LETTER TO THE EDITOR

One-Term Lorentzian and Sharpening of the Noise Power Spectrum

Dear Sir:

Yi-der Chen (1) has shown that the auto noise power spectrum for an arbitrary chemical system at equilibrium never exceeds the corresponding one-term Lorentzian. In this letter a sufficient condition for this to be the case for any spectrum is given. The condition is easily verified for a rather broad class of functions which includes the chemical equilibrium case.

Let G(t) be the spectrum, where $t = \omega^2$. Assume $G \ge 0$ to be differentiable and the limit $G_{\infty} = \lim tG(t)$, as $t \to \infty$ to exist. The one-term Lorentzian is $G_L(t) = G_{\infty}/(G_{\infty}/G(0) + t)$. We will have $G(t) \le G_L(t)$ if and only if $F(t) \ge F(0) + t$, where $F(t) = G_{\infty}/G(t)$. By the mean-value theorem of differential calculus $F(t) = F(0) + F'(\xi)t$, with $0 \le \xi \le t$. Thus, if $F'(t) \ge 1$ for all t, then $G(t) \le G_L(t)$. This simple statement of the problem demands nothing of G but differentiability and the existence of G_{∞} .

Now suppose $G(t) = \sum a_i/f_i(t)$, where the $a_i > 0$ are constants and the f_i have the properties $f_i(t) > 0$, $f'_i(t) \ge 1$ and $\lim t^{-1}f_i(t) = 1$, as $t \to \infty$. Then $F(t) = \sum a_i/\sum a_i/f_i(t)$ and $F' = (\sum a_i)(\sum a_i f'_i/f_i^2)/(\sum a_i/f_i)^2 \ge (\sum a_i)(\sum a_i/f_i^2)/(\sum a_i/f_i)^2$. If $x_i = \sqrt{a_i}$, $y_i = \sqrt{a_i}/f_i$, then $F' \ge (\sum x_i^2)(\sum y_i^2)/(\sum x_i y_i)^2 \ge 1$, by the Cauchy inequality. The case treated in (1) corresponds to $f_i(t) = b_i + t$, with $b_i > 0$ constant.

Received for publication 23 May 1978.

REFERENCE

 CHEN, Y. 1978. Differentiation between equilibrium and nonequilibrium kinetic systems by noise analysis. Biophys. J. 21:279.

> JOHN Z. HEARON Mathematical Research Branch National Institute of Arthritis, Metabolism and Digestive Diseases National Institutes of Health Bethesda, Maryland 20014