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The Hand1, Stra13 and Gcm1 transcription factors override FGF signaling

to promote terminal differentiation of trophoblast stem cells
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Abstract

The trophoblast cell lineage is an interesting model system because it is composed of a limited number of cell types that are spatially

patterned. Trophoblast stem (TS) cells reside within a layer called the chorion and either remain as stem cells or differentiate into

spongiotrophoblast (SpT), trophoblast giant (TG) cells or syncytiotrophoblast cells (SynT) of the labyrinth. Maintenance of the TS phenotype

is dependent on stimulation by FGF4, whereas differentiation and/or maintenance of the differentiated derivatives are dependent on key

transcription factors: Mash2 for SpT, Hand1 for TG cells and Gcm1 for SynT cells. TS cells proliferate and retain their stem cell phenotype in

culture in response to FGF4 and an additional factor(s) that can be provided by conditioned medium from embryonic fibroblast feeder cells

(CM). To understand the functions of Hand1, Mash2 and Gcm1 at a cellular level, we tested the effects of their ectopic and over-expression

on the ability of TS cells to either continue to proliferate or differentiate into their alternative fates. Expression of Mash2 alone had no effects

on TS cell differentiation. However, Mash2-transfected cells continued to divide longer after withdrawal of FGF/CM. Hand1 promoted TGC

differentiation, even in the continued presence of FGF4/CM. Stra13, another bHLH factor gene that is expressed in TG cells, also induced

TG differentiation. Gcm1 induced a rapid arrest of TS proliferation but, in contrast to Hand1 and Stra13, blocked TG cell differentiation.

Although Gcm1 was not sufficient to promote SynT formation, expression of an antisense Gcm1 transcript blocked SynT differentiation.

These data suggest that Mash2 functions to promote transient FGF4-independent amplification of trophoblast cells that are progressing

towards the SpT and TG cell phenotype. By contrast, Hand1 and Stra13 promote cell cycle exit and restrict cells towards the TG fate,

whereas Gcm1 promotes cell cycle exit and restriction towards the SynT fate.
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The trophoblast cell lineage is specified at the blastocyst

stage of development and contributes exclusively to the

epithelial compartment of the placenta. The cell lineage is

relatively simple in that there are only four major differen-

tiated cell types that can be derived from trophoblast stem

(TS) cells in mice: trophoblast giant cells (TG), spongiotro-

phoblast (SpT), syncytiotrophoblast (SynT) and glycogen

trophoblast cells (GlyT) (Cross et al., 2002b; Rossant and

Cross, 2001). TG cells are large polyploid cells that appear

soon after embryo implantation and mediate invasion into
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the uterus and also promote local and systemic adaptations in

the mother that are necessary for embryonic growth and

survival (Cross et al., 1994, 2002c). A subtype of TG cells

invades into the maternal spiral arteries that bring blood to

the implantation site (Adamson et al., 2002). The SpT layer

forms the middle part of the placenta between the outermost

giant cells and the innermost labyrinth layer. It probably has

a structural role but in addition, SpT cells produce some

unique secreted proteins and are also precursors of TG cells

and GlyT cells (Rossant, 1995). GlyT cells have an unknown

function but they appear only late in gestation, first within

the SpT layer and later they invade diffusely into the

interstitium of the uterus (Adamson et al., 2002). SynT cells

are multi-nucleated cells that form as a result of cell–cell

fusion and function as the major transport surface for nutrient

and gas exchange between the maternal and fetal circulation

in the villous part of the placenta (called the labyrinth in

mice) (Cross, 2000; Cross et al., 2002a).

Genetic studies in mice have revealed the major pathways

controlling development of the trophoblast cell lineage. The

maintenance of TS cells in the early embryo is dependent on

FGF signaling involving the ligand FGF4 (Feldman et al.,

1995), the FGFR2 receptor (Arman et al., 1998) and the

downstream transcription factors Cdx2 and Eomes (for

review, see Rossant and Cross, 2001). The orphan nuclear

receptor Err2 is required for stem cell maintenance at a

slightly later stage (Luo et al., 1997; Tremblay et al., 2001).

The formation and/or maintenance of the major differentiat-

ed trophoblast subtypes can be traced to transcription factor

pathways that ultimately regulate cell fate decisions. The

formation of TG cells is dependent on Hand1, a member of

the basic helix-loop-helix (bHLH) transcription factor family

(Riley et al., 1998; Scott et al., 2000). Another bHLH factor,

Mash2, is essential for maintaining SpT cells, as in its

absence, the SpT layer is lost and more TG cells form

(Guillemot et al., 1994; Tanaka et al., 1997). Consistent with

the later finding, over-expression of Mash2 in Rcho-1 cells, a

rat trophoblast tumor (choriocarcinoma) cell line, prevents

TG cell differentiation (Cross et al., 1995; Kraut et al., 1998;

Scott et al., 2000). Other bHLH factors are implicated in

trophoblast development based on specific expression pat-

terns. Stra13 mRNA expression has been suggested in TG

cells in mice, though not well documented (Boudjelal et al.,

1997), and the dominant-negative HLH factor Id2 is

expressed in the TS cell compartment (Jen et al., 1997).

Regulated expression of STRA13 and ID2 in the human

placenta is consistent with potential roles in trophoblast

differentiation (Janatpour et al., 1999, 2000). No bHLH

factors have been implicated in SynT differentiation. How-

ever, the formation of SynT cells is dependent on a distinct

type of transcription factor called Gcm1 (Anson-Cartwright

et al., 2000).

Although it is clear from the studies to date that key

transcription factors are required for formation and/or main-

tenance of differentiated trophoblast subtypes, it is unclear

how their activities are controlled and coordinated with the
signals that regulate the maintenance of the TS cell pheno-

type. One of the interesting features of the trophoblast

lineage is that early after implantation, the TS cell popula-

tion is restricted to a discrete compartment called the

chorion (also called extraembryonic ectoderm) (Rossant

and Cross, 2001; Uy et al., 2002). In situ hybridization

studies have failed to detect Hand1 mRNA in the chorion

(Cross et al., 1995; Scott et al., 2000), although expression

from a LacZ ‘knock in’ reporter can be detected (Firulli et

al., 1998), implying that Hand1 transcription is either very

low and/or that the transcript is unstable in chorionic

trophoblast cells. Gcm1 mRNA expression is limited to

only those specific cells that are selected out to contribute

to the labyrinth and differentiate into SynT cells (Anson-

Cartwright et al., 2000; Stecca et al., 2002). Mash2 mRNA

is expressed in the chorion, but also in the ectoplacental

cone (which later becomes the SpT layer) (Guillemot et al.,

1994; Nakayama et al., 1997). These data suggest that

suppressing the expression of these differentiating transcrip-

tion factors in the chorion may be essential for the mainte-

nance of TS cells. Rcho-1 cells have been previously used to

test the effect of ectopic expression of Hand1 and Mash2 on

TG cell differentiation (Cross et al., 1995; Kraut et al., 1998;

Scott et al., 2000). However, these cells cannot be regulated

in the same way as TS cells, nor do they develop into the

diverse range of differentiated cell types. For this reason, we

conducted studies using a murine TS cell line in which the

differentiation potential of the cells is modulated by culture

in the presence or absence of FGF4 (Tanaka et al., 1998).

We found that ectopic expression of Hand1, Stra13 and

Gcm1 were able to arrest cell proliferation and promote

differentiation even when the cells were maintained in

FGF4. Mash2 had no significant effect on the behavior of

TS cells in the presence of FGF4, but promoted transient

proliferation after FGF4 withdrawal.
Materials and methods

Plasmids

For TS cell transfection experiments, the cDNAs for

Hand1, Mash2 and Gcm1 were subcloned in the sense

orientation into the pTRACER plasmid (Invitrogen) down-

stream of the CMV promoter/enhancer. The full-length

Gcm1 cDNAwas also subcloned in an antisense orientation

that was used for some experiments. The plasmid also

carries an EF-1a promoter driving expression of a GFP/

blasticidin fusion protein that allows detection of transfected

cells by visualization of GFP. The Stra13 expression vector

(pSG5-STRA13) was obtained from Dr. Pierre Chambon

(Strasbourg), and was co-transfected into TS cells together

with the empty pTRACER vector (ratio of 5:1). CMV

expression vectors for Hand1 and Mash2, used for the

Rcho-1 experiments, have been previously described (Cross

et al., 1995; Scott et al., 2000).



Fig. 1. Expression of Hand1, Mash2, Gcm1 and Stra13 mRNAs during TS

cell differentiation. Total RNA was collected from TS cells maintained in

the presence of FGF4/CM (time 0) or at different days after withdrawal of

FGF4/CM and analyzed by Northern blotting. Pl1 is a TG cell-specific

gene.
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Trophoblast cell culture and transfections

ATS cell line derived from Rosa26 mice was used for all

experiments (from Dr. Janet Rossant, Toronto) and was

maintained as described previously (Tanaka et al., 1998).

Briefly, the cells were grown in medium supplemented with

25 ng/ml FGF4 (Sigma Chemical Company) and 70%

conditioned medium from mouse embryonic fibroblasts

(CM). To promote differentiation, the growth medium was

removed, the cells were washed once with phosphate-

buffered saline and re-fed with medium lacking the FGF4

and CM. Cells seeded in six-well plates were transfected

with Lipofectamine using a total of 4 Ag of plasmid per well.

Rcho-1 cells were grown and transfected as described

previously (Cross et al., 1995; Scott et al., 2000). For cell

differentiation experiments, transfected cells were plated at

low density (1:50) and observed for up to 72 h. Transfected

cells were detected by their expression of EGFP, scored for

morphology, and their ability to proliferate was based on the

emergence of a multi-cell clone. Fifty to one hundred clones

were assessed for each transfection group, and experiments

were repeated two to three times.

RNA analysis

Total RNA was isolated from TS cells using TRIzolR
(Invitrogen) and 10 Ag per sample was analyzed by North-

ern blotting. Complementary DNA probes for Gcm1 (Alt-

shuller et al., 1996), Mash2 (Guillemot et al., 1994), Stra13

(Boudjelal et al., 1997), Hand1 (Cross et al., 1995) and Pl1

(Colosi et al., 1987) have been described previously. North-

ern blots were quantitated by densitometry using NIH Image

1.62 on scanned blots, and signals were normalized for

loading by using an 18S rRNA probe. Two identical blots

were prepared to deal with all of the different probes. In situ

hybridization was performed on paraffin sections of con-

ceptuses in deciduo from embryonic day 8.5 using nonra-

dioactive RNA in situ hybridization as described previously

(Anson-Cartwright et al., 2000).

Antibodies, Western blotting and immunostaining

An affinity-purified rabbit polyclonal antibody was made

against a Stra13-specific peptide (ELEKGDLRSEQ-

PYFKSDH) by Research Genetics Inc., and has been previ-

ously described (St-Pierre et al., 2002). Cell lysates from TS

cells or their differentiated derivatives were analyzed by

Western blotting using standard procedures. A mouse mono-

clonal antibody against Stra13 was prepared by the labora-

tory of Dr. Paul Hamel (Department of Laboratory Medicine

and Pathobiology, University of Toronto) by immunizing

mice against a GST-Stra13 fusion protein. Stra13-specific

antibodies were selected byWestern blot analysis for specific

recognition of HIS-Stra13 in Dr. Hamel’s laboratory. To

assess the specificity of the monoclonal antibody, COS-7

cells were transfected with pcDNA3, pcDNA3-Stra13 or

M. Hughes et al. / Developm28
pcDNA3-FLAG-Stra13 using Qiagen Superfect reagent,

then lysed 36–48 h post-transfection. The presence of

ectopically expressed Stra13 in soluble protein lysate was

detected by Western blot using rabbit polyclonal anti-Stra13,

mouse monoclonal anti-Stra13 or mouse monoclonal anti-

FLAG (M2 antibody from Sigma).

Immunoperoxidase staining was performed on 4% para-

formaldehyde-fixed monolayers of differentiated cells de-

rived from TS cell cultures, using the Stra13 monoclonal

antibody. Dual immunofluorescent staining for Hand1 and

Stra13 was performed using a rabbit anti-Hand1 (Firulli et

al., 2003) and the mouse anti-Stra13 antibodies. TS cells

were differentiated in ‘TS cell medium’ lacking FGF/CM for

5 days before immunostaining. Cells were then fixed with

cold 4% paraformaldehyde, and permeabilized with metha-

nol and then 0.5% Triton X-100 in PBS on ice. The cells

were double stained with rabbit anti-Hand1 antiserum (pro-

vided by Dr. Cserjesi) and mouse anti-Stra 13 monoclonal

antibody for either overnight at 4 jC or 1 h at room

temperature, followed by the staining with Alexa FluorR
488-conjugated goat anti-rabbit IgG (Molecular Probes) and
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Cyk3-conjugated goat anti-mouse IgG (Jackson ImmunoR-

esearch) for 1 h at room temperature. The cells were counter-

stained with DAPI and then scored for immunoreactivity

(n = 245).
Results

Expression of Gcm1, Hand1, Mash2 and Stra13 during

trophoblast differentiation

We performed Northern blots to assess the expression

of Hand1, Mash2 and Gcm1 in cultured TS cells before

and after differentiation. TS cells that are cultured in the

presence of FGF4 and conditioned medium from feeder

cells (CM) retain characteristics of TS cells in vivo, but

after withdrawal of FGF4/CM differentiate primarily into

TG cells (Tanaka et al., 1998). We collected RNA from

cells at various days after withdrawal of FGF4/CM (Fig.

1). The onset of Pl1 gene expression, which is specific to

TG cells (Colosi et al., 1987), was detectable only after

day 4 of differentiation (Fig. 1). The mRNAs for Hand1,

Mash2 and Gcm1 were expressed at either low (Gcm1,

Hand1) or undetectable (Mash2) levels in undifferentiated

TS cells but were readily detectable within 24 h after

withdrawal of FGF4/CM (Fig. 1). Weak expression of

these genes in undifferentiated cells may be explained by

the fact that a few differentiated derivatives always appear

in TS cell cultures, even under optimal stem cell growth

conditions (see Fig. 3). After withdrawal of FGF4/CM, the
Fig. 2. Expression of the Stra13 protein in TG cells. (A) Characterization of the S

Stra13 or FLAG-epitope tagged Stra13, or empty vector as negative control were im

or anti-FLAG antibodies. (B) Western blot of cell lysates from TS cells and their dif

TS cells grown on coverslips and differentiated for 5 days were fixed and pro

monoclonal (C) or control hybridoma supernatant (D). Arrowhead denotes immun

TS cells dual stained with anti-Hand1 and anti-Stra13 antibodies. Cells were sco

Hand1 (h), Stra13 (s), or both (sh).
expression of Gcm1 mRNA increased approximately 12-

fold to peak around day 2, declined by day 3 and was

undetectable after day 6 (Fig. 1). The expression pattern

for Mash2 was similar except that the decline was less

precipitous. Expression of Hand1 mRNA was high

throughout the differentiation time course (Fig. 1), consis-

tent with its expression in both ectoplacental cone and TG

cells in vivo (Cross et al., 1995; Firulli et al., 1998; Scott

et al., 2000), though expression did decline about 3-fold

between days 2 and 8 of differentiation.

In addition to Hand1, Mash2 and Gcm1, we also

studied the expression of Stra13, a gene encoding a bHLH

transcription factor. Expression of this gene has been

described in the human placenta, with expression increas-

ing as cytotrophoblast cells differentiate into invasive

extravillous cytotrophoblast cells (Janatpour et al., 1999).

Stra13 expression in the mouse placenta has been only

crudely described (Boudjelal et al., 1997). During TS cell

differentiation in vitro, Stra13 mRNA was detectable only

after withdrawal of FGF4, increased to a peak around day

5 of differentiation and remained detectable thereafter (Fig.

1). This pattern was consistent with expression in TG cells

but potentially also in precursor cells. To localize the

mRNA expression, we first performed RNA in situ hy-

bridization on tissue sections, but Stra13 expression was

only weakly detected (data not shown). We therefore used

immunostaining with two independent Stra13-specific anti-

bodies. Both antibodies recognize an approximately 45-

kDa band in cell lysates similar to the size of the predicted

protein (Fig. 2A). The Stra13 protein was up-regulated
tra13 monoclonal antibody. Cell lysates from COS-7 cells transfected with

munoblotted with either the rabbit polyclonal antibody, mouse monoclonal

ferentiated derivatives at various days after withdrawal of FGF4/CM. (C, D)

cessed for immunoperoxidase staining using either the mouse anti-Stra13

opositive and asterisk indicates an immunonegative cells. (E) Differentiated

red for staining and counted as either immunonegative (�), or positive for
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during early TS cell differentiation and was then down-

regulated similar to the mRNA (Fig. 2B). Stra13 immu-

noreactivity was detected in TG cells derived from the

differentiation of cultured TS cells (Fig. 2C). We found

that the Stra13 protein was localized in the nucleus, as

would be expected for a transcription factor, but was only

detected in <50% of the cells. The distinct patterns of

localization may relate to the fact that Stra13 protein levels

are regulated by the Vhl and UBC9/ubiquitin proteasome

degradation pathway (Ivanova et al., 2001). To determine

how the expression of the Stra13 protein compared with

Hand1, we performed dual immunofluorescence analysis

on monolayers of TS cells that had been allowed to

differentiate in the absence of FGF4/CM for 5 days (Fig.

2E). By 5 days of differentiation, the majority of cells in

the culture are polyploid, but only cells that had a typical

TG cell morphology (expansive flat cytoplasm, extensive

ER and large nucleus) were scored for expression. We

detected Stra13 immunoreactivity in only 30.8% of TG

cells, compared with 62.4% of cells that were immuno-
Fig. 3. Differentiation of TS cells in vitro. (A) Morphology of TS cells and the

differentiation. Cells were plated at low density in either the presence or absence o

scoring cells under 200� magnification. Fifty to one hundred fields were counte
positive for Hand1. The Stra13-positive cells were a subset

of the Hand1-positive cells, as 96% of the Stra13-postive

TG cells were also positive for Hand1, whereas only 47%

of Hand1-positive cells were also immunopositive for

Stra13. Roughly a third (36.9%) of the TG cells failed to

stain with either antibody.

Trophoblast stem cells differentiate into both giant cells and

syncytiotrophoblast after FGF4 withdrawal

Before studying the effect of altering the expression

patterns for Hand1, Mash2, Gcm1 and Stra13 on the

developmental potential of TS cells, we first quantified

the normal changes in cell populations as TS cells differ-

entiate in vitro. TS, TG and SynT cells have distinct cell

morphologies that can be readily distinguished in vitro

(Fig. 3A). TS cells are cuboidal and have a large nucleus-

to-cytoplasmic ratio. TG cells have a large expansive

cytoplasm and large polyploid nuclei. SynT cells have

multiple nuclei (usually only two in vitro) and more
ir differentiated cell derivatives. (B) Time course of trophoblast stem cell

f FGF4/CM and the relative proportions of each cell type were assessed by

d for each time point. Plotted values represent mean F SEM.
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elongated cytoplasm. The size of the nuclei in SynT cells

is similar to that of TS cells, consistent with them

remaining diploid. When cultures of TS cells are trypsi-

nized briefly, the differentiated cell types are more resistant

and remain attached to the dish. Therefore, by re-plating

only trypsin-sensitive cells, one starts with a relatively

homogeneous group of stem cells. To assess the time

course of cell differentiation, we plated trypsin-sensitive

TS cells at low density (1:20) and then counted the

numbers of cells conforming to the three primary cell

morphologies in TS cell cultures either left growing in

the presence of FGF4/CM, or following their withdrawal

(Fig. 3B). We found that within 48 h of FGF4/CM

withdrawal, the numbers of TG and SynT cells increased

significantly compared with cells remaining in FGF4/CM

(P < 0.05). Notably, approximately 50% of the cells had

transformed into TG cells, whereas the number of SynT

cells never reached levels above approximately 5%. With-

drawal of FGF4/CM is associated with cell division arrest

(Tanaka et al., 1998), but no obvious increase in cell death,

indicating that the increase in relative numbers of TG and

SynT cells reflects a true increase in cell differentiation and

not simply a loss of stem cells.
Fig. 4. Effect of Mash2 over-expression on trophoblast differentiation. TS cells we

their ability to proliferate (A, C) or differentiate into TG cells (B, D), either in th

mean F SEM. Asterisk (*) indicates that control and experimental values are sig
Mash2 maintains trophoblast TS cell proliferation after

withdrawal from FGF4

To test if ectopic or over-expression of transcription

factors had any effect on TS cell proliferation or differen-

tiation, we transfected Rosa26 TS cells with expression

vectors encoding Hand1, Mash2, Gcm1 and Stra13. TS cells

were plated at very low density to allow analysis of the fate

of individual transfected cells identified by expression of a

co-transfected EGFP reporter. Transfection of TS cells with

an EGFP expression vector alone did not alter the patterns

or rates of TS cell proliferation or differentiation compared

with non-transfected cells (data not shown). Transfection of

TS cells with a Mash2 expression vector had no effect on

the percentage of cells that differentiated to the SynT fate

(data not shown). Likewise, Mash2 over-expression did not

affect the number of cells able to differentiate into TG cells

(Figs. 4B, D), in contrast to previous findings with trans-

fected Rcho-1 cells (Cross et al., 1995; Kraut et al., 1998;

Scott et al., 2000). Mash2-expressing cells that were main-

tained in the presence of FGF4/CM did have a slightly faster

rate of proliferation; however, as assessed by cell clone size

by 48 h after transfection, the difference was not statistically
re transfected with empty vector or Mash2 expression vector and scored for

e presence (A, B) or absence (C, D) of FGF4/CM. Plotted values represent

nificantly different by t test (P < 0.05).



Fig. 5. Effect of Hand1 over-expression on trophoblast differentiation. TS

cells maintained in FGF4/CM were transfected with empty vector or Hand1

expression vector and scored for their ability to proliferate (A) or

differentiate into TG cells (B). Plotted values represent mean F SEM.

Asterisk (*) indicates that control and experimental values are significantly

different by t test (P < 0.05).

Fig. 6. Effect of Stra13 over-expression on trophoblast differentiation. TS

cells maintained in FGF4/CM were transfected with empty vector or Stra13

expression vector and scored for their ability to proliferate (A) or

differentiate into TG cells (B). Plotted values represent mean F SEM.

Asterisk (*) indicates that control and experimental values are significantly

different by t test (P < 0.05).

M. Hughes et al. / Developmental Biology 271 (2004) 26–3732
significant (Fig. 4A). Interestingly, whereas control TS cells

divided only once after FGF4/CM was withdrawn from the

medium, Mash2-transfected cells divided twice (Fig. 4C).

These data suggest that Mash2 can stimulate FGF4-inde-

pendent proliferation of TS cells, although the effect is

transient.

Hand1 and Stra13 promote differentiation of TS cells into

giant cells even in the presence of FGF4

Ectopic expression of Hand1 in TS cells that were

maintained in the presence of FGF4/CM resulted in a
significant increase in the formation of TG cells by 72

h after transfection (Fig. 5B), as well as eventually slowing

cell proliferation (Fig. 5A). In cells where differentiation

was promoted by withdrawal of FGF4/CM, Hand1 over-

expression had no additional effect (data not shown). Over-

expression of Stra13 in TS cells also promoted TG cell

differentiation. However, the effect occurred more rapidly

and was more pronounced than with Hand1 (Fig. 6B).

Stra13 expression promoted a rapid arrest of cell prolifer-

ation, such that transfected cells only divided once within 48
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h (Fig. 6A). Notably, over 50% of transfected cells had

become post-mitotic TG cells by 48 h (Fig. 6B). The lesser

effect of Hand1 was not due to a failure in transfection, the

expression cassette or ability of Hand1 to be expressed in

TS cells, as judged by immunostaining for an epitope-

tagged version of the Hand1 protein (data not shown) or

Western blot analysis (Fig. 7). The proportion of TS cells

transfected with Hand1 that were transformed into TG cells

was similar to that observed previously in Rcho-1 cell

transfection experiments (Cross et al., 1995; Kraut et al.,

1998; Scott et al., 2000).

To define Stra13 function within the context of the other

bHLH factors, we tested for interactions among Stra13,

Hand1 and Mash2. We have previously found that the

ability of Hand1 over-expression to promote the differenti-

ation of TG cells in transfected Rcho-1 cells is inhibited by

Mash2 over-expression (Scott et al., 2000), possibly through

either direct or indirect protein interactions (Firulli et al.,

2000; Scott et al., 2000). Rcho-1 cells were therefore co-

transfected with Stra13 andMash2 expression constructs. In

contrast to its effects on Hand1 activity, Mash2 over-

expression did not inhibit Stra13 activity (Fig. 8A). Similar

results were observed in TS cells (Fig. 8B). The Stra13

protein does not appear to act as a heterodimer with Hand1,

as a Hand1–Stra13 interaction has not been detected in

mammalian two-hybrid experiments (data not shown), and

co-transfection of expression vectors for Stra13 and Hand1

did not further stimulate TG cell differentiation (Fig. 8B).
Fig. 7. Expression of Hand1 and Stra13 proteins in transfected cells. TS and

COS (used as a positive control) cells were transfected with increasing

amounts of expression vector for FLAG epitope-tagged Hand1 and for

Stra13, harvested 24 h later and subjected to Western blotting.

Fig. 8. Stra13-stimulated TG cell differentiation is not inhibited by Mash2.

Rcho-1 stem cells (A) and TS cells (B) were transfected with either empty

vector, or expression vectors for Hand1, Mash2 and Stra13 either alone or

in combination. TG cell differentiation of transfected cells was scored 48

h later. Scale bars represent mean F SEM. Values with different

superscripts are significantly different (P < 0.05).
Gcm1 promotes cell division arrest and blocks giant cell

differentiation

Ectopic expression of Gcm1 in TS cells maintained in the

presence of FGF4/CM resulted in a dramatic arrest of cell

proliferation, such that the cells stopped dividing immedi-

ately and remained as single cell clones (Figs. 9A, B). In

contrast with Hand1- and Stra13-transfected cells, the

Gcm1-transfected cells did not transform into TG cells

and retained a TS-like morphology (Fig. 9B). Indeed, when



Fig. 9. Effect of Gcm1 on proliferation, TG and SynT differentiation. TS cells were transfected with empty vector or Gcm1 expression vector and scored for

their ability to proliferate (A, B) or differentiate into TG cells (C, D), either in the presence (A, B, C) or absence (D) of FGF4/CM. Panel B shows the

morphology of the Gcm1-transfected cells 72 h after transfection, and that they maintain a small, TS cell-like morphology. Plotted values represent mean F
SEM. Asterisk (*) indicates that control and experimental values are significantly different by t test (P < 0.05).
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compared with controls, the Gcm1-transfected cells differ-

entiated into TG cells at a significantly lower rate (Figs. 9C,

D). Even when TG differentiation was maximally stimulated

by withdrawal of FGF4/CM (up to 50% of cells are TG cells

by 48 h), only approximately 5% of Gcm1-transfected cells

were able to differentiate into TG cells. Over-expression of

Gcm1 had no effect on the rate at which SynT cells formed,

though it should be noted that, due to the rapid arrest of cell

proliferation induced by Gcm1, these cells were only rarely

close enough together to undergo fusion. However, cells

transfected with a vector encoding Gcm1 in an antisense

orientation did show a block to SynT differentiation (Con-

trol: 2.6%; Gcm1 antisense: 0%; chi-square: P < 0.05),

consistent with the phenotype of Gcm1-deficient mice

(Anson-Cartwright et al., 2000).
Fig. 10. Model of how the Hand1, Stra13, Mash2 and Gcm1 transcription

factors, and FGF4/CM signaling interact to regulate alternative trophoblast

cell fates.
Discussion

The results of the TS cell transfection studies presented

here complement previous work analyzing mouse mutants

to give insights into the functions of Hand1, Mash2, Stra13

and Gcm1 at a cellular level (see Fig. 10). Importantly,

because the ongoing proliferation of TS cells and the
maintenance of their stem cell character is dependent on

FGF4 and uncharacterized factors from feeder cells (Tanaka

et al., 1998), we were able to explore the interactions

between these pathways. Withdrawal of FGF4/CM from

TS cells in vitro was associated with rapid up-regulation in
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the expression of Hand1, Mash2, Stra13 and Gcm1. Coin-

cident with this, TS cells lost the ability to proliferate and

they terminally differentiated into either TG cells (at a high

rate) or SynT cells (to a more limited extent). The most

important general conclusion is that if Stra13 or Gcm1 (to a

lesser extent Hand1) are ectopically expressed in TS cells

still being stimulated by FGF4/CM, they each have domi-

nant effects in being able to promote cell cycle arrest and

differentiation into either TG cells or SynT.

Whereas Hand1, Stra13 and Gcm1 action is associated

with cell cycle arrest, Mash2 was able to sustain the

proliferation of TS cells after FGF4/CM withdrawal, albeit

only transiently. In vivo, Mash2 mRNA is expressed weakly

in the chorion and more strongly in the ectoplacental cone

and later the SpT. Cells within these regions express mitotic

markers (M.S. and J.C.C., unpublished observations) but,

unlike the chorion, do not express FGFR2, the primary FGF

receptor mediating the FGF4 effect in TS cells of the

chorion (Arman et al., 1998; Tanaka et al., 1998). Therefore,

proliferation within the ectoplacental cone and SpT may be

FGF-independent and based on our experiments, only

transient. These data fit the model that trophoblast cells in

the ectoplacental cone and SpT are a transiently amplifying

‘‘progress zone’’ that serves as an expanded reservoir of

cells that have lost their stem cell potential and are ulti-

mately dedicated to form TG cells. In contrast to findings in

transfected Rcho-1 cells (Cross et al., 1995; Kraut et al.,

1998; Scott et al., 2000), over-expression of Mash2 in TS

cells did not suppress TG cell differentiation. Rcho-1 cells,

which were derived from a trophoblast tumor, grow in an

FGF4-independent manner although they do not express

Mash2 and do not apparently differentiate into any tropho-

blast derivative other than TG cells (Cross et al., 1995; Faria

and Soares, 1991; MacAuley et al., 1998; Soares et al.,

1996). As such, they are poised to only execute the TG

differentiation program. The effect of ectopic Mash2 ex-

pression in Rcho-1 cells may therefore simply be to convert

them to a cell type more like the transiently amplifying

population of TS cells. This fits with the slowly progressive

phenotype of Mash2 mutant mice (Guillemot et al., 1994;

Tanaka et al., 1997).

Previous experiments have shown that Hand1 is both

necessary (Riley et al., 1998; Scott et al., 2000) and

sufficient (Cross et al., 1995; Kraut et al., 1998; Scott et

al., 2000) for promotion of TG cell differentiation. Our

results in transfected TS cells support these conclusions. We

found that another bHLH factor gene, Stra13, also promotes

TG cell differentiation. Stra13 expression is inducible by

retinoic acid (Boudjelal et al., 1997), which has been shown

to also induce TG differentiation (Yan et al., 2001). Al-

though both Stra13 and Hand1 mRNAs are detected in TG

cells, their expression actually begins in precursor cells (this

study; Cross et al., 1995; Scott et al., 2000). Similarly,

during differentiation of TS cells in culture, the Stra13 and

Hand1 mRNAs were detected several days before the onset

of expression of the giant cell-specific gene Pl1. Expression
was not detected in undifferentiated TS cells, but ectopic

expression of either Hand1 or Stra13 was sufficient to

stimulate TG cell differentiation. Notably, if TG cell differ-

entiation was stimulated by withdrawal of FGF4/CM from

the cultures, over-expression of either Hand1 or Stra13 had

no additional effect, implying that both factors act primarily

to promote mitotic cell cycle exit and poise the cells to

endoreduplicate. The effects of Hand1 and Stra13 were

distinct in that Stra13 had a much more dramatic and rapid

effect both in arrest of cell proliferation and in stimulation of

TG differentiation. This difference in results may be be-

cause, whereas Hand1 action can be interrupted by Mash2

(Scott et al., 2000), the Stra13 effects were not. The effect of

Mash2 on Hand1 is likely due to either direct or indirect

interactions affecting DNA binding (Firulli et al., 2000;

Scott et al., 2000). Stra13 has been shown to dimerize in

vitro with E47 and Mash1, as well as form homodimers

(Boudjelal et al., 1997; St-Pierre et al., 2002), similar to the

types of possible interactions for Hand1 (Firulli et al., 2000,

2003; Scott et al., 2000). However, the difference in

behavior of Hand1 and Stra13 in response to Mash2 implies

that the dimerization characteristics of the Hand1 and Stra13

proteins are different in vivo.

Gcm1 mRNA is expressed in a subset of trophoblast cells

at the chorioallantoic interface at embryonic day 8.5 in mice

that corresponds to sites where morphogenesis begins

(Anson-Cartwright et al., 2000; Basyuk et al., 1999). The

placentas in Gcm1-deficient embryos show a defect in both

chorioallantoic morphogenesis and SynT cell differentiation

(Anson-Cartwright et al., 2000). Our experiments here

showed that expression of antisense Gcm1 RNA blocked

SynT differentiation, without affecting cell proliferation or

TG differentiation. This indicates that the absence of SynT

cells in the Gcm1 mutants is a primary phenotype and not

simply secondary to the morphogenetic defect. The first step

in SynT formation is exit of cells from the mitotic cell cycle

and, therefore, the effect of Gcm1 mutation may simply be

to prevent cell cycle exit, a possibility supported by the

ability of ectopic Gcm1 expression to arrest TS cell prolif-

eration. Gcm1 also appears to regulate the fusogenic process

(Yu et al., 2002). The other major effect of ectopic Gcm1

expression was to restrict the ability of the cells to form TG

cells. The fundamental decision of a TS cell to remain as a

stem cell, or to progress towards the alternative fates of TG

and SynT cells is therefore regulated, rather simply, by

regulated expression of Gcm1.

The striking effects of Hand1, Stra13 and particularly

Gcm1 on suppressing TS cell proliferation raise two inter-

esting issues. First, it will be interesting to understand at a

molecular level how Hand1, Stra13 and Gcm1 modify the

responses of the cells to FGF4/CM. One possibility is that

these transcription factors directly suppress the signaling

ability of FGF4/CM by altering expression of a signaling

component. Withdrawal of FGF4/CM from the culture

medium results in cell proliferation arrest that takes about

2 days to complete. This is similar to the time frame for the
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effects of Hand1 and Stra13. Stra13 is associated with arrest

of cell proliferation in other systems (Sun and Taneja,

2000). Notably though, Gcm1 has a much more rapid effect

in that ectopic expression results in immediate cell prolifer-

ation arrest. Therefore, it is likely that Gcm1 has an effect on

cell proliferation that is more than simply shutting off FGF4/

CM signaling. Induction of a cyclin-dependent kinase

inhibitor is one possibility. The second issue concerns the

importance of regulated expression of the Hand1, Stra13

and Gcm1 genes for normal trophoblast development. None

of these factors are widely expressed in the chorion and the

implication of the antiproliferative effects is that suppressing

their expression within the chorion is actually rather critical

for maintenance of the TS cell phenotype.
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