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The path-dependence of the conventional Forming Limit Diagram (FLD) is an important issue for its
applications in industry. Great efforts have been made to understand the nature of the path-dependence
with both experimental and theoretical approaches, many of them attempting to find a path-independent
way for the application of forming limits. In this paper, we focus on the nonlinear strain path effect on
forming limit predictions using both isotropic and anisotropic hardening models. The Forming Limit
Diagram (FLD), Forming Limit Stress Diagram (FLSD) and Forming Limit Effective Strain Diagram (epFLD)
of sheet metals subject to linear and nonlinear strain paths are analyzed and compared using the
Marciniak–Kuczynski approach. An anisotropic hardening model based on Yoshida and Uemori develop-
ment is adopted in this study, and it is coupled with the traditional Hill’48 yield surface. This model is
capable of describing the complex Bauschinger phenomenon after the material undergoes the reverse
loading process such as the early re-yielding, work-hardening stagnation and permanent softening.
Two different scenarios for the change of strain paths are also investigated. In the first scenario, the sheet
material is initially loaded with a fixed strain increment ratio, unloaded to the free stress state, and then
reloaded with a different strain increment ratio until the forming limit is reached. In the second scenario,
the material does not undergo elastic unloading. Instead, the strain path is abruptly changed to a different
strain increment ratio and the material undergoes continuous loading until the forming limit is reached.
It is found that the work-hardening behavior after the pre-straining and the loading scenario plays an
important role in the path dependent behavior of forming limits. Detailed analysis reveals that the
M–K approach may have contributed to the significance of path-dependence observed in this study,
especially at high pre-strain levels.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction Numerous testing data (Laukonis and Ghosh, 1978; Lloyd and Sang,
The Forming Limit Diagram (FLD) is an essential tool to assess
sheet metal formability in metal forming operations. The conven-
tional strain based FLD pioneered by Keeler and Backhofen
(1964) and Keeler (1965) has been widely used to access this onset
of localized necking failure in sheet metal during material defor-
mation, and normally determined by conducting Limiting Dome
Height (LDH) tests such as Nakazima or Marciniak test where the
strain path is largely linear. However, the material deformation
in sheet metal forming processes is almost always nonlinear. In
operations such as deep drawing under complex loading condi-
tions, the loading paths can deviate significantly from linearity.
Furthermore, in multi-stage forming processes, such as drawing
followed by flanging, the loading direction will inevitably change.
1979; Friedman and Houston, 1999) showed that there is no single
curve in strain space that can represent the forming limit under
nonlinear loading conditions. Graf and Hosford (1993, 1994) also
demonstrated experimentally the nature of path-dependence of
FLD in strain space by measuring the limit strains of aluminum
sheets under a two-step loading condition. Theoretically, Cao
et al. (2000) and Yao and Cao (2002) used both isotropic and kine-
matic hardening models with a general anisotropic yield criterion
to calculate the FLD under non-proportional strain paths. They
compared their results with Graf and Hosford’s experiments and
found broadly good agreements.

Recently, stress-based forming limit diagram (SFLD) has
received increasing attention as an alternative to the conventional
strain-based FLD. It has the advantage of not depending on defor-
mation paths, and can be conveniently converted from traditional
strain-based FLDs. Stoughton (2000, 2001) calculated the limit
stress state from the limit strain data under both proportional
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Fig. 1. Illustration of the path-independent forming limits under isotropic assumption.
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and non-proportional loading conditions, and showed that the
Forming Limit Stresses are largely insensitive to the strain path his-
tory. Stoughton and Zhu (2004) gave a review of theoretical models
of the strain-based FLD and their relevance to stress-based FLD.
They proposed several methods to translate the strain based FLD
to stress spaces under the isotropic hardening assumption. Despite
the attractiveness of the stress-based forming limit diagram, it has
so far found limited applications in industrial practice. Several fac-
tors work against its wider acceptance. Firstly the classic forming
limit diagram is deeply rooted in the practical world of circle grid
analysis on the shop floor. Secondly, stresses are a more abstract
concept and cannot be measured in any practical way when look-
ing at a formed part. Thirdly, the accuracy in stress prediction is
less reliable than for strain, even with the tremendous advances
in numerical technology for sheet metal forming over the past
decade.

Zeng et al. (2009) proposed a path-independent forming limit
diagram based on effective strain and strain ratio (epFLD). In this
approach, the stress states is described in terms of the size of cur-
rent yield surface and current plastic flow direction. It is validated
through both theoretical prediction with M–K analysis and avail-
able experimental data in literature (Friedman and Houston,
1999; Graf and Hosford, 1994). The epFLD is equivalent to stress-
based forming limit diagram in all theoretical aspects as shown
in Fig. 1, but differs in its presentation. It avoids issues with the
reliability and oscillations of stress calculations associated with
current software capabilities. It is relatively easy to implement into
forming simulation software since it only requires strain results
from the final two steps to calculate directions of strain increment.
It should be noted that, in cases where a material point deforms
beyond the necking criterion during a forming process but goes
back under elastic deformation at the final stage of the deforma-
tion, both FLSD and epFLD will fail. But in epFLD, since only the
plastic flow direction b is undetermined in this situation and the
effective plastic strain is still available, it suggested to use a conser-
vative estimate of assuming b = 0 for assessing the formability.

As we know, it is difficult to determine forming limits with
changing strain path in the physical test. Furthermore, there are al-
most no direct measurement methods to determine the forming
limits in stress space. Accordingly, few experimental tests have
been conducted so far to validate path-independent Forming Limit
Criteria. In recent years, Yoshida et al. (2005) measured the FLD
and FLSD of aluminum AA5154-O through a servo-controlled test-
ing machine under many linear and nonlinear stress paths. The
path-independence of the FLSD was partially confirmed in their
experimental results. Kuwabara et al. (2005) also measured the
plastic deformation behavior of aluminum tubes. They found that
the path-independent FLSD can be well predicted under the isotro-
pic hardening assumption for nonlinear stress paths.

Some recent work showed that even the stress based FLD is
path dependent under certain combined loading conditions. Yos-
hida et al. (2007) investigated the effect of changing strain paths
on forming limit stresses using M–K model and a phenomenolog-
ical plasticity model with non-normality under the isotropic hard-
ening assumption. They discovered that with unloading between
two loading steps, the forming limit stress is path independent.
While without unloading, the limit stress clearly depends on the
strain path history. Later, Yoshida and Kuwabara (2007) observed
the forming limit strain and stress of steel tubes using a tension-
internal pressure testing machine. They found out that whether
the forming limit stress is path independent depends on the subse-
quent strain hardening behavior of the pre-strained material. The
forming limit stress for combined stress path will coincide with
FLSC under linear strain path with material following isotropic
hardening rule, and it will lower when material exhibits a low
strain hardening rate after strain path changes. Yoshida and Suzuki
(2008) further studied the FLSD using M–K model with anisotropic
hardening assumption. They concluded that stress based FLD is
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path independent only for a material with a work hardening
behavior that is not affected by strain path change.

Since the forming limit criterion is so critical in sheet metal
formability assessment, it is thus very beneficial to have a
path-independent criterion in order to assess the real formability
of a formed part and not rely on the uncertain sense of security
provided by a safety margin imposed on FLD in current industry
practice to offset the path dependence. This paper aims to under-
stand several basic questions: are FLSD and epFLD path-indepen-
dent under isotropic and anisotropic hardening assumptions? If
not, how significant is it and what are the implications in practice?
Where does the differences come from, is it intrinsic or merely a
result of M–K analysis?

Intensive studies have been conducted to model the cyclic
behavior of sheet metals over the past decade. One of the notable
work and widely adopted later by other researchers is carried
out by Yoshida and Uemori (2002). In their paper, complex
Bauschinger effect such as the early re-yielding, work-hardening
stagnation and permanent softening are considered through a
two-surface kinematic hardening constitutive model. This model
is later modified by Shi et al. (2008) to avoid unrealistic work-
hardening stagnation in scenario of steels, and is implemented in
commercial software LS-DYNA. This modified Yoshida–Uemori
model is adopted in this paper to investigate the effect of nonlinear
strain paths on forming limits under isotropic and anisotropic
hardening loading conditions. Two different loading procedures
are considered. In the first scenario, the material is initially loaded
with a fixed strain increment ratio, unloaded to free stress state,
and then reloaded with a different strain increment ratio until
the Forming Limit is reached; In the second scenario, the material
does not undergo elastic unloading. Instead, the strain path is
abruptly changed to a different strain increment ratio until the
Forming Limit is reached. The Marciniak–Kuczynski (M–K) analysis
is used as the framework to predict the forming limits. Hill’48 yield
surface and flow theory are adopted for the purpose of understand-
ing the nature of path-dependence of forming limits under
isotropic and kinematic hardening, where in-plane transverse
isotropy is used for simplicity.

It should be noted that the effect of flow direction of the plastic
strain in forming limits prediction has been intensively investi-
gated by many researchers (for example, Kuroda and Tvergaard,
2000a; Yoshida et al., 2007; Yoshida and Suzuki, 2008). It is not
the intention of the current study to investigate the non-normality
effect of plastic flow on forming limits.

2. Review of Yoshida–Uemori model

The behavior of metals under cyclic plastic deformation is
quite complex. In particular, the behavior during reverse loading
is usually different from the behavior in continuous loading. Yos-
hida and Uemori (2002) proposed a constitutive model capable
of describing the deformation behavior of large-strain cyclic
plasticity with its root on two-surface models. In this model,
the early re-yielding phenomenon, transient Bauschinger and
permanent softening effect observed from steel and aluminum
material cyclic loading responses can be predicted through the
Y–U model as illustrated in Fig. 2(a). It assumes a pure kinematic
hardening of the yield surface within the bounding surface of
mixed isotropic-kinematic hardening. Under these two-surface
assumptions, a new Hardening Control Surface is constructed
to control the motion and expansion of the bounding surface
for the work-hardening stagnation phenomenon in reverse load-
ing experiments as illustrated in Fig. 2(b). In Fig. 2(b), S is the
deviatoric stress tensor.

Based on the assumption of a small elastic and large plastic
deformation, the main frame work can be expressed as:
D ¼ De þ Dp ð1Þ

where D represents the rate of deformation, De and Dp are the elas-
tic and plastic parts of the rate of deformation, respectively. The
constitutive law of elasticity is expressed as the equation:

r
�
¼ _r�Xrþ rX ¼ C : De ð2Þ

where r, _r and r � are the Cauchy stress tensor, the stress rate ten-
sor and the objective stress rate tensor, X is a spin tensor, and C de-
notes the elasticity modulus tensor.

The constitutive model of plasticity is constructed within the
two-surface model. Based on the Hill’s48 yield criterion and asso-
ciated flow rule, the flow equations are given by:

f ðr� aÞ � Y ¼ 0 ð3Þ

Dp ¼ _k
@f

@ðr� aÞ ð4Þ

where a denotes the back stress tensor, and Y is the radius of the
yield surface in the stress space. According to the Xia (2001), the
Hill’48 yield criterion takes the form:

f ðr� aÞ � Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðr� aÞT Pðr� aÞ

r
� Y ð5Þ

where P is defined as the plasticity matrix with anisotropic coeffi-
cients to describe different texture orientations of the material.
For plane stress deformation with in-plane transverse isotropy of
average r-value, P is
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The bounding surface is given by:

Fbounding ¼ f ðr� bÞ � ðBþ RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðr� bÞT Pðr� bÞ

r
� ðBþ RÞ ð7Þ

where b denotes the center of the bounding surface, and B and R are
its initial size and isotropic hardening component.

The relative kinematic motion of the yield surface with respect
to the bounding surface is expressed by,

a� ¼ a� b ð8Þ

The evolution of a� can be presented as,

_a� ¼ c
2
3

aDp � a� _p
� �

ð9Þ

The parameters in above equation are defined as:

_p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

Dp : Dp

r
; a ¼ Bþ R� Y ð10Þ

For the center of kinematic hardening of the bounding surface,
the following evolution equation is assumed:

_b ¼ m
2
3

bDp � b _p
� �

ð11Þ

where m and b denote the material constants. The initial position of
the bounding surface is located at the origin of the stress space, so
bð0Þ ¼ 0.

The evolution equation of proposed isotropic hardening of the
bounding surface is assumed as:

_R ¼ mðRsat � RÞ _p ð12Þ

where Rsat is the saturated value of the isotropic hardening stress R
at infinitely large strain.

Due to the continuous strain hardening behavior phenomenon
in material cyclic loading test, especially for advanced high-
strength steels, Shi et al. (2008) proposed the use of non-saturated
hardening function in Y–U model, which also gives a good agree-
ment with experimental results of material cyclic test. Thus the
evolution of R is modified as:

_R ¼ nR _p=ðe0 þ pÞ ð13Þ

where n is the n-value of the material measured from uniaxial ten-
sion test, and e0 and p denote the initial yield strain and total equiv-
alent plastic strain, respectively. This non-saturated hardening
function will be used throughout this paper.

For describing the work hardening stagnation phenomenon,
which is caused by the dissolution of dislocation cell walls dur-
ing a reverse deformation, a non-isotropic hardening surface gr
is proposed in stress space to control the global work hardening,
as:

grðb;q; rÞ ¼
3
2
ðb� qÞ : ðb� qÞ � r2 ¼ 0 ð14Þ

where q and r denote the center and the radius of the non-isotropic
hardening surface, respectively. The center of gr is assumed to
move in the direction of ðb� qÞ, following the equation:

_q ¼ lðb� qÞ ð15Þ
Here the parameter l is obtained from the requirement that the
center point of bounding surface should be either on or inside the
surface gr,

l ¼ 3ðb� qÞ : _b

2r2 �
_r
r

ð16Þ

The evolution equation for r is given by:

_r ¼ hC;C ¼ 3ðb� qÞ : _b

2r
when _R > 0 ð17Þ

_r ¼ 0 when _R ¼ 0 ð18Þ

where h (0 6 h 6 1) denotes a material parameter that determines
the rate of expansion of surface gr. The initial value of r is assumed
to be zero since the hardening stagnation will appear with reverse
loading. Detailed discussion was given by Yoshida and Uemori
(2002) and Yoshida et al. (2002).

3. Review of the M–K approach for forming limit prediction

The original M–K model assumes a pre-existing thickness
imperfection in the form of a groove perpendicular to the principal
strain direction in sheet metal. The strain localization occurs in the
region of the groove. According to Hutchinson and Neale (1978),
the groove should rotate during the deformation and the forming
limits can be calculated based on the physical-based minimum
energy principle. Kuroda and Tvergaard (2000b) imposed aniso-
tropic coordinates of the material into the M–K model to evaluate
the r-value effect in FLD. As noted earlier, this paper’s focus is on
the path-dependent effect. We will assume the sheet metal is
transversely isotropic, and the anisotropic coordinate is the same
as the loading coordinate of the sheet metal. A detailed sketch is
shown in Fig. 3. The sheet metal is divided into two regions which
are respectively denoted by ‘a’ as the normal region and ‘b’ as the
weak region. The size of the imperfection can be defined as the ini-
tial thickness ratio f ¼ tb

0=ta
0, where ‘t’ denotes the thickness and

subscript ‘0’ denotes the initial state. Either proportional or non-
proportional loading can be imposed on the normal region to drive
the deformation of the sheet.

The compatibility and equilibrium conditions connect strain
and stress conditions between two regions. The compatibility
equations can be expressed as:

Dea
tt ¼ Deb

tt ð19Þ

where n and t denote the coordinate in the groove, Dea
tt and Deb

tt

are the strain increments along the groove respectively in region
‘a’ and ‘b’.

The force equilibrium equations across the imperfection groove
are:

Fa
nn ¼ Fb

nn and Fa
nt ¼ Fb

nt ð20Þ

where F is the force per unit width.
Fig. 3. A thin sheet metal with M–K analysis.
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The strain increment ratio q is defined as an important param-
eter to control the strain paths, it is defined as:

q ¼
Dea

y

Dea
x

ð21Þ

During the deformation, the angle of the weak band should be
updated as:

tanðhþ DhÞ ¼ tanðhÞ1þ Dea
x

1þ Dea
y

ð22Þ

In this work, the strain increment Dea
x is fixed as 0.0001 and the

necking is considered to occur when the strain increment Deb
nn in

weak band is 100 times bigger than the strain increment Dea
nn in

normal region, i.e.

Deb
nn

Dea
nn
> 100 ð23Þ

Based on the rotation angle and necking criterion established in
Eqs. (22) and (23), we determine the Forming Limit as follows: first
we calculate ea

x for given initial band angle h, varying from 0� to 90�
at intervals of 1�; then, compare all Forming Limit Values and find
the minimum value of ea

x , and determine the corresponding com-
ponents such as stresses in normal region ra

x , ra
y and effective

strain in normal region ea
e . Smaller intervals in rotation and incre-

mental strain step Dea
x are also examined, but no discernible differ-

ence can be observed in FLD, FLSD and epFLD.
If isotropic hardening model is adopted, the current stress state

of both regions a and b can be calculated as follows:

De ¼ Deel þ Depl ð24Þ

r� ¼ Del � ðeel þ DeÞ ð25Þ

Depl ¼ Dee
@f
@r
¼ Dee

3
2re

Pr ð26Þ

r ¼ Iþ 3Dee

2re
DelP

� ��1

r� ð27Þ

where eel and De denote the total elastic strain and strain increment
vectors, respectively. The strain increment vectors are the addition
of elastic strain increment vectors and plastic strain increment vec-
tors. Delis the elastic modulus matrix, and I is the unit tensor. Dee is
the equivalent plastic strain increment, P is the plasticity matrix de-
rived from the yield surface as expressed earlier, re is the effective
stress and is related to the effective strain from uniaxial tensile
tests. r� and r are trial stress tensor and current stress state tensor,
respectively. The standard radial-return mapping is used here.
timesT+1T

Loading condition A

Strain    
ratio      

T+2

Elastic    
unloading       

S
r

Fig. 4. The illustration of the two
Initially the strain increment is assumed to be elastic to obtain
the trial stress. The trial stress is used to test the yield condition
with yield criterion. If the material is under plastic loading at this
increment, the isotropic constitutive equations can be solved with
one unknown factor, the equivalent plastic strain increment. The
detailed discussion of this numerical method was given by He
et al. (2013a) and He et al. (2013b).

When the Y–U kinematic hardening model is employed, the
calculation process is illustrated as follows: first, with the applied
tensile strain increments Dea

x ;Dea
y and initial band angle h, the

equivalent plastic strain increment in region a is calculated
through Y–U model. Then, all stress states and force value in this
region are obtained. Applying the force equilibrium conditions in
Eq. (20) and compatibility condition in Eq. (19), only Deb

nn; Deb
nt

are two unknown factors for current loading step. The numerical
Jacobian matrix is constructed with Y–U constitutive model, and
then the Newton–Raphson method is adopted lastly to solve
Deb

nn;Deb
nt values until the force equilibrium is achieved. Details of

the Y–U model was also given by He et al. (2013c).
4. Results and discussion

For the purpose of investigating the strain path effect in FLD, we
consider two different scenarios of two step strain paths in which
the strain increment ratio q is changed from (see Fig. 4):

Scenario 1: q1 = �0.5 and q2 ranges from �0.5 to 1.0;
Scenario 2: q1 = 1.0 then q2 ranges from �0.5 to 1.0.
q1 and q2 are defined as the first step strain increment ratio and

the second step strain increment ratio, respectively.
For each of these two scenarios, we consider two different loading

procedures for transitioning from the first step to the second step:
Loading condition A (‘‘unloading’’ step in transition stage): first

the material is loaded with the first strain increment ratio q1 to a
certain strain value in normal region ea

x; undergoes elastic unload-
ing until the elastic strains at the normal region vanish; and then
reloaded with strain increment ratio q2 until the forming limit is
reached;

Loading condition B (‘‘continuous loading’’ in transition stage):
first the material is loaded with strain increment ratio q1 to a strain
value in normal region ea

x , then the strain increment ratio is
abruptly changed to q2 without any unloading.

4.1. Material parameters

The same basic material properties are adopted for two differ-
ent constitutive models to facilitate comparison. The uniaxial
stress–strain curve is shown in Fig. 5 and material parameters for
Y–U model are presented in Table 1.

Applying the volume-constancy condition and ignoring the neg-
ligible value in elastic strain of volume change in this analysis for
simplicity, the other values of material constants are set as:
times   T+1   T  

train    
atio      

T+2   

Loading condition B

Abruptly 
change the 
Strain ratio

different loading procedures.
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Young’s modulus E = 210 GPa, Possion’s ratio v = 0.5. Since the
r-value effect on forming limits is not included in this study, it is
set to 1 for all scenarios in this paper. In the M–K analysis, the ini-
tial thickness imperfection ratio f is assumed to be 0.999.

Based on material parameters listed above, uniaxial tension–
compression results calculated with different pre-strain levels
through the modified Y–U constitutive model, the Bauschinger
effect in reverse loading process such as the early re-yielding,
work-hardening stagnation and permanent softening phenomenon
is clearly showed in Fig. 6.

4.2. Forming limits under linear strain paths

First of all, FLD, FLSD and epFLD are studied with the same
material input under both isotropic and kinematic hardening
assumptions with linear strain paths. Results are shown in
Figs. 7–9 with the Forming Limit Curves presented as FLD, FLSD
and epFLD. Evidently no appreciable differences can be found
between the forming limits with isotropic hardening assumption
and those with kinematic hardening assumptions for all three
criteria. This is consistent with previous reports in the literature
and is consistent with our understanding.

4.3. Forming limits under nonlinear strain paths

4.3.1. Forming limits under nonlinear strain paths for scenario 1
The results for loading condition under scenario 1 are presented

first. Two different loading procedures are also compared under
both isotropic and kinematic hardening assumptions. In all figures,
‘‘uni’’ denotes the first step strain increment ratio of uniaxial load-
ing where q1 = �0.5 and the second step strain increment ratio q2

ranges from �0.5 to 1.0. The number after the ‘‘uni’’ is the strain
value ea

x right before the change of strain paths. The results from
loading condition A are presented with label ‘‘unloading’’ in figures
and the loading condition B without this label. Four pre-strain
levels for the first step are studied. They are: ‘‘uni0.05’’,
‘‘uni0.10’’, ‘‘uni0.20’’ and ‘‘uni0.25’’. All FLSDs and epFLDs under
Table 1
Material parameters of DP600 for Y–U model from Shi et al. (2008).

Material Y (MPa) B (MPa) C m

DP600 258.8 368.8 471 45.5
isotropic hardening are shown in Fig. 10 from (a) to (d); and the re-
sults from kinematic hardening are shown in Fig. 11 from (a) to (d).

It is observed from Figs. 10 and 11 that, if the amount of the
pre-strain is small, the FLSD and epFLD are almost the same as
the corresponding FLSD and epFLD under linear strain paths for
both with-unloading and without-unloading procedures. This
observation is consistent with Stoughton and Zhu (2004) and
Yoshida et al. (2007).

But if the amount of the pre-strain is large enough, the nonlinear
strain path effect can be found in scenarios with both isotropic and
kinematic hardening assumptions. In Fig. 10(a)–(d) and 11(a)–(d), it
seems the different loading procedures give larger impact on FLSD
and epFLD under isotropic hardening than kinematic hardening.

It is interesting to note that, both the FLSD and epFLD results in
large pre-strain scenarios under isotropic hardening (refer to
b (MPa) h K (MPa) N e0

163.0 0.9 605.5 0.44 0.016
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results in Fig. 10a and b) show a strong path dependence, which is
in contradiction to our common understanding that both the FLSD
and epFLD should be path-independent. Yoshida et al. (2007)
offered a plausible explanation. They found that if the unloading
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process is not considered after the first step loading, the transition
stage (abruptly change the strain increment ratio after the first
step) that we imposed in the M–K analysis causes a big impact
on the defect, and therefore on the final necking state. Since the
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M–K analysis is based on the damage (or defect) accumulation
methodology, the necking occurs when the final damage reaches
a critical state. Anything affecting the defect evolution will be re-
flected in the Forming Limit at the end in M–K analysis. Conse-
quently the path-independent understanding of FLSD and epFLD
under isotropic hardening cannot be interpreted the same way
when the M–K analysis is employed. The detailed information of
the effect from transition stage on damage accumulation and stress
evolution is discussed in scenario study of Section 4.3.3.

4.3.2. Forming limits under nonlinear strain paths for scenario 2
The results of the scenario 2 are presented in Figs. 12 and 13.

Following notations we used earlier, ‘‘bia’’ denotes first step biaxial
loading where the strain increment ratio q1 equals to 1.0, and then
the second step strain increment ratio q2 ranges from �0.5 to 1.0
for a full FLD curve. The numbers after the ‘‘bia’’ is again the strain
value ea

x right before the change of strain paths. Four strain levels
for the first step are calculated as: ‘‘bia0.10’’, ‘‘bia0.30’’, ‘‘bia0.50’’
and ‘‘bia0.70’’. All FLDs, FLSDs and epFLDs under isotropic harden-
ing assumption are shown in Fig. 12 from a to d. The results from
kinematic hardening assumption are shown in Fig. 13 from a to d.

With small amount of pre-straining, similar results can be ob-
served for both FLSD and epFLD as shown in Fig. 12(a)–(d) and
Fig. 13(a)–(d). In Fig. 12(b) and (d), data points denoted with
‘‘necking occurs at the start of second loading’’ means that the
necking occurs just upon re-yielding of the second loading process.
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Fig. 11. The results from kinematic hardening model
It seems that the different loading procedures are more important
for FLSD in scenario 2. Path-dependence is evident in Figs. 12(a)
and (b) and 13(a) and (b) for FLSD in large pre-strain scenarios
due to the unloading process. The epFLDs in Figs. 12(c) and (d)
and 13(c) and (d) show that if the first step loading gives higher
effective strain than that under the linear strain path, then the
necking occurs right at the start of the second step loading. If we
consider strain history effect in forming limits in this manner, both
the FLSD and epFLD are path-dependent under isotropic and kine-
matic hardening assumptions with the different loading proce-
dures, especially the first step loading is biaxial stretch.

The results on Figs. 12(c) and (d) and 13(c) and (d) indicate that
the epFLD is more insensitive to the loading conditions than the
FLSD. In the metal forming operation, the complex loading pro-
cesses are imposed into sheet metals with the different strain
paths. So epFLD may provide more ‘‘path-independent’’ properties
for assessing the necking failure.

In Sections 4.3.1 and 4.3.2, the two-step strain path deformation
mode is adopted with both isotropic and Y–U kinematic hardening
models for the detailed investigation of path dependence phenom-
enon in forming limits. The goal here is to compare two general
path-independent forming limits FLSD and epFLD for industrial
applications. If M–K analysis is employed to study this problem,
then the damage (or defect) accumulation assumption inevitably
exists in localized necking evolution, which seems to be the impor-
tant reason for the path dependence phenomenon in M–K analysis.
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If this damage accumulated assumption is physically true for sheet
metal instability, then the pre-imposed damage in first loading
process decide the final result of forming limits for both FLSD
and epFLD.
4.3.3. The influence of the loading history and Bauschinger effects on
forming limits as predicted by the M–K analysis

To understand the nonlinear strain path effect on forming limits
predicted above, we set to investigate in greater details the influ-
ence of loading histories and kinematic hardening effects as
predicted by M–K analysis. Without the loss of generality, we
select two loading scenarios and examine their stress evolutions.
The first one is the scenario presented in Fig. 14(a) and (b) with
label ‘‘bia’’, where the material is loaded with the strain increment
ratio q1 ¼ 1:0 to a certain value ea

x , then reloaded with the strain
increment ratio q2 ¼ �0:5 until the localized necking occurs. The
unloading process after the first loading step is also considered
as shown in Fig. 14(c) and (d). The scenarios studied with or with-
out unloading step under isotropic and kinematic hardening can be
listed as below:

(1) q1 ¼ 1:0, then q2 ¼ �0:5,
(2) q1 ¼ 1:0, then apply unloading step (unload all elastic

strain), after that q2 ¼ �0:5,
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Fig. 12. The results from isotropic hardening mode
The Fig. 14 shows the stress trajectories of the scenarios
‘‘bia0.10’’, ‘‘bia0.30’’ and ‘‘bia0.70’’ under continuous loading or
with unloading step in transition stage between two different
strain paths. Label ‘‘continuous loading’’ will be used to denote
the loading condition B and ‘‘with unloading’’ will be denoted the
loading condition A. Black points are the necking points under
these conditions.

As can be observed in Fig. 14(a), stress evolutions under the
continuous loading condition are similar after the strain incre-
ment ratio is abruptly changed. All stress paths under this loading
condition move on the current yield surface, which is considered
as the most unstable deformation mode. The material undergoes
the ‘‘plastic’’ plane strain stretching mode as presented in Yoshida
et al. (2007). The similar phenomenon is observed by Kuroda and
Tvergaard (1999) under isotropic hardening assumption for the
yield surface measurement, and the detailed experimental results
of the yield surface measured through this loading condition
(abruptly change the strain increment ratio at second step load-
ing without unloading step) are published by Kuwabara et al.
(2000).

Results obtained here indicate that this unstable deformation
mode also exists under two-surface kinematic hardening
assumption as presented in Fig. 14(b). The deformation becomes
stable again after the stress passes the unstable mode on yield
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surface. It seems that the stress path changes nonlinearly until
it reaches the assigned strain increment ratio as if it were mov-
ing on the yield surface. Based on the Fig. 14(a) and (b), more
sharp change in transitioning stress trajectory when it leaves
the yield surface can be observed in continuous loading scenar-
ios under isotropic than kinematic. This difference comes from
the material’s Bauschinger effect in stress–strain response as
illustrated in the Fig. 15. The circle, rectangle and triangle in
the Fig. 15(b) and (c) correspond to those in the Fig. 14(a)
and (b). Continuous hardening can be observed in isotropic
hardening scenario in Fig. 15(a), but sudden softening appears
in kinematic hardening scenario in same figure due to the
strain path change in second step loading. Since the stress level
of material predicted in kinematic hardening is smaller than
that with isotropic hardening after the abrupt change of strain
path, the sheet can achieve larger deformation before necking.
Consequently the limit strain in the scenario of kinematic hard-
ening is higher than that with isotropic hardening as presented
in Fig. 15(a). It is evident that the constitutive law is one of the
key factors in influencing forming limits under nonlinear strain
path loading.

If unloading occurs following the first step loading, there is no
‘‘plastic’’ plane strain stretching mode in isotropic scenarios. Due
to the change of the size of the yield surface, the position of the
necking stress is higher than the FLSD in scenario ‘‘bia0.30’’ and
‘‘bia0.70’’ in Fig. 14(c). The relevant yield stress passes the position
of FLSD in the direction of q2 ¼ �0:5 in stress space after the first
step loading, so the localized necking occurs as soon as the mate-
rial starts plastic deformation in large pre-strain scenarios after
the unloading step in transition stage as illustrated in Fig. 16. As
illustrated in Fig. 16, the black dots are necking points and corre-
spond to those in the Fig. 14(c).

Under the kinematic hardening assumption, the nonlinear
stress paths in Fig. 14(d) suggest that the unstable mode still
affects the scenarios we investigated. The Bauschinger effect de-
scribed in the constitutive law is the real reason for this phenom-
enon as showed in Fig. 17. In Fig. 14(d), the curves show that the
material is re-yield after the unloading process, then the direction
of the stress in stress space shifts step by step until the correspond-
ing stress ratio is achieved (or the localized necking occurs in this
process in Fig. 14(d)). The circle and triangle in Fig. 17(b) corre-
spond to those in the Fig. 14(d).

If the amount of pre-strain is small, the kinematic hardening
effects on later deformation will also be small, and the M–K
analysis with different constitutive laws yields FLSD results more
or less convergent to those under linear strain path condition.
However as the pre-strain amount increases, the influences from
kinematic hardening on later deformation will become more sig-
nificant, resulting in more pronounced path-dependence of form-
ing limits.
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Fig. 14. The evolution of the stress under isotropic and kinematic assumptions with different loading procedures.
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To further understand the influence of large pre-straining on
the forming limits, the evolution of defect development in the
imperfection zone is examined in great details. The development
of a defect is represented by the ratio of the effective strain inside
to that outside of the band as eb

e=ea
e in Fig. 18. As stated earlier,

‘‘uni’’ and ‘‘bia’’ denote the scenarios with different strain path at
the first step, the ‘‘with unloading’’ and ‘‘continuous loading’’ labels
represent the different loading procedures as loading condition A
and loading condition B in analysis.

In Fig. 18(a), under the isotropic hardening assumption, the
effective strain ratio between inside and outside the band ‘‘jumps’’
suddenly in development of the defect. It means the weak band
rapidly develops right after the strain path change, and then the
defect returns to the stable evolution until the localized necking
occurs. This phenomenon was also observed by Kuroda and Tverg-
aard (2000a) and Yoshida et al. (2007) as ‘‘pseudo-localization’’.
Based on Fig. 18, it suggests that this strong ‘‘pseudo-localization’’
phenomenon only exists under the isotropic hardening condition
without unloading process as presented in Fig. 18(a), no significant
‘‘pseudo-localization’’ phenomenon can be observed under kine-
matic hardening assumption in both with or without unloading
process in Fig. 18(b) and (c). The results in Fig. 18 seems to show
that the effective strain ratio between region a and b is more
strongly influenced under the isotropic hardening than kinematic
hardening if the unloading process is not considered in the loading
procedure.
In Fig. 18(b) and (c), the curves for the development of a defect
are so steep in large pre-strain scenarios, it seems the neck occurs
right after the material is hardened enough by the first step load-
ing. If the first loading step is biaxial stretch, the similar forming
limits can be achieved in small pre-strain scenarios in both isotro-
pic and kinematic assumptions, the development of a defect is a lit-
tle different when it compares with the defect evolution under
linear strain path as shown in Fig. 18(b) and (c).

For summarizing the results and discussion above, one impor-
tant observation should be noted. The path-independent forming
limits under isotropic assumption such as FLSD and epFLD show
path-dependent phenomenon under kinematic hardening, and it
can be understood as following: the softening phenomenon after
the prior loading step in Bauschinger effect as well as the loading
procedure in transition stage gives a big impact on the final
forming limits, which means the strain path history is involved
to describe the current deformation state of the material under
kinematic assumption.

It seems that the path-dependent phenomenon observed from
M–K analysis largely depends on the damage accumulation
assumption in this defect imposed model. The constitutive law
adopted in this analysis is one sensitive factor for the pre-strain
inputted damage under nonlinear strain path loading conditions
as illustrated by Yoshida et al. (2007). According to this point,
the constitutive law is a sensitive factor for the path-dependent
phenomenon under the M–K analysis, but not the major reason.
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The more damage (or pre-strain) imposed into the M–K model, the
stronger path-dependent phenomenon can be expected. As stated
earlier, if this damage accumulated assumption is physically true
for the understanding of sheet metal instability, then the quantity
of pre-imposed damage as well as the damage mode in previous
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loading processes decides the final state of forming limits. The
tendency observed in this paper is also valid under damage
accumulated assumption for necking instability.
5. Conclusions

In this study, the FLD, FLSD and epFLD with different loading
procedures in transition stage are analyzed using the M–K analysis,
and the nonlinear strain path effect in forming limits is discussed
in detail. Both the isotropic and Yoshida’s two-surface kinematic
hardening model with the same Hill’48 yield surface are consid-
ered and compared against each other. The stress evolution and
effective strain ratio evolution are presented to improve our under-
standing for this issue. The conclusions of this study can be sum-
marized as follows:

1 Under linear strain path conditions, there are no appreciable
differences in predicted Forming Limit Curves under either iso-
tropic or kinematic hardening constitutive models, whether it is
in the form of FLD, FLSD or epFLD.

2 The loading condition during the transitional stage of strain
path changes plays a key role in the nonlinear strain path effect
in forming limits. If the unloading step is considered, it changes
stress states under both isotropic and kinematic hardening
assumptions. If the continuous loading is assumed, unstable
deformation mode can be observed in M–K analysis.

3 The Bauschinger effect of material’s stress–strain response in
the subsequent work-hardening behavior after the first step
loading is important for forming limits prediction under nonlin-
ear strain path condition due to the loading, unloading and
reverse loading processes.

4 The dependence of the FLD is determined by the pre-strain
level. When the effective pre-strain level is less than the effec-
tive strain at plane strain condition, the FLSD and epFLD are
path independent. When the effective pre-strain is higher than
the effective strain at plane strain condition, the FLSD and
epFLD obtained from M–K analysis show path dependent. This
path dependent phenomenon may contribute from the damage
accumulation in M–K analysis, but not the constitutive law.

The current study provides a better understanding of path-
dependent phenomenon on forming limits such as FLSD and epFLD
under kinematic hardening assumption. Since available experi-
mental studies in the literature have not been able to provide en-
ough clarity on forming limits (FLSD and epFLD) under nonlinear
strain path conditions, nor used to validate the path-independent
forming limits of theoretical work, the insight obtained in this pa-
per will help to further understand the influence of strain history
as well as loading conditions on forming limits under both isotro-
pic and kinematic hardening assumptions.
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