Convexity of a family of meromorphically univalent functions by using two fixed points

M. Eshaghi Gordji *, A. Ebadian

Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

ARTICLE INFO

Article history:

Received 13 August 2008
Accepted 26 January 2009

Keywords:

Meromorphic function
Convex set
Convex family

ABSTRACT

In this paper a new class of meromorphic univalent functions in terms of an integral operator

$$
F_{c}(z)=\int_{0}^{1} c v^{c} f(v z) \mathrm{d} v, \quad(c \geq 1)
$$

is defined. We find some properties of this new class by using two fixed points.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{A}{z}+\sum_{n=0}^{\infty} a_{p+n} z^{p+n}, \quad A>0, a_{p+n}>0, p \in \mathbb{N}, \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured disk $\Delta^{*}=\{z: 0<|z|<1\}$. Also for a function $f(z)$ in Ω_{p}, we define an integral operator $F_{c}(z)$ as follows

$$
\begin{equation*}
F_{c}(z)=\int_{0}^{1} c v^{c} f(v z) \mathrm{d} v, \quad(c \geq 1) \tag{1.2}
\end{equation*}
$$

By a simple calculation we obtain that if $f(z) \in \Omega_{p}$ then

$$
\begin{equation*}
F_{c}(z)=\frac{A}{z}+\sum_{n=0}^{\infty} \frac{c}{p+n+1} a_{p+n} z^{p+n} \quad(c \geq 1) \tag{1.3}
\end{equation*}
$$

A function $f(z)$ belonging to the class Ω_{p} is in class $\Omega_{p}(\alpha, \beta, \gamma, c)$ if it satisfies the condition

$$
\begin{equation*}
\left|\frac{z^{3} F_{c}^{\prime \prime}(z)+z^{2} F_{c}^{\prime}(z)-A}{\alpha(1+\gamma) A-A+\gamma z^{2} F_{c}^{\prime}(z)}\right|<\beta, \tag{1.4}
\end{equation*}
$$

for some $0 \leq \alpha<1,0<\beta \leq 1$ and $0 \leq \gamma \leq 1$. For a given number $z_{0}\left(0<z_{0}<1\right)$, let $\Omega_{p_{j}}(j=0,1)$ be a subclass of Ω_{p} satisfying conditions $z_{0} f\left(z_{0}\right)=1$ and $-z_{0}^{2} f^{\prime}\left(z_{0}\right)=1$, respectively. Set

$$
\begin{equation*}
\Omega_{p_{j}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right):=\Omega_{p}(\alpha, \beta, \gamma, c) \cap \Omega_{p_{j}} \quad(j=0,1) \tag{1.5}
\end{equation*}
$$

[^0]0893-9659/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2009.01.030
and

$$
\begin{equation*}
\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q):=\bigcup_{z_{t} \in Q} \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{t}\right) \tag{1.6}
\end{equation*}
$$

where Q is a nonempty subset of a real interval $[0,1]$. In this article we are mainly interested in determining a necessary and sufficient condition for a meromorphic univalent function to be in $\Omega_{p_{j}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ for $j=0$, 1 . Finally we show that $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$ is a convex family if and only if Q is connected. For other subclasses of meromorphic univalent functions, one may refer to [1-4].

2. Main results

The following theorem gives a coefficient estimate for a function to be in $\Omega_{p}(\alpha, \beta, \gamma, c)$.
Theorem 2.1. Let the function $f(z)$ be defined by (1.1). Then $f(z) \in \Omega_{p}(\alpha, \beta, \gamma, c)$ if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{c(p+n)}{p+n+1}(p+n+\gamma \beta) a_{p+n} \leq \beta A(1+\gamma)(1-\alpha) \tag{2.1}
\end{equation*}
$$

Proof. Let $f(z) \in \Omega_{p}(\alpha, \beta, \gamma, c)$, then (1.4) holds true. So by replacing (1.3) in (1.4) we have

$$
\left|\frac{\sum_{n=0}^{\infty} \frac{c(p+n)^{2}}{p+n+1} a_{p+n} z^{p+n+1}}{A(1+\gamma)(1-\alpha)-\sum_{n=0}^{\infty} \frac{\gamma c(p+n)}{p+n+1} a_{p+n} z^{p+n+1}}\right|<\beta
$$

Since $\operatorname{Re}(z) \leq|z|$, for all z, it follows that

$$
\operatorname{Re}\left\{\frac{\sum_{n=0}^{\infty} \frac{c(p+n)^{2}}{p+n+1} a_{p+n} z^{p+n+1}}{A(1+\gamma)(1-\alpha)-\sum_{n=0}^{\infty} \frac{\gamma c(p+n)}{p+n+1} a_{p+n} z^{p+n+1}}\right\}<\beta
$$

By letting $z \rightarrow 1^{-}$through real values, we have

$$
\sum_{n=0}^{\infty} \frac{c(p+n)}{p+n+1}(p+n+\gamma \beta) a_{p+n} \leq \beta A(1+\gamma)(1-\alpha)
$$

Conversely, let (2.1) hold, we have to show that

$$
L(f)=\left|z^{3} F_{c}^{\prime \prime}(z)+z^{2} F_{c}^{\prime}(z)-A\right|-\beta\left|\alpha(1+\gamma) A-A+\gamma z^{2} F_{c}^{\prime}(z)\right|<0
$$

To this end, let $0<|z|=r<1$. Then it follows that

$$
\begin{align*}
L(f) & =\left|\sum_{n=0}^{\infty} \frac{c(p+n)^{2}}{p+n+1} a_{p+n} z^{p+n+1}\right|-\beta\left|A(1+\gamma)(1-\alpha)-\sum_{n=0}^{\infty} \frac{\gamma c(p+n)}{p+n+1} a_{p+n} z^{p+n+1}\right| \\
& \leq \sum_{n=0}^{\infty} \frac{c(p+n)^{2}}{p+n+1}\left|a_{p+n}\right| r^{p+n+1}-\beta A(1+\gamma)(1-\alpha)+\sum_{n=0}^{\infty} \frac{\beta \gamma c(p+n)}{p+n+1}\left|a_{p+n}\right| r^{p+n+1} \\
& \leq \sum_{n=0}^{\infty} \frac{c(p+n)}{p+n+1}(p+n+\gamma \beta)\left|a_{p+n}\right| r^{p+n}-\beta A(\gamma+1)(1-\alpha) . \tag{2.2}
\end{align*}
$$

Since the above inequality holds for $r(0<r<1)$, by (2.1) and letting $r \rightarrow 1^{-}$, we obtain $L(f) \leq 0$ and this completes the proof of the theorem.

Theorem 2.2. Let the function $f(z)$ be defined by (1.1). Then $f(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[\frac{c(p+n)(p+n+\gamma \beta)}{(p+n+1) \beta(1+\gamma)(1-\alpha)}+z_{0}^{p+n+1}\right] a_{p+n} \leq 1 \tag{2.3}
\end{equation*}
$$

Proof. By the equality $f(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$, we obtain

$$
z_{0} f\left(z_{0}\right)=A+\sum_{n=0}^{\infty} a_{p+n} z_{0}^{p+n+1} \quad A \geq 0, \quad a_{p+n} \geq 0
$$

which gives

$$
\begin{equation*}
A=1-\sum_{n=0}^{\infty} a_{p+n} z_{0}^{p+n+1} \tag{2.4}
\end{equation*}
$$

Substituting this value of A in Theorem 2.1, we get the desired assertion.
Theorem 2.3. Let the function $f(z)$ be defined by (1.1). Then $f(z) \in \Omega_{p_{1}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[\frac{c(p+n)(p+n+\gamma \beta)}{(p+n+1) \beta(1+\gamma)(1-\alpha)}-(p+n) z_{0}^{p+n+1}\right] a_{p+n} \leq 1 \tag{2.5}
\end{equation*}
$$

Proof. By $-z_{0}^{2} f^{\prime}\left(z_{0}\right)=1$, it follows that

$$
\begin{equation*}
A=1+\sum_{n=0}^{\infty}(p+n) a_{p+n} z_{0}^{p+n+1} \tag{2.6}
\end{equation*}
$$

replacing A in (2.1) to give the required result.
Corollary 2.4. Let $f(z)$ of the form (1.1) be in the class $\Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$, then

$$
\begin{equation*}
a_{p+n} \leq \frac{(p+n+1) \beta(1+\gamma)(1-\alpha)}{c(p+n)(p+n+\gamma \beta)+(p+n+1) \beta(1+\gamma)(1-\alpha) z_{0}^{p+n+1}} . \tag{2.7}
\end{equation*}
$$

Corollary 2.5. Let $f(z)$ of the form (1.1) be in the class $\Omega_{p_{1}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ then

$$
\begin{equation*}
a_{p+n} \leq \frac{(p+n+1) \beta(1+\gamma)(1-\alpha)}{(n+p)\left[c(p+n+\gamma \beta)-(p+n+1) \beta(1+\gamma)(1-\alpha) z_{0}^{p+n+1}\right]} . \tag{2.8}
\end{equation*}
$$

Now, we will prove some important properties of $\Omega_{p_{j}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)(j=0,1)$.
Theorem 2.6. The class $\Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ is closed under convex linear combination.
Proof. Let $f_{k}(z)(k=1,2)$ defined by

$$
\begin{equation*}
f_{k}(z)=\frac{A_{k}}{z}+\sum_{n=0}^{\infty} a_{p+n, k} z^{p+n}, \quad A_{k}>0, a_{p+n, k}>0, p \in \mathbb{N}, \tag{2.9}
\end{equation*}
$$

be in the class $\Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$, it is sufficient to show that the function $G(z)$ defined by

$$
G(z):=\lambda f_{1}(z)+(1-\lambda) f_{2}(z), \quad 0 \leq \lambda \leq 1
$$

is also in the class $\Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$. Since

$$
G(z)=\frac{\lambda A_{1}+(1-\lambda) A_{2}}{z}+\sum_{n=0}^{\infty}\left[\lambda a_{p+n, 1}+(1-\lambda) a_{p+n, 2}\right] z^{p+n}
$$

with the aid of Theorem 2.2, we have

$$
\sum_{n=0}^{\infty} \frac{c(p+n)(p+n+\gamma \beta)}{(p+n+1)}+\beta(1+\gamma)(1-\alpha) z_{0}^{p+n+1}\left[a_{p+n, 1}+a_{p+n, 2}\right] z^{p+n} \leq \beta(1-\alpha)(1+\gamma)
$$

which implies that $G(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$.
In a similar manner, by using Theorem 2.3, we can prove the following theorem.

Theorem 2.7. The class $\Omega_{p_{1}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ is closed under convex linear combination.
Now we are ready to prove the main result of the paper. Let Q be a nonempty subset of a real interval [0, 1]. We define a family $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$ by

$$
\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q):=\bigcup_{z_{t} \in Q} \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{t}\right)
$$

For instance, if Q has only one element, then $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$ is known to be a convex family by Theorem 2.6. It is interesting to investigate this class for another subset Q. We shall make use of the following.

Lemma 2.8. If $f(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right) \cap \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{1}\right)$ where z_{0} and z_{1} are distinct positive numbers, then $f(z)=\frac{1}{z}$.
Proof. Let $f(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right) \cap \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{1}\right)$, then

$$
f(z)=\frac{A}{z}+\sum_{n=0}^{\infty} a_{p+n} z^{p+n}, \quad A>0, a_{p+n}>0, p \in \mathbb{N}
$$

where

$$
A=1-\sum_{n=0}^{\infty} a_{p+n} z_{0}^{p+n+1}=1-\sum_{n=0}^{\infty} a_{p+n} z_{1}^{p+n+1}
$$

Since $a_{p+n} \geq 0, z_{0} \geq 0$ and $z_{1} \geq 0$, this implies that $a_{p+n}=0$ for each $n \geq 0$ and hence $f(z)=\frac{1}{z}$.
Theorem 2.9. If Q is contained in the interval $[0,1]$, then $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$ is a convex family if and only if Q is connected.
Proof. Suppose Q is connected and $z_{0}, z_{1} \in Q$ with $z_{0} \leq z_{1}$. To prove $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$ is a convex family it is enough to show, for

$$
\begin{aligned}
& f(z)=\frac{A}{z}+\sum_{n=0}^{\infty} a_{p+n} \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right) \\
& g(z)=\frac{B}{z}+\sum_{n=0}^{\infty} b_{p+n} \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{1}\right)
\end{aligned}
$$

and $0 \leq \lambda \leq 1$, there exists a $z_{2}\left(z_{0} \leq z_{2} \leq z_{1}\right)$ such that

$$
h(z)=\lambda f(z)+(1-\lambda) g(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{2}\right) .
$$

Since $f(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ and $g(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{1}\right)$, we have $A=1-\Sigma_{n=0}^{\infty} a_{p+n} z_{0}^{p+n+1}$ and $B=1-\Sigma_{n=0}^{\infty} b_{p+n}$ z_{1}^{p+n+1}. Therefore

$$
\begin{align*}
T(z) & =z h(z)=\lambda A+(1-\lambda) B+\lambda \sum_{n=0}^{\infty} a_{p+n} z^{p+n}+(1-\lambda) \sum_{n=0}^{\infty} b_{p+n} z^{p+n} \\
& =1+\lambda \sum_{n=0}^{\infty} a_{p+n}\left(z^{p+n+1}-z_{0}^{p+n+1}\right)+(1-\lambda) \sum_{n=0}^{\infty} b_{p+n}\left(z^{p+n+1}-z_{1}^{p+n+1}\right) \tag{2.10}
\end{align*}
$$

When z is real, $T(z)$ is real. Also $T\left(z_{0}\right) \leq 1$ and $T\left(z_{1}\right) \geq 1$, so there exists $z_{2} \in\left[z_{0}, z_{1}\right]$ such that $T\left(z_{2}\right)=0$. This implies that $h(z) \in \Omega_{p_{0}}$. Now, in view of (2.10) we have

$$
\sum_{n=0}^{\infty} \frac{c(p+n)(p+n+\gamma \beta)}{(p+n+1)}-\beta(1+\gamma)(1-\alpha) z_{2}^{p+n+1}\left[a_{p+n}+(1-\lambda) b_{p+n, 2}\right] \leq \beta(1-\alpha)(1+\gamma)
$$

Hence we have $h(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{2}\right)$, by Theorem 2.2. Since z_{0}, z_{1} and z_{2} are arbitrary, then the family $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$ is convex. Conversely, if Q is not connected, then there exist z_{0}, z_{1} and z_{2} such that $z_{0}, z_{1} \in Q$ and $z_{2} \in[0,1]-Q$, and $z_{0}<z_{2}<z_{1}$. Suppose that both $f(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{0}\right)$ and $g(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{1}\right)$ are not equal to $\frac{1}{z}$. Then for fixed z_{2} and $0 \leq \lambda \leq 1$ from (2.10), it follows that

$$
\begin{aligned}
T\left(z_{2}\right) & =z_{2} h\left(z_{2}\right) \\
& =1+\lambda \sum_{n=0}^{\infty} a_{p+n}\left(z_{2}^{p+n+1}-z_{0}^{p+n+1}\right)+(1-\lambda) \sum_{n=0}^{\infty} b_{p+n}\left(z_{2}^{p+n+1}-z_{1}^{p+n+1}\right) .
\end{aligned}
$$

Since $T\left(z_{2}\right)$ in $\lambda=0$ is less than 1 and $T\left(z_{2}\right)$ in $\lambda=1$ is greater than 1 , there exists $0<\eta<1$ such that $T\left(z_{2}\right)=1$ or $z_{2} h\left(z_{2}\right)=1$, where $h(z)=\eta f(z)+(1-\eta) g(z)$. Therefore $h(z) \in \Omega_{p_{0}}^{*}\left(\alpha, \beta, \gamma, c, z_{2}\right)$. From Lemma $2.8, h(z)$ is not in $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$. Hence $\Omega_{p_{0}}^{*}(\alpha, \beta, \gamma, c, Q)$ is not convex. This completes the proof of the theorem.

References

[1] M.K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl. 7 (11) (1999) $209-219$.
[2] N.E. Cho, S.H. Lee, S. Owa, A class of meromorphic univalent functions with positive coefficient, Kobe. J. Math. 4 (1987) 43-50.
[3] H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992.
[4] B.A. Uralegaddi, M.D. Ganigi, Meromorphic starlike functions with two fixed points, Bull. Iranian Math. Soc. 14 (1) (1987) 10-21.

[^0]: * Corresponding author at: Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran.

 E-mail addresses: madjid.eshaghi@gmail.com (M. Eshaghi Gordji), ebadian.ali@gmail.com (A. Ebadian).

