-
structs

L -intro <> F Lok,

I'Fp: LT'F P,

falsum
' pP: P
o I'kEpi(P=L)=>1
classic
I'tclassic P p: P
't P: '-0Q:
A-form i Qi

I'EPAQ: %,

I'Fp:PTFq:QTFPAQ: %,
I (pq): PAQ

A-1ntro

‘ I'Ep:PAQ
A-elim;
I'Fm(p): P
I'kFp: PA
A-elimy P ©
I'Fma(p): Q

21

A LA AN T AL N

'FPix, 'FQ:x,

V-form
I'EPVQ:x*,
) I'Fp:PTEPVQ:*,
V-1ntroq
I'Fangl (PVQ)p: PVQ
) I'Fqg: QT FPVQ:*,
V-1ntrog

I'Fingr (PVQ)g: PVQ

I'tp:P=RI'tq: Q=R
I'E(pVe) : (PVQ)=R

V-elim

I'FU %, I'a:UF P,
I'E(Jz:U.P): %,

d-form

I'kFp:PPTE(3e:UP): %,
I'ting (3x:UP)pt:(Jx:U.P)

d-intro

I'FQ:*, ' (3Fe:UP):*, 'Fp:Va:U(P=Q))
'FO (Fa:UP)p:(3x:UP)=Q

d-elim

Negation does not occur in the rules above, but we can model the negation of
P by P = 1. For convenience we will denote this as = P.

Adding all the rules above makes AP— a relatively large system compared to
usual PTSs. This does not mean that the system is truly more complex: the
rules for A, V and J appear in groups with each a form, intro and elim part.
There may be many rules, but they are not difficult to verify.

References

[1] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey - part 1. ACM
Transactions on Programming Languages and Systems, 3(4):432-483, October
1981.

22

A LA AN T AL N

[2] H.P. Barendregt. Lambda Calculi with Types, volume 2 of Handbook of Logic
in Computer Science, chapter 2, pages 118-310. Oxford Science Publications,
1992.

[3] S Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of
constructions and the other systems in Barendregt’s cube. Technical report,
Dept. of Computer Science, Carnegie-Mellon University and Dipartimento
Matematica, Universita di Torino, 1988.

[4] L.S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking algorithms
for pure type systems. In Henk Barendregt and Tobias Nipkow, editors, Types
for Proofs and Propositions: International Workshop TYPFES’93, volume 806
of LNCS, pages 19-61, Nijmegen, May 1993. Springer-Verlag 1994.

[5] Coq. The Coq proof assistant. In URL: http://pauillac.inria.fr/coq/,
1997.

[6] Michael Franssen. Tools for the construction of correct programs: an overview.
Technical Report Report 97-06, Eindhoven University of Technology, 1997.

[7] J.H. Geuvers. Logics and Type Systems. PhD thesis, Catholic University of
Nijmegen, 1993.

[8] T. Laan. The Fvolution of Type Theory in Logic and Mathematics. PhD thesis,
Eindhoven University of Technology, 1997.

[9] LEGO. The LEGO proof assistant. In URL: http://www.dcs.ed.ac.uk/
home/lego/, 1997.

[10] Twan Laan and Michael Franssen. Embedding first-order logic in a pure type
system with parameters. Submitted for publication.

[11] Rob Nederpelt, Herman Geuvers, and Roel de Vrijer, editors. Selected Papers on
Automath, volume 133 of Studies in Logic and The Foundations of Mathematics.
Elsevier, 1994.

[12] J Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Technical
report, Department of Computer Science, University of Nijmegen, 1989.

[13] Jan Zwanenburg. The Yarrow home page. In URL: http://www.win.tue.nl/
cs/pa/janz/yarrow/, 1997.

23

