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1. Introduction

Let £2, denote the class of functions of the form

A [e¢]
f@ ==+ 2", A>0.ayn>0.peEN, (1.1)
n=0

which are analytic in the punctured disk A* = {z : 0 < |z] < 1}. Also for a function f(z) in £2,, we define an integral
operator F;(z) as follows

1
F:(2) :/ cv’f(vz)dv, (c > 1). (1.2)
0

By a simple calculation we obtain that if f(z) € §2, then

F(z):é—l—i;a P (= 1) (13)
T T &g pnt T = '

A function f (z) belonging to the class £2, is in class £2,(c, B, ¥, ¢) if it satisfies the condition
Z2F(z) +2*Fl(z) — A
a(14+y)A—A+yz2 F/(2)
forsome0 <o < 1,0 < <1and0 < y < 1. Foragiven number zy (0 < z5 < 1), let .ij (G =0, 1) be a subclass of £2,

satisfying conditions zq f (z9) = 1 and —zg f’(z0) = 1, respectively. Set

‘Q;j(asﬁ» V»C»Zo) = ‘Qp(a5 ,35)/’C)Q‘ij (J:Os 1) (15)

< B, (1.4)
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and

25 (@, By, ¢, Q) = 25 @ By c.2), (16)

zt€Q

where Q is a nonempty subset of a real interval [0, 1]. In this article we are mainly interested in determining a necessary
and sufficient condition for a meromorphic univalent function to be in .Q;} (a, B, vy, ¢, zp) forj = 0, 1. Finally we show that

.Q;‘O (e, B, v, c,Q) is aconvex family if and only if Q is connected. For other subclasses of meromorphic univalent functions,
one may refer to [1-4].
2. Main results

The following theorem gives a coefficient estimate for a function to be in £2,(«, 8, v, ¢).

Theorem 2.1. Let the function f (z) be defined by (1.1). Then f (z) € $2,(ct, B, v, ¢) if and only if

— cp+n)
nZ pcfn TP+ YAap = BAA +y)(1 — ). (2.1)

Proof. Letf(z) € £2,(a, B, v, ¢), then (1.4) holds true. So by replacing (1.3) in (1.4) we have

Z C(p+n) ZPHnt1
+n

p+n+1
< B.
AQd+py) 1 —a) — Z ‘;i(‘;:q) L 2Pt
n=
Since Re(z) < |z|, for all z, it follows that

S cpm? ]

;) p+n+1 Ap4n z
Re = < B.

AQ+y)(d—a) — Z LB qy 204
n=i

By letting z — 1~ through real values, we have
= c(p+n)
Y ==+ n+yBap < BA0+y)(1—a).
—=p+tn+1
Conversely, let (2.1) hold, we have to show that
L(f) = |22 F/(z) + 22 F.(z) — Al — Bla(1+ y)A— A+ yZ* F.(z)| < 0.
To thisend, let 0 < |z| = r < 1.Then it follows that

= c(p +n)? c(p+n
L(f) = Z(pi)lap+n ZP T MGP , ZPrm

— B A1 + 1—«o

R BIAC+ (- - Zp+n+1

 c(p+n)? Byc+n)

QPP — BAA 4+ )1 — ) + Y ——————|ay [P
0p+n+]|pn| BA(1+y)(1 —a) Z el t]
— c(p+n)
< Zm(p+n+yﬁ>|ap+n|r"+"—ﬁA<y+1><1—a>. (22)

n=0

Since the above inequality holds forr (0 < r < 1), by (2.1) and letting r — 17, we obtain L(f) < 0 and this completes
the proof of the theorem. O

Theorem 2.2. Let the function f (z) be defined by (1.1). Then f (z) € Q (oz B.v, ¢, zy) ifand only if

WE

C(p + n)(p +n+ )/13) p+n+1
[(p+n+1)ﬂ(1+y)(1—a) MG ]a"” =1 (23)

Il
<)

n
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Proof. By the equality f(z) € .Q;‘O («, B, v, ¢, zp), we obtain

20f@) =A+ ) apnzd™ AZ0, Gy, >0,
n=0

which gives

(oo}
A=1- Z ap iz
n=0
Substituting this value of A in Theorem 2.1, we get the desired assertion. O

Theorem 2.3. Let the function f (z) be defined by (1.1). Then f (z) € .Q;j] (a, B, v, ¢, z9) ifand only if

K

cp+mp+nt+yp) -
[(p+n+1)ﬁ(1+y)(1—a) P+ mz }ap+n51.

Il
<)

n

Proof. By —z3f'(z0) = 1, it follows that

A=1+) (@+maaz™,
n=0
replacing A in (2.1) to give the required result. O

Corollary 2.4. Let f(z) of the form (1.1) be in the class .Q:; (o, B, y, ¢, 20), then

- Q+n+DB1+y)(1—a) _
T c+m@+n+yB) +@+n+DEA+y)(1 — )

ap+n

Corollary 2.5. Let f(z) of the form (1.1) be in the class Q;l (a, B, v, c,zg) then

o < @+n+ DB +y)(1—a) '
T A plc@+n+yB) — @ +n+ DB+ )1 — )b

Now, we will prove some important properties of Q;j (o, B,y,¢,20) =0, 1).

Theorem 2.6. The class .Q;‘O (a, B, v, ¢, zp) is closed under convex linear combination.

Proof. Let fi(z) (k = 1, 2) defined by

Ay >
fil@) = ?( + Zam—n,k Zerna Ac > 0,05k >0,p €N,
n=0

be in the class .Q:;O (o, B, y, ¢, 20), it is sufficient to show that the function G(z) defined by
C@) =11+ (A -Mfa(z), 0<A<1
is also in the class Q;‘O (a, B, v, ¢, zp). Since

M1+ (1 —2A el
LIRS Z[}\ap+n,l + (1= M) apin 2127,
n=0

G(z) =
z
with the aid of Theorem 2.2, we have

(o]

Z cp+m@p+n+yp)
= p+n+1

+ 81+ ) = )20 " @yt 4 Gpin 212" < B —a)(1+y)

which implies that G(z) € .Q;O (,B,v,¢,29). O

In a similar manner, by using Theorem 2.3, we can prove the following theorem.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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Theorem 2.7. The class 95‘1 (o, B, v, c, zp) is closed under convex linear combination.

Now we are ready to prove the main result of the paper. Let Q be a nonempty subset of a real interval [0, 1]. We define
afamily 2 (a, B,y.c, Q) by
25 (o, By, c. Q) =] 25 (. B.v.c.2).
zt€Q
For instance, if Q has only one element, then .Q;O (o, B, y,c,Q) is known to be a convex family by Theorem 2.6. It is
interesting to investigate this class for another subset Q. We shall make use of the following.

Lemma 2.8. If f(z) € .Q;‘O (o, B,y,¢,20) N 9;‘0 (o, B, y, ¢, z1) where z and z; are distinct positive numbers, then f (z) = %

Proof. Letf(z) € 2; (&, B,y ¢, 20) N2, («, B, ¥, ¢, 21), then

A o0
f@z) = ;—I—Zaﬁnz””, A>0,apn >0,p€eN

n=0

where

o o

p+n+1 p+n+1

A=1- E (pnZ, =1- E UpynZy .
n=0 n=0

Since @y > 0,29 > 0and z; > 0, this implies that a,,, = 0 for each n > 0 and hence f (z) = % O
Theorem 2.9. If Q is contained in the interval [0, 1], then .Q;O (o, B, v, c, Q) is a convex family if and only if Q is connected.

Proof. Suppose Q is connected and zg, z; € Q with zy < z;. To prove .(2;0 (o, B,y,c,Q)is a convex family it is enough to
show, for

A [e°]
f@) = ;T Zoap+n € 2, (a, B, v, ¢, 7).
n=|

B o0
8@) =~ +D by € 2 (e By, 20),

n=0

and 0 < A < 1, there exists a z; (zg < z» < z7) such that
h(z) =AM @)+ (1 —1)g(2) € 2, (o, B, V. ¢, 22).

Since f(2) € 2 (@, B,y,¢,20) and g(2) € 2 (a, B, y,¢,z1), we have A = 1 — Zlfioap+nzg+"+1 andB=1-5%_,byn

1
27" Therefore

[°] o]
T(2) = zh(@) =2+ (1 = DB+ 1Y apinz”™ + (1= 1) Y byin2”™"
n=0 n=0

o0 o0
=144 @@ ="+ A=) Y bpa@ T — 2T, (2.10)

n=0 n=0

When z is real, T(z) is real. Also T(zp) < 1and T(z7) > 1, so there exists z, € [zg, z1] such that T(z;) = 0. This implies
that h(z) € £2,. Now, in view of (2.10) we have

S cp+m(p+n+yp) )
; T v —BA+ ) =) [apn + (1= MDbyinz] < (1 —a)(1+p).

Hence we have h(z) € Q;O (o, B,y,c,23), by Theorem 2.2. Since zp,z; and z, are arbitrary, then the family
52;0 (o, B, y,c,Q) is convex. Conversely, if Q is not connected, then there exist zy, z; and z, such that zp,z; € Q and
z; € 0,11 —Q,and zy < z, < z;.Suppose that both f(z) € Q;‘O(a, B,v,c,zp)and g(z) € .Q;‘O (o, B, y, ¢, z7) are not equal
to % Then for fixed z, and 0 < A < 1 from (2.10), it follows that

T(z2) = 2h(z2)

00 00
=14 Zap+n(zg+n+l _ Z(;)H—n—o—l) + (1 _ k) Z bp+n(z123+n+l _ Zf+n+1).
n=0 n=0
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Since T(z;) in A = 0Ois less than 1 and T(z;) in A = 1 is greater than 1, there exists 0 < n < 1such that T(z) = 1
or z;h(z;) = 1, where h(z) = nf(z) + (1 — n)g(z). Therefore h(z) € _Q;O (a, B, ¥, ¢, zy). From Lemma 2.8, h(z) is not in
Q;O (o, B, y,c,Q).Hence .Q;O (a, B, ¥, c, Q) is not convex. This completes the proof of the theorem. 0O
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