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Abstract

A majority dominating function on the vertex set of a graph G=(V; E) is a function
g :V →{1;−1} such that g(N [v])¿ 1 for at least half of the vertices v in V . The weight
of a majority dominating function is denoted as g(V ) and is

∑
g(v) over all v in V . The ma-

jority domination number of a graph is the minimum possible weight of a majority dominating
function, and is denoted as �maj(G). We determine the majority domination numbers of certain
families of graphs. Moreover, we show that the decision problem corresponding to computing the
majority domination number of an arbitrary disjoint union of complete graphs is NP-complete.
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1. Introduction

Let G=(V; E) be a @nite graph and v be a vertex in V . The open neighborhood
of v is de@ned to be the set of vertices adjacent to v in G, and is denoted as N (v).
Further, the closed neighborhood of v is de@ned by N [v] =N (v) ∪ {v}. The closed
neighborhood of a set of vertices S is denoted as N [S] and is ∪N [s] over all vertices s
in S. Given a set S and a function g on S, we will use g(S) to denote

∑
g(s) over all

elements s in S. A dominating set of a graph is a set S ⊆V such that N [S] =V . The
domination number of a graph G is the minimum size of a dominating set. We can
express this concept in terms of a dominating function g :V →{0; 1}. If g(N [v])¿ 1
for all v in V , we call g a dominating function. Notice that the set S of elements with
the property g(v)= 1 is a dominating set in this circumstance. We can equivalently
de@ne the domination number of G to be �(G)=min{g(V ) : g is a dominating function
on V:}
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The concept of domination in graphs can be extended. Consider a function
g :V →{1;−1}. We say that g is a signed dominating function on V if for each
v in V , g(N [v])¿ 1. The total weight of such a function is g(V ), and the signed
domination number of a graph G, denoted �s(G), is the minimum total weight of such
a function. The signed domination number has been determined for many graphs [4,2].
A majority dominating function is de@ned in [1,2] as a function g :V →{1;−1}

with the property that g(N [v])¿ 1 for at least half of all vertices v in V . Note that
every signed dominating function is also a majority dominating function. The majority
domination number of a graph G, denoted �maj(G), is the minimum total weight of
such a function; that is, �maj(G)=min{g(V ) : g is majority dominating on V}.

2. Complete multipartite graphs

Broere et al. [1] determined the majority domination numbers of many families of
graphs. In particular, they gave the majority domination number of a general complete
bipartite graph.

Theorem 1 (Broere et al. [1]). Given two integers n¿m¿ 2;

�maj(Km;n)=

{
2− n for m even;

3− n for m odd:

Using a diIerent counting technique, we greatly simplify their proof. In addition,
our technique is useful in determining the majority domination numbers of many other
graphs. We will use JG to denote the graph theoretic complement of G. Recall that the
join G1 + G2 of two disjoint graphs G1 and G2 is the graph obtained from the union
of G1 and G2 by adding all edges with one vertex in G1 and the other in G2.

Theorem 2. Suppose n¿m¿ 2. If G is a graph of order m and H = JKn + G; then

�maj(H)=

{
2− n for m even;

3− n for m odd:

Proof. Suppose @rst that n¿m. Let Vn and Vm denote the vertices of JKn and G, respec-
tively. Suppose g is a majority dominating function on Km;n such that g(V )= �maj(H).
Let v be an element of the Vn such that g(N [v])¿ 1. Such a v exists as a result of
the pigeonhole principle if n¿m. Since g(N [v])¿ 1, we get

g(V )= g(N [v]) + g(Vn\{v})¿ 1− (n− 1)=2− n:

Note that since g(V ) must have the same parity as n + m, when m is odd we neces-
sarily have g(V )¿ 3− n. This type of parity argument is often useful, but details will
henceforth be omitted. Thus, �maj(H) is at least the desired amount.
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Next, consider the case that n=m. If there is an element v of Vn such that
g(N [v])¿ 1, then the proof is @nished, by the above argument. Otherwise, a simi-
lar argument applies. In this case, we must have an element v∈Vm with g(N [v])¿ 1.
Furthermore, g(V − N [v])¿ − (m− 1), so

�maj(H)= g(V )= g(N [v]) + g(V − N [v])¿ 1− (m− 1)=2− m=2− n;

proving that �maj(H) is at least the above amount.
Finally, consider the function g de@ned by

g(v)=

{
1 for 	(m+ 2)=2
 vertices v in Vm;

−1 otherwise:

This is a majority dominating function on H and g(V ) is the desired value. Hence,
�maj(H) is at most the desired amount. The result now follows.

Theorem 1 now follows as a corollary of this theorem. We will now state an addi-
tional corollary. We will use Ki(j) to denote Ki; i; : : : ; i︸ ︷︷ ︸

j

.

Corollary 1. For integers n¿m¿ 2;

�maj(K1(m) ; n)=

{
2− n for m even;

3− n for m odd:

Proof. Notice that K1(m) ; n= JKn + K1(m) .

We can also determine the majority domination number of this graph when n¡m.

Theorem 3. For integers m¿n¿ 1;

�maj(K1(m) ; n)=

{
1 for n+ m odd;

2 for n+ m even:

Proof. Let G, V , Vn, and Vm be de@ned as in the previous proof. De@ne a function g
on V by

g(v)=

{
1 for 	(m+ n+ 1)=2
 of the v in V;

−1 otherwise:

This is a majority dominating function on V and g(V ) is the desired value.
Now let g be a majority dominating function on V such that g(V )= �maj(G). Since

m¿n, by the pigeonhole principle there is some v in Vm such that g(N [v])¿ 1. But
g(V )= g(N [v])¿ 1. Note that when m+ n is even, this implies that g(N [v])¿ 2. The
result now follows.

Next, we consider the complete multipartite graph with m parts, each of order n.
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Theorem 4. For integers m¿ 2 and n¿ 3;

�maj(Kn(m) ) =




2− n for m even; n even;

3− n for m even; n odd;

4− n for m odd:

Proof. We let G=Kn(m) , V be the vertex set of G, and V1; : : : ; Vm be the n-element
partite classes of V . First we consider the case where m is even. We de@ne a function
g on V by

g(v)=




1 for all v lying in V1 ∪ · · · ∪ Vm=2−1;

1 for 	n=2
+ 1 of v in Vm=2;

−1 otherwise:

Clearly, g is a majority dominating function, since g(v)¿ 1 for all v∈Vi when i¿m=2.
Further �maj(G)6 g(V ), which is the proposed bound.
Next let g be a majority dominating function on V such that g(V )= �maj(G). There

must be some v in Vi such that g(N [v])¿ 1. Using the same calculation as usual,

�maj(G)= g(V )= g(N [v]) + g(Vi\{v})¿ 1− (n− 1)=2− n:

Note that we did not use the parity of m in this argument, so this inequality holds for
all cases. If n is odd, then g(V )¿ 3− n by the usual parity argument. The result now
follows for m even.
Now we consider the case where m is odd. We construct a function g on V de@ned

by

g(v)=




1 for all v lying in V1 ∪ · · · ∪ V(m−1)=2;

1 for one v in each of V(m+1)=2 and V(m+1)=2 + 1;

−1 otherwise:

Clearly this is a majority dominating function, since g(v)¿ 1 for all v∈Vi when
i¿ (m+ 1)=2. Thus �maj(G)6 g(V )= 4− n.
Finally, we must show that �maj(G)¿ 4− n when m is odd. We already know that

�maj(G)¿ 2 − n. Choose a function g on V such that g is a majority dominating
function and g(V )= �maj(G). Let �i denote the number of vertices v in Vi such that
g(v)= 1. If necessary, relabel the partite classes so that �1¿ · · · ¿ �m¿ 0.
Suppose �i is 0 or n for every i. Then g(V )= kn for some integer k. Observe that

k¿ 1; otherwise, g is not a majority dominating function. So in this case, g(V )= kn¿
4−n, and the result follows. If this supposition is false, then there is at least one j such
that 0¡�j¡n. Choose i to be the greatest such j. Observe that i¿ (m+1)=2; otherwise,
g(N [v])6 0 for all v in V , contradicting that g is a majority dominating function.
Notice also that there must be a vertex v in Vj, where j6 i such that g(N [v])¿ 1. In
this case, we get

g(V )= g(N [v]) + g(Vj\{v})¿ 1 + 2�j − n− 1¿ 2�i − n:
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We also have

g(V )= g(V\Vi) + g(Vi)= g(V\Vi) + 2�i − n:

So if �i¿1 or if g(V\Vi)¿0, the desired inequality g(V )¿ 4 − n immediately
follows. So we will consider the case when �i =1 and g(V\Vi)= 0. In this case,
g(N [v])¿ 1 if and only if v∈Vj with j¿i, or v∈Vj with j6 i, �j =1, and g(v)= 1.
We can calculate the maximum possible number s of vertices with positive weight,
in terms of i, to be s=(m − i)n + (2i − m + 1)=2. We can then use the fact that
i¿ (m + 1)=2 to get s6 (mn − n + 2)=2¡mn=2 since n¿ 3, contradicting the fact
that g is a majority dominating function. Note that this estimation relies on the fact
that n¿ 3. So @nally, the inequality g(V )¿ 4 − n follows, concluding the
proof.

The @rst half of the proof above also works for m even and n=2. We handle the
remaining problem of m odd and n=2 now.

Theorem 5. �maj(K2(m) ) = 0:

Proof. Suppose g is a majority dominating function on G=K2(m) such that g(V )=
�maj(G). Consider a vertex v in V such that g(N [v])¿ 1. Denote the other element of
the partite class of which v is a member by u. Then

g(V )= g(N [v]) + g(u)¿ 1− 1=0:

Thus, �maj(G)¿ 0.
Further, de@ne a function g by

g(v)=

{
1 for exactly one vertex in each partite class;

−1 otherwise:

Such a function is a majority dominating function on V , so �maj(G)6 g(V )= 0. The
result follows.

3. Disjoint unions of complete graphs

Broere et al. prove the following Proposition.

Proposition 1 (Broere et al. [1]). Given two integers n¿m¿ 1;

�maj(Km ∪ Kn)=

{
1− m for n odd;

2− m for n even:

As in the previous section, we use a diIerent counting technique to generalize
this.
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Fig. 1. The HajMos graph.

Theorem 6. Suppose that n¿m¿ 1. If G is a graph of order m; and H =Kn ∪ G
then

�maj(H)=

{
1− m for n odd;

2− m for n even:

The same result is true when n=m¿ 1 if and only if the signed domination of G
satis3es �s(G)¿ 1.

Proof. Suppose @rst that n¿m¿ 1. Let Vn be the set of vertices of Kn and Vm be the
set of vertices of G. Then V =Vn∪Vm. We will assume that g is a majority dominating
function with g(V )= �maj(H). There must be a vertex v∈Vn such that g(N [v])¿ 1.
But then �maj(Kn ∪G)= g(V )= g(N [v]) + g(Vm)¿ 1−m. Then by a parity argument,
�maj(H) is at least the desired amount.
Next we will de@ne a majority dominating function on H as follows:

g(v)=

{
1 for 	(n+ 1)=2
 vertices v in Vn;

−1 otherwise:

Clearly, g is a majority dominating function on H and g(V ) is the desired amount,
showing that �maj(H) is at most the desired amount, completing the @rst part of the
proof.
Finally, suppose that n=m. Then a function g is a majority dominating function on

H if and only if it is either a signed dominating function on G or a signed dominating
function on Kn. This proves the second statement of the theorem. There are graphs
that have �s(G)¡1, for example the HajMos graph H as given in Fig. 1.
In this case, �s(H)= 0, and so �maj(K6 ∪ H)= − 6, not −4, as the theorem would

predict. Thus, the theorem does not hold in these cases.

Proposition 1 now follows as a corollary. Some additional corollaries are stated
below.
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Corollary 2. For integers n1¿ n2¿ · · · ¿ nm¿ 1 and m¿ 2 such that n1¿ n2 +
· · ·+ nm;

�maj

(
m⋃

i= 1

Kni

)
=

{
1− (n2 + · · ·+ nm) for n1 odd;

2− (n2 + · · ·+ nm) for n1 even:

Proof. This follows from Theorem 6 if we let G=
⋃m

i= 2 Kni . Notice that the theorem
follows for n1 = n2 + · · ·+ nm since �s(

⋃m
i= 2 Kni)¿ 1.

Now we consider the complement of K1(m) ; n, namely JKm ∪ Kn. As above, we have
two diIerent results depending on the relation between n and m. The @rst is a corollary
of Theorem 6 and the second is an independent result.

Corollary 3. For integers n¿m¿ 1;

�maj( JKm ∪ Kn)=

{
1− m for n odd;

2− m for n even:

Proof. This follows directly from Theorem 6 if we let G= JKm.

Theorem 7. For integers m¿n¿ 2;

�maj( JKm ∪ Kn)=




1− n for m and n odd;

2− n for m even;

3− n for n even and m odd:

Proof. Let G, V , Vn and Vm be de@ned as in the previous proof. De@ne a function g
on V by

g(v)=




1 for 	(n+ 1)=2
 of the vertices v in Vn;

1 for 	(m− n)=2
 of the vertices v in Vm;

−1 otherwise:

It can be veri@ed that g is a majority dominating function with

�maj(G)6 g(V )=




1− n for m and n odd;

2− n for m even;

3− n for neven and m odd:

Now suppose that we have a majority dominating function g such that g(V )=�maj(G).
If there is an element v in Vn with the property that g(N [v])¿ 1, then there must also
be at least 	(m+ n)=2
 − n vertices v in Vm with g(v)= 1. Then we get that

�maj(G)= g(V )¿

{
1− m+ 2	(m− n)=2
 for n odd;

2− m+ 2	(m− n)=2
 for n even:

It is easy to check that this is the desired value, using the parity of m.
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Finally, if there is no v in Vn such that g(N [v])¿ 1, then there must be 	(m+n)=2

vertices v in Vm with g(v)= 1. We get

g(V )= g(Vm) + g(Vn)¿
⌈
m+ n
2

⌉
−
(
m−

⌈
m+ n
2

⌉)
−n¿ 2

⌈
m+ n
2

⌉
−m−n;

which is at least the desired value. The result now follows.

Next we consider the complement of Kn(m) , that is,
⋃m

i= 1 Kn. First, we need the
following Lemma.

Lemma 1 (Broere et al. [1]). A majority dominating function g on a graph G is
minimal only if for every vertex v∈V with g(v)= 1; there exists a vertex u∈N [v]
with g(N [u])∈{1; 2}.

Theorem 8. For integers m¿2 and n¿ 2;

�maj

(
m⋃

i= 1

Kn

)
=

{
	m=2
 − n�m=2 for n odd;

2	m=2
 − n�m=2 for n even:

Proof. Let G denote the graph in question, V the vertex set, and V1; : : : ; Vm the vertex
sets of the complete subgraphs. First consider the function g on V , de@ned by

g(v)=

{
1 for 	(n+ 1)=2
 of v in Vi for i6 	m2 
;
−1 otherwise:

This is clearly a majority dominating function and shows that �maj(G) is at most the
proposed value.
Suppose g is a majority dominating function on V and g(V )= �maj(G). Notice that

g(Vi)= g(N [v]) for all v in Vi. Since g(V )= �maj(G), g is minimal, and so if g(v)= 1,
then there is some u in N [v] such that g(N [u]) is 1 or 2 (Lemma 1). Notice that
g(N [u])= g(N [v]) in this case. So, g(Vi) will be either −n or 1 or 2. Since g is
a majority dominating function, at least 	mn=2
 of the vertices must have positive
weight, implying that 	m=2
 of the complete subgraphs must have positive weight, and
the remaining �m=2 of the complete subgraphs have negative weight. Thus �maj(G) is
at least the desired amount. The result now follows.

4. Complexity results

We will show that the following decision problem is NP-complete.

Majority domination of disjoint union of complete graphs (MUK)
Instance: A @nite graph G that is the disjoint union of complete graphs of sizes

n1; : : : ; nm and an integer t.
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Question: Is there a majority dominating function of weight less than or equal to t
for G?
We do this by presenting a polynomial transformation from the well-known NP-

complete decision problem Partition, stated in [5].

Partition
Instance: A @nite set A and a ‘size’ s(a)∈Z+ for each a in A.
Question: Is there a subset A′ ⊆A such that∑

a∈ A′
s(a)=

∑
a∈ A\A′

s(a)?

Theorem 9. The decision problem MUK is NP-complete.

Proof. Obviously, MUK is in NP.
We will show that a special case of the MUK problem is equivalent to Partition.

Let A be a @nite set with a ‘size’ s(a) for each a in A. De@ne a constant M =2|A|
and let s̃(a)=Ms(a). Let t= |A|− 1

2

∑
a∈ A s̃(a). Notice that t¿0 since s̃(a)¿ 2. Now

de@ne a graph G=
⋃

a∈ A Ks̃(a). Denote the vertices of Kna by Va, for all a∈A. We
now show that there is a partition A=A′ ∪ B satisfying the Partition conditions if and
only if the graph G and the positive integer t satisfy the conditions of MUK.
Suppose there is a subset A′ ⊆A such that∑

a∈ A′
s(a)=

∑
a∈ A\A′

s(a):

Assume, without loss of generality, that |A′|¿ |A\A′|. We can substitute s̃(a) for s(a),
since multiplying by a constant does not change this equality. Now de@ne a majority
dominating function g on G by

g(v)=

{
1 for s̃(a)=2 + 1 vertices in Va; for a∈A\A′;

−1 otherwise:

It is clear that g is a majority dominating function. Furthermore, we can compute

g(V )= 2|A\A′| −
∑
a∈ A′

s̃(a)6 |A| −
∑

a∈ A s̃(a)
2

= t;

satisfying the condition of MUK.
Now suppose there is a majority dominating function g on G such that g(V )6 t.

Without loss of generality, we may assume that g(Va)= 2 or −s̃(a) for each a∈A. Let
B be the set of all elements a∈A with g(Va)= 2 and A′ =A\B. We note that, by the
de@nition of a majority dominating function,∑

a∈ A′
s̃(a)6

∑
a∈ B

s̃(a);

so ∑
a∈ A′

s(a)6
∑
a∈ B

s(a):
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By g(V )6 t, we have

2|A′| −
∑
a∈ A′

s̃(a)6 t= |A| − 1
2

∑
a∈ A

s̃(a)

or

1− 2|A′|
|A| +

∑
a∈ A′

s(a)¿
∑
a∈ B

s(a):

As 1− (2|A′|)=|A|¡1, we have∑
a∈ A′

s(a)¿
∑
a∈ B

s(a):

Thus ∑
a∈ A′

s(a)=
∑
a∈ B

s(a):

Consequently, the condition for Partition is satis@ed. Thus Partition is polynomially
reducible to a special case of MUK, and so MUK is NP-complete.

5. Regular graphs

In general, given a k-regular graph G, we do not know �maj(G). However, we can
construct k-regular graphs with arbitrarily negative majority domination numbers.

Theorem 10. Given two integers k¿ 2 and n¿0; there exists a k-regular graph G
such that �maj(G)6 − n.

Proof. Let G=
⋃2n

i= 1 Kk+1. Then, using Theorem 8, we calculate

�maj

(
2n⋃
i= 1

Kk+1

)
=

{
	2n=2
−(k+1)�2n=26n−3n6−n for k even;

2	2n=2
−(k+1)�2n=262n−4n6−n for k odd:

We can also give a lower bound on the majority domination number of a regular
graph. This is a corollary of a result in [10], but the proof presented here is shorter.

Theorem 11. Given G; a k-regular graph on n vertices; �maj(G)¿ − (n=2) · (k=k +1).

Proof. Let G be a k-regular graph on n vertices, with vertex set V . Suppose g is
a majority dominating function on V such that g(V )= �maj(G). Let V+ denote the
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elements v of V such that g(N [v])¿ 1 and let V− =V\V+. Consider the sum∑
v∈ V+

g(N [v]) +
∑

v∈ V−
g(N [v])=

∑
v∈ V

g(N [v])=
∑
v∈ V

∑
u∈N [v]

g(u)= (k + 1)�maj(G):

Notice that g(N [v])¿ 1 when v is in V+ and g(N [v])¿ −(k+1) when v is in V−. So
the @rst sum is at least |V+|−|V−|(k+1). Notice that |V+|¿ n=2 and −|V−|¿ −n=2.
Hence, the sum is at least

n
2
− n

2
(k + 1)= − n

2
k:

Combining this sum with the fact that the sum is exactly (k + 1)�maj(G), the result
immediately follows.

6. Open problems

There are many problems relating to majority domination that remain open. Some
of these problems are included below.

1. Given two connected graphs G and H , with vertex sets VG and VH , respectively,
and |VG|¿ |VH |, then �maj(G∪H)6 �s(G)−|VH |. In fact, this is an equality in the
case of two complete graphs (Proposition 1). When is there a better bound?

2. What is the relationship between the majority domination number of a graph and
that of its complement?

3. Is the decision problem associated with determining the majority domination number
of Kn1 ;:::;nm also NP-complete?
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