
p � �
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Embedding First�Order Tableaux into a Pure
Type System

Michael Franssen

Co�operation Centre Tilburg and Eindhoven Universities

Department of Mathematics and Computing Science

Eindhoven University of Technology

P�O�Box ���� ��		 MB Eindhoven� The Netherlands

E�mail mfranssen�usa�net

Abstract

We consider Pure Type Systems �PTSs� extended with a mechanism for parametric
terms� In this paper we introduce a PTS called �P� utilizing this extension� �P�
exactly corresponds to �rst�order predicate logic� unlike the usual embedding of
this logic in PTSs� Next� we show how tableaux�based proofs can� in a structured
way� be converted into ��terms representing proofs in �P�� The result is an in�
teractive theorem prover combined with powerful tableaux�based automatic proof
construction�

Key words
 Conversion Algorithms� First�Order Predicate Logic�
Pure Type Systems� Tableaux

� Introduction

The proof system �P� and the conversion algorithm presented in this pa�
per form the basis for a proof construction system intended for use within
a programming tool� This programming tool� the �nal goal of our project�
must support the derivation of correct programs in a Dijkstra�Hoare like cal�
culus ��	� Deriving programs in such a calculus involves proving many logical
formulas
proof obligations�� hence the quest for correct programs becomes a
quest for correct proofs�

The quest for correct proofs has been addressed
among others� by de Bruijn
by creating systems that can mechanically check the validity of proofs� the Au�
tomath systems ���	� Later� many systems have been classi�ed in a framework
called Pure Type Systems by Berardi �	 and Terlouw ���	� The connection
between these systems and various logics is described by Geuvers in ��	�

Modern implementations of such systems do not only verify proofs� but also

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82578564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Franssen

help to interactively construct proofs� e�g� Coq ���� LEGO ���� Yarrow ��	��
However� many of the proof obligations are simple and hence� their proofs
should be constructed automatically to allow the programmer to concentrate
on the more di
cult ones� Unfortunately� automatic proof construction is not
easy in these systems ����

Aiming at a higher degree of automatic proof construction� we looked at
both tableaux and resolution methods as well as algebraic systems� Tableaux
seemed to be the natural choice� since

� They support full �rst order predicate logic� unlike algebraic proof systems�

� They follow the syntax of the formula� unlike resolution� hence it is conceiv
able to construct a natural deduction proof from a closed tableau�

To easily support interactive theorem proving� we embed tableaux based the
orem provers in a PTS� The system �P� and the conversion algorithm form
exactly this� an interactive theorem prover in which automatically generated
proofs can be safely used�

In section � we present the framework of Pure Type Systems and an extension
of this framework by T�Laan ���� Next� we use this extension to construct the
system �P� which is the formalism of the interactive theorem prover� We
argue that our system �P� corresponds exactly to �rstorder logic� unlike
other type systems known from the literature� In section 	 an algorithm is
presented that translates in a structured way tableau based proofs into �terms
of our system �P�� This allows us to use in �P� automatically generated
proofs from a tableaubased theorem prover� The algorithm is formalized in
section � and properties of the converted proofs are described in ��

� Pure Type Systems

The framework of Pure Type Systems �PTSs� is a systematic description of
many typed �calculi found in the literature� Due to the CurryHoward
deBruijn isomorphism between propositions and types� many of these �calculi
can also be used to represent propositions and their proofs� Also� this iso
morphism makes PTSs very suitable for interactive theorem proving� since
manipulating proofs corresponds to manipulating syntactical terms in a PTS�
This has led to systems like Coq� LEGO� Yarrow etc�

In this section we �rst give the de�nitions of PTSs and demonstrate the propo
sitionsastypes isomorphism by an example� Then we introduce an extension
of the PTSframework as described in ���� In this section we use the idea of ex
tending PTSs with parameters to construct the system �P� that corresponds
exactly to manysorted �rst order logic�

�

Franssen

��� The de�nition of PTSs

A PTS is speci�ed by a triple �S�A�R� of sets� where A � S � S and R �
S � S � S� The elements of S are called sorts� the elements of A are called
axioms and the set R contains ���formation� rules� Given a speci�cation of
a PTS� say �S�A�R�� the terms� contexts and type judgment relation of the
PTS are de�ned as follows	

De�nition ��� �Terms� Given a set V of variables� the set T of PTS terms
is de�ned by the following abstract syntax�

T 		
 S j V j �V 	 T�T j �V 	 T�T j TT

De�nition ��� �Contexts� A context is a list of the form x� 	 A�� � � � � xn 	
An� where xi � V and Ai are terms as de�ned in ��� for i
 �� � � � � n� The
empty context is denoted as ��� By convention we use ��� � � � as meta
variables for contexts� If �
 x� 	 A�� � � � � xn 	 An is a context and v � V � then
v is called ��fresh if v �� fx�� � � � � xng�

De�nition ��� �Type judgment relation� The type judgment relation de�
scribes the actual PTS� A judgment always has the form � � A 	 B� where A

and B are terms and � is a context� � � A 	 B should be read as� �A has
type B in context ��� The type judgment relation � is de�ned by the rules in
�gure �� We give a brief description of each rule�

start This is the only rule without premises in a PTS� It supplies� starting
from the axioms in A� basic typing judgments from which all the other typing
judgments are derived�

intro Intro is used in a much more general sense than the intro�rule in natural
deduction� In natural deduction intro allows one to add assumptions to the
context� In a PTS intro allows one to add assumptions� constants 	which
in a PTS are equal to variables
� functions and propositional variables 	in�
cluding predicates
 to the context� This depends on the form of A� The type
of the introduced item x depends on s� which is the type of the type of x�

weaken Weaken is needed to preserve existing derivations in extended contexts�
It states that everything that can be derived in a certain context can also be
derived in a more extended context�

��form This rule allows the construction of function types� predicates� uni�
versal quanti�cations etc� The set of rules R of a PTS determines the ways
in which ��form can be used� Actually� the set R states which abstractions
are allowed�

��intro One needs this rule to actually construct terms of a type built with the
previous rule� Without this rule� we could only assume that there are terms
of this type by using intro�

�

Franssen

��elim Once a term with a ��type is constructed or assumed� it can be used
to create a term with a more concrete type� The ��elim rule� also referred
to as the application rule� instantiates the body of an abstract ��type by
substituting a term for the bound abstract variable�

conversion States that we don�t distinguish ��equal types� In several PTSs a
term A can have type B where B can be rewritten to B� by ��reduction� In
the propositions�as�types isomorphism� B and B� then represent the same
propositional formula �we will come back to this in our example below� and
hence� A is a proof of B� just as well as it is a proof of B� To support this
switch of representation the conversion rule is needed� B��B

� is read as B
is ��equal to B�� which means that there exists a B�� such that B and B � can
both be reduced to B�� by ��reduction� A problem with the conversion rule is
that it does not a�ect the term A� which makes type�checking more di	cult�

With this de�nition of PTSs� we are ready to demonstrate the propositions
as types isomorphism� We consider the PTS for �rst order predicate logic as
proposed by Berardi �presented in de�nition ����� of 	
��� The speci�cation is

S � f�s� �p� �f ��s��pg

A � f��s��s�� ��p��p�g

R � f��s� �s� �f�� ��s� �f � �f�� ��s��p��p�� ��p� �p� �p�� ��s� �p� �p�g

The sorts S have the following intended meaning Terms of type �s correspond
to sets of multi�sorted �rst order logic� Terms of type �f are themselves types
of functions� Terms of type �p represent propositional formulas� Terms of type
�p represent types of predicates� Note that since ��p��p� � A� propositional
formulas are predicates with arity ��

We introduce the following shorthand � � A B s� with s � S denotes that
� � B s and � � A B� Then� if we have � � A B �s� A corresponds to a
term with a value in the set B� If we have � � A B �f then A is a function
with type B� If � � A B �p then A is a proof of the propositional formula
B� If � � A B �p then A is a predicate�

To make these correspondences more visible� we will use di�erent notations for
various ��types� A term ��x A�B� formed by ��form with ��p� �p� �p� � R is
denoted as A� B� A term ��x A�B� formed with rule ��s� �p� �p� is denoted
as ��x A�B�� A proof of ��x U��Px� Px�� can then be derived as depicted
in �gure
�

�

Franssen

start �� � s� � s� �s�� s�� � A

intro
� � A � s

�� x�A � x � A
x is ��fresh

weaken
� � A � B � � C � s

�� x�C � A � B
x is ��fresh

��form
� � A � s� �� x�A � B � s�

� � ��x�A� B� � s	
�s�� s�� s	� � R

��intro
�� x�A � b � B � � B � s

� � ��x�A� b� � ��x�A� B�

��elim
� � F � ��x�A� B� � � a � A

� � Fa � B
x �� a�

conversion
� � A � B � � B� � s B��B

�

� � A � B�

Fig� �� The type judgment derivation rules of a PTS�

The example above is quite dull but already requires a derivation of �� lines�
Equally we could derive the type judgement�

U � �s� P � ��x � U��p�� Q � ��x � U��p� �

��p � ��x � U��Px� Qx�����q � ��x � U�Px����x � U�px�qx����

� ��x � U��Px� Qx��� ���x � U�Px�� ��x � U�Qx��

However then the derivation becomes no less than �� lines� The reason for
this is the necessity to derive type correctness judgements ���form� and the
step�by�step usage of weakening �see lines 	����

In ��calculus the proof object ��x � U���p � Px�p�� is a function that returns for
each element x of U a proof of Px� Px� This proof is given by ��p � Px�p�

�

Franssen

� �� ��s � �s �start�

� U � �s �U � �s �intro on ��

� �� ��p � �p �start�

� U � �s ��p � �p �weaken on ����

	 U � �s� x � U ��p � �p �weaken on ����

 U � �s ���x � U��p� � �p ���form on ��	�

� U � �s� P � ��x � U��p� �P � ��x � U��p� �intro on
�

 U � �s� P � ��x � U��p� �U � �s �weaken on ��
�

� U � �s� P � ��x � U��p�� x � U �P � ��x � U��p� �weaken on ���

�� U � �s� P � ��x � U��p�� x � U �x � U �intro on �

�� U � �s� P � ��x � U��p�� x � U �Px � �p ���elim on �����

�� U � �s� P � ��x � U��p�� x � U� p � Px�Px � �p �weaken on ������

�� U � �s� P � ��x � U��p�� x � U� p � Px�p � Px �intro on ���

�� U � �s� P � ��x � U��p�� x � U �Px� Px � �p ���form on ������

�	 U � �s� P � ��x � U��p�� x � U ���p � Px�p� � Px� Px ���intro on ������

�
 U � �s� P � ��x � U��p� ���x � U��Px� Px�� � �p���form on ����

�� U � �s� P � ��x � U��p� ���x � U���p � Px�p�� �

��x � U��Px� Px��

���intro on �	��
�

Fig� �� A sample derivation in a Pure Type System�

which in turn is a function that given a proof of Px returns a proof of Px
�the identity function�� Intuitively the existence of such a function is indeed
a proof of ��x � U��Px � Px��� Given a context �� a proof term p and
a proposition P � an entire derivation of � � p � P can be automatically
constructed �see e�g� �	
�� hence the proof�term represents the entire proof�
This has two advantages�

�i� Even if a large and complex proof system is used� correctness of the proofs
is assured by type�checking� This algorithm is relatively simple and can
be proved to be correct�

�ii� Communicating proofs corresponds to communicating a syntactical proof
term� This proof term can then be checked by another proof system based
on ��calculus�

�

Franssen

Note that the set U and the unary predicate P occur explicitly in the context
of the PTS� Hence� the functions and predicates of the logic can be modeled
by elements in the context and do not need to be de�ned beforehand� This
allows �exible logics to be handled by proof systems based on PTSs�

However� this PTS does not model �rst order logic exactly� There are a few
di�erences that are not always desirable�

�i	 Constants� like the natural number
� are modeled in a context by ���N �
�s�
 � N���� Therefore they are indistinguishable from ordinary variables
like the x � U in line � of our example derivation�

�ii	 Functions themselves have types� More precisely� a binary function f

with arguments from sets A and B yielding a value from C has type
�x � A��y � B�C		� If f is applied to an argument a � A then fa has
type �y � B�C	� while in �rst order logic f applied to just one argument
does not have a meaning at all� The same holds for predicates�

�iii	 A single proposition corresponds to several types� For instance� in con�
text U � �s� P � �p� a � U the term P represents a predicate of the logic
with arity
� but in this context the same predicate is represented by
��x � U�P 	a� This is why the rule conversion is needed� a proof p � P
should also be a proof of ��x � U�P 	a� since it represents the same propo�
sition� The problem appears to be caused by the rule ��s��p��p	� which
allows the creation of such ��terms� This rule is absolutely necessary�
however� to construct types of predicates of arities larger than zero�

��� Extending PTSs with parametric constants

The awkward properties of the PTS for �rst order logic given in the previous
part of this section can be avoided by using an extension of the PTS de�nition
described in ���� The extension introduces parametric constants added to the
terms of a PTS� A parametric constant is kept in the context and can only be
used if all the required parameters are supplied at once� This corresponds to
the way predicates and functions are used in �rst order logic� PTSs extended
with parametric constants are called PPTSs�

A PPTS is speci�ed by a tuple �S�A�R�P	� where S� A and R are the sorts�
axioms and rules of a regular PTS and P is a subset of S �S� P is called the
set of parametric rules�

De�nition ��� �Parametric Terms� Given a set V of variables and a set

C of constants� the set TP of PPTS terms is de�ned by the following abstract

�

Franssen

syntax�

TP ��� S j V j �V � TP�TP j �V � TP�TP j TPTP j C�LP�

LP ��� � j� LP � TP �

The lists of terms produced by LP are usually denoted as � A�� � � � � An � or
A�� � � � � An instead of � � � � �� ��A� ��A� � � � �An ��

De�nition ��� �Contexts of PPTSs� A context is a list of the form x� �
A�� � � � � xn � An� such that every Ai is a term as de�ned in de�nition ���
and either xi � V or xi has the form c�y� � B�� � � � � ym � Bm�� where c � C�
y�� � � � � ym � V and B�� � � � � Bm are terms as de�ned in de�nition ���� A
constant c is called ��fresh if it does not occur in ��

De�nition ��� �Type judgment relation of a PPTS� The type judgment
relation of a PPTS uses all rules of a regular PTS 	see �gure
� and two addi�
tional rules to make use of parametric constants� Let� denote x� � B�� � � � � xn �
Bn and �i denote x� � B�� � � � � xi�� � Bi��� Then the additional rules are�

C�weaken
� � b � B ���i � Bi � si ��� � A � s

�� c����A � b � B

�si� s� � P

c is ��fresh

C�application

��� c����A��� � bi � Bi�xj �� bj	
i��
j��

��� c����A��� � A � s

for i �
� � � � � n

if n � �

��� c����A��� � c�b�� � � � � bn� � A�xj �� bj	nj��

We give a brief description of the additional rules�

C�weaken The C�weaken rule allows us to add a parametric constant to the
context� In contrast to other extensions of the context this rule does not
allow us to type the parametric constant itself� while the intro�rule 	used for
regular extensions of the context� allows the typing of every newly added
item�

C�application Since a parametric constant itself cannot be typed in a PPTS
it cannot be used with the usual ��elim 	sometimes called application� rule�
The rule C�application allows us to use a parametric constant� but only if
we supply all the required arguments at once� This corresponds to the use
of functions and predicates in �rst order logic� these too can only be used
after all the arguments have been supplied� The special premise for the case
n � � is needed to assure that the context ��� c��� � A��� is a valid one�

�

Franssen

��� �P�� A PPTS for First Order Logic

We are now ready to introduce the system �P�� �P� is a PPTS that exactly
models many sorted �rst order predicate logic�

De�nition ��� ��P�� �P� is the PPTS speci�ed by�

S � f�s� �p��s��pg

A � f��s��s�� ��p��p�g

R � f��p� �p� �p�� ��s� �p� �p�g

P � f��s� �s�� ��s��p�g

Note that the sort �f � used by Berardi to model function types� is not present
in �P�� Also� the only rules in �P� are those corresponding to implication
and universal quanti�cation�

Functions and predicates are now added to the context by using the rule
C�weaken� using parametric rule ��s� �s� for functions and ��s��p� for predi�
cates� A function or a predicate can only be used to form a proposition using
the rule C�application� For instance� a function of arity 	 can only be used
when it is applied to 	 arguments at once�

Essentially the propositions�as�types isomorphism and the intended meanings
of the sorts of this system are equal to those of the regular PTS of Berardi�
However� �P� corresponds more closely to �rst order logic

�i� Constants are now modeled by a parametric constant with zero param�
eters� The natural number � is then modeled in a context as ���N

�s� ���
 N���� Since the � is now a constant from C� it cannot be con�
fused with a parameter from V � since it is not possible to build a term
like �����
 N�X��

�ii� Functions themselves do not have types� A binary function f with argu�
ments from sets A and B yielding a value from C occurs in the context
as f�x
 A� y
 B�
 C� Since f is a parametric constant with 	 arguments
it cannot be applied to a single argument a
 A� The same holds for
predicates�

�iii� A single proposition corresponds to a single type� The rule ��s��p��p�
allowing the typing of lambda terms representing predicates is no longer
available� Therefore� a predicate P is no longer represented by ��x

U�P �a� where U corresponds to a set of �rst order logic and a
 U � The
rule conversion is no longer needed� allowing a simpler and faster imple�
mentation�

Franssen

Proofs of these properties are given by T� Laan and the author of this paper
in �����

So far� we were considering minimal �rst order logic with only implication
and universal quanti�cation� To model negation� conjunction� disjunction
and existential quanti�cation we would need a more powerful PTS allowing
higher order constructs� However� this would destroy our close correspondence
with �rst order logic� Another possibility is to further extend the abstract
syntax of �	terms and adding more rules to the type judgment relation� These
extended �	terms can then easily be translated into regular �	terms of a PTS
allowing higher order logic� However� our proof system itself then keeps its
close correspondence to �rst order logic� The required extensions are given in
appendix A�

Except for the extensions for propositional constructs� we also need a context
containing the set	� function	 and predicate symbols of the logic� This context
is de�ned as follows

De�nition ��� ��L� Let L be a logic with set symbols U�� � � � � Uk� function

symbols f�� � � � � fp and predicate symbols P�� � � � � Pn� Furthermore� let Vi�j de�

note the set symbol representing the type of the j�th argument of function fi
and let Vi denote the set symbol representing the type of the result of function

fi� Finally� let Ti�j denote the set symbol corresponding to the type of the j�th

argument of predicate Pi� Then the context �L� modeling this �rst order logic

in �P�� is de�ned as�

U�
 �s� � � � � Uk
 �s�

f��x�
 V���� � � � � xs�
 V��s�
 V�� � � � � fp�x�
 Vp��� � � � � xsp
 Vp�sp
 Vp�

P��x�
 T���� � � � � xr�
 T��r�
 �p� � � � � Pn�x�
 Tn��� � � � � xrn
 Tn�rn
 �p

si and rj are the arities of fi and Pj respectively�

The close correspondence of logic L to �P� with context �L is given by the
following theorems

Theorem ��� �L � U
 �s if and only if U is a set symbol of L�

Theorem ��	
 For any set symbol U of L we have �L � t
 U if and only if

t is a term in L whose type is represented by set symbol U �

Theorem ��		 �L � P
 �p if and only if P is a proposition of L�

Theorem ��	� For any proposition P of L we have �L � p
 P if and only

if j�L P �

��

Franssen

Theorems ��� till ���� are proved by induction on the term structure� The
completeness part of theorem ���� follows from the algorithm we present in
the next section� the method of tableaux is complete and every closed tableau
can be converted to a proof in �P� in context �L�

The converse is also true� if � is a valid context of �P�� then there exists a
logic L such that theorems ��� till ���� with �L replaced by � hold� Hence�
�P� has a one	to	one correspondence with many	sorted
rst	order predicate
logic �for a proof see �����

To present the conversion algorithm� we need the following two theorems�

Theorem ���� Let ��� A � B��� be a legal context �i�e� it is possible to
derive ��� A � B��� � �s � �s�� Then ��� A � B��� � A � B�

Theorem ���� Let ��� A � B��� be a legal context such that ����� is also
a legal context� If ����� � C � D then ��� A � B��� � C � D�

Theorem ���� is proved by induction on the length of the context� using intro

and weaken rules� Theorem ���� is proved by induction on the derivation of
C � D�

� From Closed Tableaux to ��terms

In this section we will describe an algorithm to convert closed tableaux into �	
terms of �P�� These �	terms can easily be transformed into �	terms of other
PTSs� provided that these other PTSs are powerful enough� �P� merely
states the minimal requirements for the conversion�

The closed tableau may be produced by any tableau	based theorem prover�
allowing us to use existing tableau	based theorem provers as a module in an
implementation of �P�� This yields more powerful automated theorem prov	
ing than the usual exhaustive search used in PTSs �e�g� Coq�s �Auto� and
Isabelle�s �fast tac� tactics��� If there is enough trust in the correctness of the
implementation of the automatic theorem prover we can also use a special
token to encode that the proof can be constructed using the automated theo	
rem prover �ATP�� We then do not have to actually convert the tableau and
store the large �	term that is the result of converting the tableau� The ATP
can then reconstruct the tableau and convert it into a �	term on request� for
instance� if we want to communicate our proof to somebody using a di�erent
theorem prover based on �	calculus�

Using �	terms to encode proofs allows us to concentrate on the structure of
the conversion� for similar rules of the tableau method� similar conversion
steps are performed� The classes of similar rules of the tableau method are
the usual �	� �	� �	 and �	rules� In
gure � for each class the structure of the

��

Franssen

rules is depicted� Our conversion algorithm will have one case for every class
of rules� Without ��terms� every rule would have to be treated explicitly�

special
��P

P

�
E�P�Q�

E��P �� E��Q�
�

E�P�Q�

E��P � j E��Q�

�
E�U�P �

E��P �x
�

� new variable of type U

�
E�U�P �

E�U�P �� E ��P �x
t

t a term of type U

Fig� �� Structure of the di�erent classes of tableau rules�

We will now show how to model each step of a tableau�proof of the formula
A in �P�� We assume that we have the basic context �L �de�nition 	�
�
to model the �rst order logic� Also we will intensively use the axiomatic
extension for �rst�order constructs given in appendix A� In the conversion
algorithm the labels of the tree correspond roughly to a context for �P��
The propositions in a label are used as types of assumptions in the context�
but we will also have a few variables� To modify contexts of �P� we will
intensively use theorem 	��� and theorem 	���

��� Converting the Initial Tableau

The tableau starts with a node labeled by �A and the initial context for
�P� will be �L� p � �A� The tableau represents a contradiction derived from
�A and hence� converting the tableau should result in a contradiction c ��
derived from the context �L� p � �A� The validity of A in �P� is then given
by �L � classic A ��p � �A�c� � A �see appendix A�� �classic A ��p � �A�c� is
read as A is proved in classical logic by ��p � �A�c�� which actually is a proof
of ��A��

��� Converting Applications of Tableau Rules

Derivation of the contradiction is done recursively� �rst a contradiction is
derived from the successor nodes and then a term is constructed for the current

�	

Franssen

node� How this �nal construction of the contradiction is done depends on the
tableau rule used to extend the node� We denote the context corresponding
to the current node as �L���� x � X���� where X is the proposition to which
the tableau rule was applied� The context of the successor�node	s
 will be
stated for each case separately� For each type of node we will describe the
construction of the contradiction�

����� Conversion for the Special Rule

Our �rst case will deal with the special tableau�rule�

��P

P

We have to derive a contradiction c from a node with context �L���� o �
��P���� For the successor�node we create the corresponding context �L����

��� p � P � By recursion� we derive a contradiction c from this successor node�
hence we have �L������� p � P � c ��� Then the contradiction we seek is
derived as follows�

	�
 �L������� p � P � c �� induction

	�
 �L������ � 	�p � P�c
 � P �� �intro on 	�

	�
 �L���� o � 	P ��
����� � o � 	P ��
�� see remark below

and theorem ����

	�
 �L���� o � 	P ��
����� � o 	�p � P�c
 �� �elim on 	�
 and 	�

Remark� Formally we also need to derive types in order to apply the PTS�
rules� For instance in step 	�
� we use theorem ���� to insert a variable of the
type 	P ��
 �� in the context� but for this we also need a type judgment
saying �L��� � 	P ��
��� �p� Such a type judgment can be derived by�

	a
 �L���� P � �p Theorem ���� and P � �Lp

	b
 �L���� p � P ��� �p Axiom of �P� and repeated weaken

	c
 �L���� P ��� �p �form on 	a
 and 	b

	d
 �L���� p � 	P ��
 ��� �p Axiom of �P� and repeated weaken

	e
 �L���� 	P ��
��� �p �form on 	c
 and 	d

For reasons of space and simplicity� we will omit these type derivations� Usu�

��

Franssen

ally it will be evident that the types are correct�

����� Conversion for ��rules

Before we present the general scheme to convert ��rules� we describe the con�

version of the typical case of an ��rule� conjunction� The tableau rule is�

P � Q

P�Q

We have to derive �L���� o � P � Q��� � � ��� To the successor node�
we assign the context �L������� p � P� q � Q� By recursion� we get from
this context a contradiction� �L������� p � P� q � Q � c ��� To derive a
contradiction from the original context we use the following derivation�

��� �L������� p � P� q � Q � c �� induction

��� �L������� p � P � ��q � Q�c� � Q�� �	intro on ���

�
� �L������ � ��p � P���q � Q�c�� � P � �Q��� �	intro on ���

��� �L���� o � P � Q��� � o � P � Q theorem
���

�� �L���� o � P � Q��� � ���o� � P �	elim� on ���

��� �L���� o � P � Q��� � ���o� � Q �	elim� on ���

��� �L���� o � P � Q��� � ��p � P���q � Q�c�� � P � �Q��� theorem
�� on �
�

��� �L���� o � P � Q��� � ��p � P���q � Q�c�� ���o� � Q�� �	elim on ����

��� �L���� o � P � Q��� � ��p � P���q � Q�c�� ���o� ���o� �� �	elim on �����

Hence� the solution is given by � �� ��p � P���q � Q�c		 ���o	 ���o	�

In the general case we consider the tableau rule�

E�P�Q	

E��P 	� E��Q	

We have to derive a contradiction from the context �L���� o � E�P�Q	����
To the successor node we assign the context �L������� p � E��P 	� q � E��Q	
from which we get a contradiction c �� by recursion� In order to obtain a con

tradiction from the original context� we use a modi�ed version of the scheme
given above� Steps ��	 till �	 remain unchanged� except that P has now be

come E��P 	 and Q has become E��Q	� In step ��	 we introduce o � E�P�Q	�
but to continue with steps ��	 till ��	 we need �L���� o � E�P�Q	��� � �� �

��

Franssen

E��P � � E��Q�� How this is accomplished depends on the actual rule that is
applied� For every rule we can construct a derivation and hence a ��term to
�ll in for ��� The derivation of the individual ��terms is omitted here� but the
results are given in table �� In this table� the conversion function T gives for
a term o 	 E�P�Q� a term with type E��P � � E��Q�� Since steps �
� till ���
are performed after using the conversion function T � the appearances of o in
these steps become T �o�� Note that the conversion functions produce ��terms
and that they are not ��terms themselves�

E�P�Q� E��P �E��Q�T �o� 	 E��P � � E��Q� with o 	 E�P�Q�

P �Q P Q o

��P � Q� P �Q �classic P ��p 	 �P�o��q 	 P�p q Q��� ��q 	 Q�o��p 	 P�q���

��P �Q� �P �Q ��p 	 P�o �injl �P � Q� p�� �q 	 Q�o �injr �P � Q� q��

Table �
Conversion functions for ��rules�

����� Conversion for ��rules

Again� we start with the typical case as an example� For ��rules the typical
case is a disjunction� which has the tableau rule	

P � Q

P j Q

If the current context is �L��� o 	 P � Q�� then its successors will have
contexts �L����� p 	 P and �L����� q 	 Q respectively� From the
successor contexts we have derived contradictions c� and c� by recursion�
The derivation of a contradiction from the current context is then given by	

����L�	��	�� p
 P � c�
� induction

����L�	��	�� q
 Q � c�
� induction

����L�	��	� � ��p
 P�c��
 P �� ��intro on ���

���L�	��	� � ��q
 Q�c��
 Q�� ��intro on ���

����L�	��	� � ���p
 P�c��r��q
 Q�c���
 �P �Q��� ��elim on ����

����L�	�� o
 P �Q�	� � o
 P � Q theorem ���

����L�	�� o
 P �Q�	� � ���p
 P�c��r��q
 Q�c���

 �P � Q���

theorem ���� on ���

����L�	�� o
 P �Q�	� � ���p
 P�c��r��q
 Q�c��� o
� ��elim on �����

��

Franssen

To convert the general case we consider the tableau rule�

E�P�Q�

E��P � j E��Q�

We use the same strategy we used for ��rules� The derivation above is used as
a scheme in which we have to replace P by E��P � and Q by E��Q� in lines ���
to ���� Instead of introducing o � P �Q in line �	�
 we introduce o � E�P�Q�
and then insert a derivation between line �	� and line ��� that results in a ��
term of type E��P ��E��Q�� These ��terms depend on o and can be obtained
by applying a transformation function T to o� The transformation functions
for ��rules are given in table � but their derivation is omitted� Again
 the
transformation functions T produce ��terms but are not ��terms themselves�

E�P�Q� E��P � E��Q� T �o� � E��P � � E��Q� with o � E�P�Q�

��P �Q� �P �Q classic ��P � �Q� �r � ���P � �Q��

r�injl ��P � �Q� ��p � P�r�injr ��P � �Q�

��q � Q�o�p� q�����

P � Q �P Q classic ��P � Q� �r � ���P � Q��

r�injl ��P �Q� ��p � P�r�injr ��P �Q� �o p����

P � Q P Q o

Table �

Conversion functions for ��rules�

The remainder of the general case �the new lines ��� and ��� then follows
easily�

����� Conversion for ��rules

The typical case for a ��rule is existential quanti�cation
 with the tableau rule�

�x � U�P

P x

�

The current context is �L���� o � ��x � U�P ����� For ��rules we have to
extend the context more than for the other cases� we do not only add p � P
to the successor�s context
 but also a fresh variable � � U � The successor�s
context then reads �L������� � � U� p � P � By recursion we have derived a

��

Franssen

contradiction c from this context� A contradiction from the current context
is derived as follows�

����L������� � � U� p � P � c �� induction

����L������� � � U � ��p � P�c� � P �� �	intro on ���

�
��L������ � ��� � U���p � P�c�� � ��� � U��P �����	intro on ���

����L������ � � ��x � U�P � ��� � U���p � P�c��

� ��x � U�P ���

�	elim on �
� for �

����L���� o � ��x � U�P ���� � o � ��x � U�P � theorem
��

����L���� o � ��x � U�P ���� � � ��x � U�P � ��� � U���p � P�c��

� ��x � U�P ���

theorem
�� on ���

����L���� o � ��x � U�P ���� � �� ��x � U�P �

��� � U���p � P�c��� o ��

�	elim on �����

Like before� we use the above derivation to obtain a scheme for the general
case� The tableau rule is�

E�U�P �

E��P �x
�

First� we replace P in the derivation above by E��P �x
�

in lines ��� to ���� In
line �	�� P is replaced by just E��P � � which is allowed� since the occurrences
of x in P that were bound within E�U�P � are now explicitly bound by the
�x � U � � � occurring before E��P �� Next� we change the intro in line �
� to an
introduction of o � E�U�P �� Finally� we insert a derivation of a ��term of type
��x � U�E��P �� between line �
� and line ���� Also like before� these ��terms
are given by a transformation function T � The transformation functions for
��rules are given in table 	�

E�U�P � E��P � T �o� � ��x � U�E��P �� with o � E�U�P �

��x � U�P � P o

���x � U�P � �P classic ��x � U��P � ��r � ���x � U��P ��

o��x � U�classic P ��p � �P�r�inj ��x � U��P � p x����

Table �
Conversion functions for �	rules

�

Franssen

����� Conversion for ��rules

In case of ��rules the most typical example is the rule for universal quanti��
cation� with tableau rule�

�x � U�P

�x � U�P� P x

t

Given the current context �L���� o � ��x � U�P 	��� and the term t used to
extend the tableau� we construct for the successor node the context �L���� o �
��x � U�P 	���� p � P x

t

 Note that the original universal quanti�er is still

present in this context
 After the contradiction c has been derived from the
successor�s context by recursion we derive a contradiction from the original
context as follows�

��	�L���� o � ��x � U�P 	���� p � P x

t
� c �� induction

�	�L���� o � ��x � U�P 	��� � ��p � P x

t
�c	 � P x

t
�� ��intro on ��	

��	�L���� o � ��x � U�P 	��� � o � ��x � U�P 	 theorem �
�

��	�L���� o � ��x � U�P 	��� � t � U theorem �
�

��	�L���� o � ��x � U�P 	��� � o t � P x

t
��elim on ����	

��	�L���� o � ��x � U�P 	��� � ��p � P x

t
�c	 �o t	 �� ��elim on ���	

To make this derivation suitable for the general case� consider the rule�

E�U�P 	

E�U�P 	� E��P 	x
t

We replace ��x � U�P 	 by E�U�P 	 and P x

t
by E��P 	x

t
in the entire derivation

We then have to insert a derivation of a term of type ��x � U�E��P 		 from
o � E�U�P 	 after line ��	
 The resulting ��term of this derivation is given by
the transformation functions T given in table �

E�U�P 	 E��P 	 T �o	 � ��x � U�E��P 		 with o � E�U�P 	

��x � U�P 	 P o

���x � U�P 	 �P ��x � U���p � P�o �inj ��x � U�P 	 p x			

Table �

Conversion functions for ��rules�

�

Franssen

��� Conversion of Closed Leafs

Recursion ends when we convert a leaf of the tableau� At a leaf we cannot
use a contradiction derived from successor�nodes� since there are no successor�
nodes� However� at a closed leaf we have a context in which both a variable
of type P and a variable of type �P occur� In �P� negation is modeled by
implication and �� Hence� in the context �L���� p � P���� p

� � �P��� we can
derive the contradiction p�p�

� Formalizing the Algorithm

The conversion algorithm can also be described as a function C from closed
tableaux to ��terms� Although this allows us to formally prove correctness
of the conversion� we chose for the previous presentation since it is more
descriptive in how the ��terms are obtained� For the sake of completeness� we
will now illustrate how the formal de�nitions are constructed�

De�nition ��� �Conversion function C� Let C �Closed Tableaux � T be
the conversion function de�ned as

C	T
 � classic P 	�p � �P�C �	�L� p � �P �T

where L	T
 � f�Pg is the label of the root of the tableau and C � �Contexts�
Tableaux� T is an auxiliary function to be de�ned next�

De�nition ��� �Auxiliary function C �� The auxiliary function C � �Contex�
ts� Tableaux� T is de�ned recursively by distinction between the type of rule
applied to the label of the tableaux� The de�nition of C � follows the description
given in the presentation of the algorithm�

We can now state the correctness of the algorithm by the following theorems�
We only give sketches of the proofs of these theorems� since the proofs can
easily be extracted from the presentation of the algorithm�

Theorem ��	 �Correctness of contradictions� Let T be a closed tableau
and let � be a valid context such that L	T
 � fP � P j �p � V�	p � P
 � �g
�P denotes the set of propositional formulas of the logic L� then

� � C �	�� T
 ��

Proof� By induction on the depth of the tableau� We will need cases for leafs
and cases for nodes to which the special rule or one of the ��� ��� �� or ��rules
is applied� It is easy to verify that the premises hold for the recursive function
calls� �

�

Franssen

Theorem ��� �Correctness of conversion� Let T be a closed tableau for
P �i�e� L�T � � f�Pg� then

�L � C�T � � P

Proof� See converting the initial tableau and use theorem ���� �

� Properties of Converted Tableaux

The converted proof may be much longer than a proof that is constructed
directly in �P�� For example� a direct proof of R � R in �P� looks like
�L � ��p � R�p� � R� R� However	 if we convert the tableau

u ��R� R�
uR��R
�

we get a much larger �
term� Following the algorithm	 we start with �L �
classic �R � R� ��o � ��R � R��c� � R � R	 where c is a contradiction
extracted from the initial context �L� o � ��R� R�� The tableau rule applied
is an �
rule for implication� The resulting �
term of this conversion in general
is ��p � E��P ����q � E��Q��c��� ���T �o�� ���T �o�� ��	 in which c� is the
contradiction derived from the successor�s context �L� p � E��P �� q � E��Q�� If
we �ll in P� Q� E�� E� and T for our example and then use the result of
this substitution in our proof	 we get

classic �R� R� ��o � ��R� R����p � R��q � �R�c��

���classic R ��p � �R�o��q � R�pqR��� ��q � R�o��p � R�q���

���classic R ��p � �R�o��q � R�pqR��� ��q � R�o��p � R�q���� � R� R

and c� is the contradiction derived from the context �L� p � R� q � �R� This
corresponds to the context in which the tableau gets closed by R and �R	
hence the algorithm gives us c� � qp� The �nal proof then reads�

�L � classic �R� R� ��o � ��R� R����p � R��q � �R�qp�

���classic R ��p � �R�o��q � R�pqR��� ��q � R�o��p � R�q���

���classic R ��p � �R�o��q � R�pqR��� ��q � R�o��p � R�q���� � R� R

Note that if during the construction of a tableau needless steps are taken these
will also be translated	 which makes matters even worse�

�

Franssen

This �explosion� of the proof term is certainly a drawback of this proof method�
However� we do not need to really convert each proof� We can use a short
representation in a ��term to indicate that the required term can be found
with the tableau prover built in the system� We can then construct the ��term
on request� by reconstructing the tableau and then convert it according to the
method we described�

A Type Judgement Rules for additional Logical Con�

structs

��intro �� � � � �p

falsum
� � p � � � � P � �p

� � pP � P

classic
� � p � �P ��	��

� � classic P p � P

��form
� � P � �p � � Q � �p

� � P � Q � �p

��intro
� � p � P � � q � Q � � P �Q � �p

� � �p� q	 � P �Q

��elim�

� � p � P �Q

� � ���p	 � P

��elim�

� � p � P �Q

� � ���p	 � Q

�

Franssen

��form
� � P � �p � � Q � �p

� � P � Q � �p

��intro�
� � p � P � � P �Q � �p

� � injl �P �Q� p � P �Q

��intro�
� � q � Q � � P � Q � �p

� � injr �P �Q� q � P �Q

��elim
� � p � P � R � � q � Q� R

� � �prq� � �P �Q�� R

��form
� � U � �s �� x�U � P � �p

� � ��x � U�P � � �p

��intro
� � p � P x

t � � ��x � U�P � � �p

� � inj ��x � U�P � p t � ��x � U�P �

��elim
� � Q � �p � � ��x � U�P � � �p � � p � ��x � U��P � Q��

� � � ��x � U�P � p � ��x � U�P �� Q

Negation does not occur in the rules above� but we can model the negation of
P by P ��� For convenience we will denote this as �P �

Adding all the rules above makes �P	 a relatively large system compared to
usual PTSs� This does not mean that the system is truly more complex� the
rules for
� � and � appear in groups with each a form� intro and elim part�
There may be many rules� but they are not di�cult to verify�

References

��� Krzysztof R� Apt� Ten years of Hoare�s logic� A survey � part I� ACM

Transactions on Programming Languages and Systems� 	
����	���	� October
�����

��

Franssen

��� H�P� Barendregt� Lambda Calculi with Types� volume � of Handbook of Logic

in Computer Science� chapter �� pages ����	�
� Oxford Science Publications�
�����

�	� S Berardi� Towards a mathematical analysis of the Coquand�Huet calculus of
constructions and the other systems in Barendregts cube� Technical report�

Dept� of Computer Science� Carnegie�Mellon University and Dipartimento
Matematica� Universita di Torino� �����

��� L�S� van Benthem Jutting� J� McKinna� and R� Pollack� Checking algorithms

for pure type systems� In Henk Barendregt and Tobias Nipkow� editors� Types
for Proofs and Propositions� International Workshop TYPES���� volume �
�

of LNCS� pages ������ Nijmegen� May ���	� Springer�Verlag �����

��� Coq� The Coq proof assistant� In URL� http���pauillac�inria�fr�coq��
�����

��� Michael Franssen� Tools for the construction of correct programs� an overview�

Technical Report Report ���
�� Eindhoven University of Technology� �����

��� J�H� Geuvers� Logics and Type Systems� PhD thesis� Catholic University of
Nijmegen� ���	�

��� T� Laan� The Evolution of Type Theory in Logic and Mathematics� PhD thesis�
Eindhoven University of Technology� �����

��� LEGO� The LEGO proof assistant� In URL� http���www�dcs�ed�ac�uk�

home�lego�� �����

��
� Twan Laan and Michael Franssen� Embedding �rst�order logic in a pure type
system with parameters� Submitted for publication�

���� Rob Nederpelt� Herman Geuvers� and Roel de Vrijer� editors� Selected Papers on
Automath� volume �		 of Studies in Logic and The Foundations of Mathematics�

Elsevier� �����

���� J Terlouw� Een nadere bewijstheoretische analyse van GSTTs� Technical
report� Department of Computer Science� University of Nijmegen� �����

��	� Jan Zwanenburg� The Yarrow home page� In URL� http���www�win�tue�nl�

cs�pa�janz�yarrow�� �����

��

