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a b s t r a c t

Closed-form integral expressions are derived here for a family of convergent Mathieu-
type series and its alternating variant when their terms contain the Fox–Wright pΨq
function. Some two-sided exponential bounding inequalities are then obtained for a class of
Fox–Wright pΨq functions, thereby generalizing certain results of Luke. Finally, by means
of the integral expressions obtained here, a number of two-sided exponential bounding
inequalities are given for the aforementioned series.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

In a series of recent papers, the authors as well as Tomovski have studied certain families of Mathieu-type a-series and
alternating Mathieu-type a-series, whose terms contain the familiar Gauss hypergeometric function 2F1, the generalized
hypergeometric function pFq, the Fox–Wright 1Ψ2 function, Meijer’s G function and Fox’s H function (see, for example, [1–
7]). The results derived in these earlier works are concerned mainly with closed-form integral expressions and two-sided
bounding inequalities for these series. Here, in our present investigation, we generalize these results to Mathieu-type series
whose terms contain the Fox–Wright pΨq function and its alternating variants improving substantially the earlier results.
The closed-form integral expressions in conjunction with the two-sided exponential inequalities obtained here are shown
to lead to a number of two-sided bounding inequalities for the aforementioned series.
Here, and inwhat follows, we use pΨq to denote the Fox–Wright generalization of the familiar hypergeometric pFq function

with p numerator and q denominator parameters (see [8,9]), defined by (cf., e.g., [7, p. 4, Eq. (2.4)])

pΨq

[
(a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bq, βq)

∣∣∣∣ z] = pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ z] := ∞∑
m=0

p∏̀
=1
0 (a` + α`m)

q∏̀
=1
0(b` + β`m)

zm

m!

(
α` ∈ R+ (` = 1, . . . , p);βj ∈ R+ (j = 1, . . . , q); 1+

q∑
`=1

β` −

p∑
j=1

αj > 0

)
, (1)
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for suitably bounded values of |z|. The generalized hypergeometric function pFq is defined by

pFq

[
a1, . . . , ap
b1, . . . , bq

∣∣∣∣ z] = pFq

[
ap
bq

∣∣∣∣ z] := ∞∑
m=0

p∏̀
=1
(a`)m

q∏̀
=1
(b`)m

zm

m!
(2)

where, as usual, we make use of the following notation:

(τ )0 := 1 and (τ )m := τ(τ + 1) · · · (τ +m− 1) =
0(τ +m)
0(τ )

(m ∈ N)

to denote the shifted factorial or the Pochhammer symbol. Obviously, we find from the definitions (1) and (2) that

pΨq

[
(ap, 1)
(bq, 1)

∣∣∣∣ z] = 0(a1) · · ·0(ap)
0(b1) · · ·0(bq)

· pFq

[
ap
bq

∣∣∣∣ z] (aj > 0; bk 6∈ Z−0 ). (3)

Throughout this paper, we adopt the following convention for the real sequence c:

c : 0 < c1 < c2 < · · · < cn ↑ ∞. (4)

It is useful here to consider the function c : R+ 7→ R+ such that

c(x)|x∈N = c.

We also denote by c−1(x) the inverse function of c(x).
We denote the integer part of a real number a by [a] and we write

{a} = a− [a]

for the fractional part of the real number a.
In this paper, we investigate the Mathieu-type seriesB and its alternating variant B̃, which are defined by

Bλ,µ

(
p+1Ψq; c; r

)
:=

∞∑
j=1

c−λj
(cj + r)µ

· p+1Ψq

[
(ap+1, αp+1)
(bq, βq)

∣∣∣∣ rcj
]

(5)

and

B̃λ,µ

(
p+1Ψq; c; r

)
:=

∞∑
j=1

(−1)j−1c−λj
(cj + r)µ

· p+1Ψq

[
(ap+1, αp+1)
(bq, βq)

∣∣∣∣ rcj
]
, (6)

where it is tacitly assumed that all of the required constraints for the parameters involved are satisfied for the series in (5)
and (6) to be convergent.
We remark in passing that, by means of different approaches, similar series have been presented in integral forms

by (for example) Pogány [3, Theorem 2], and by Pogány and Tomovski [5, Theorem 1] who made use of the generalized
hypergeometric function pFq and Meijer’s G function.

2. Integral representations ofBλ,µ(p+1Ψq; c; r) and B̃λ,µ(p+1Ψq; c; r)

In the course of our investigation, one of the main tools is the following result providing the Laplace transform of
xλ−1pΨq(·|ωx):∫

∞

0
e−ρx xλ−1pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ωx] dx = ρ−λp+1Ψq [(λ, 1), (ap, αp)(bq, βq)

∣∣∣∣ ωρ
]

(
α` (` = 1, . . . , p);βj > 0 (j = 1, . . . , q);R(ρ) > 0;R(λ) > 0

)
, (7)

which can easily be derived by using the definition (1) and an elementary Gamma-function property given by

ρ−λ0(λ) =

∫
∞

0
e−ρt tλ−1dt (R(ρ) > 0;R(λ) > 0) . (8)

We now consider the series (5) forBλ,µ

(
p+1Ψq; c; r

)
and set

ρ = cj, ω = r, ap+1 = λ and αp+1 = 1
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in (7). Then, using (8) with ρ = cj + r,we find that

Bλ,µ

(
p+1Ψq; c; r

)
=

1
0(µ)

∞∑
j=1

∫
∞

0

∫
∞

0
e−cjs−(cj+r)tsλ−1tµ−1pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ rs] ds dt
=

1
0(µ)

∫
∞

0

∫
∞

0

(
∞∑
j=1

e−cj(s+t)
)
e−rtsλ−1tµ−1pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ rs] ds dt.
The inner-most Dirichlet series:

Dc(y) =
∞∑
j=1

e−cjy (y := s+ t > 0)

possesses a Laplace integral form (see [1,2]). Since[
c−1(x)

]
≡ 0 (x ∈ [0, c1)),

we thus obtain

Dc(y) = y
∫
∞

0
e−yx

∑
j:cj5x

1

 dx = y ∫ ∞
c1
e−yx

[
c−1(x)

]
dx.

Therefore, we conclude that

Bλ,µ

(
p+1Ψq; c; r

)
=

∫
∞

c1

[c−1(x)]
0(µ)

(∫
∞

0
e−(r+x)t tµ−1dt

)
·

(∫
∞

0
e−xssλpΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ rs] ds) dx
+

∫
∞

c1

[c−1(x)]
0(µ)

(∫
∞

0
e−(r+x)t tµdt

)
·

(∫
∞

0
e−xssλ−1pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ rs] ds) dx
=

∫
∞

c1

[c−1(x)]
xλ+1(r + x)µ p+1

Ψq

[
(λ+ 1, 1), (ap, αp)

(bq, βq)

∣∣∣∣ rx
]
dx (9)

+µ

∫
∞

c1

[c−1(x)]
xλ(r + x)µ+1 p+1

Ψq

[
(λ, 1), (ap, αp)
(bq, βq)

∣∣∣∣ rx
]
dx. (10)

Finally, by introducing the following integral:

JΨc (u, v) :=
∫
∞

c1

[
c−1(x)

]
xu(r + x)v

· p+1Ψq

[
(u, 1), (ap, αp)
(bq, βq)

∣∣∣∣ rx
]
dx, (11)

we can easily expressBλ,µ

(
p+1Ψq; c; r

)
as a linear combination of two JΨc (·, ·) functions.

Theorem 1. Let

λ,µ, r > 0 and (ap+1, αp+1) = (λ, 1).

Then the Mathieu-type seriesB defined by (5) possesses the following closed-form integral representation:

Bλ,µ

(
p+1Ψq; c; r

)
= JΨc (λ+ 1, µ)+ µJΨc (λ, µ+ 1). (12)

We next sum the following alternating Dirichlet series D̃c(y) that appears in the derivation of the integral expression for
B̃ (see, for details, [3,5], and [6, Section 4]):

D̃c(y) =
∞∑
j=1

(−1)j−1e−cjy = y
∫
∞

c1
e−yx sin2

(π
2

[
c−1(x)

])
dx. (13)

Obviously, by repeating the same calculations as above with (13), we can deduce the following result for the alternating
Mathieu-type series.

Theorem 2. Let

λ,µ, r > 0 and (ap+1, αp+1) = (λ, 1).
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Then the Mathieu-type series B̃ defined by (6) possesses the following closed-form integral representation:

B̃λ,µ

(
p+1Ψq; c; r

)
= J̃Ψc (λ+ 1, µ)+ µ̃JΨc (λ, µ+ 1) (14)

where

J̃Ψc (u, v) :=
∫
∞

c1

sin2
(
π
2 [c
−1(x)]

)
xu(r + x)v

· p+1Ψq

[
(u, 1), (ap, αp)
(bq, βq)

∣∣∣∣ rx
]
dx. (15)

3. Two-sided exponential inequalities for the Fox–Wright function pΨq

Exponential inequalities for the confluent hypergeometric function pFp were investigated by Luke [10, Theorem 16, Eq.
(5.5–7)]. In fact, by assuming that

bj = aj > 0 (j = 1, . . . , p),
he showed that (see [10, Theorem 16, Eq. 5.5–7)])

eθ |x| 5 pFp

[
ap
bp

∣∣∣∣ x] 5 1− θ (1− e|x|)
(
θ :=

p∏
j=1

(
aj
bj

)
; x ∈ R

)
. (16)

Recently, Pogány and Tomovski [5] extended Luke’s inequality to a class of generalized hypergeometric functions
pFq (p 5 q). Because pFq

[
ap; bq|x

]
is symmetric with respect to the permutations of the parameters a and b, we can assume

that
a1 5 a2 5 · · · 5 ap and b1 5 b2 5 · · · 5 bq.

So, whenever there is the p-tuple:
1 5 i1 < · · · < ip 5 q

such that
bij = aj > 0 (j = 1, . . . , p)

we say that the considered generalized hypergeometric function pFq
[
ap; bq|x

]
belongs to the function class pFq. The case

p = qwould obviously correspond to Luke’s condition:
aj 5 bj (j = 1, . . . , p)

for the confluent case pFp. We recall the related result in [5, Theorem 3] as follows.

Lemma 1. Let

aj > 0 (j = 1, . . . , p) and p 5 q.

Then, for g ∈ pFq, the following two-sided bounding inequality holds true:

eθ0|x| 5 g(x) 5 1− θ0 + θ0e|x|

θ0 :=
p∏
j=1
aj

q∏
j=1
bj

; x ∈ R

 . (17)

The motivation for this type of results is derived from the following observation. In the case of the generalized
hypergeometric series:

pFq

[
ap
bq

∣∣∣∣ x] = 1+ ∞∑
m=1

fm
xm

m!

fm :=

p∏̀
=1
(a`)m

q∏̀
=1
(b`)m

;m ∈ N


the following two-sided inequalities hold true [5, Eq. (35)]:

θm0 5 fm 5 f1 ≡ θ0. (18)
By applying (18) to the above-generalized hypergeometric series, we easily get the two-sided inequality (17) asserted by
Lemma 1.
We are now interested in extending (17) to a certain subclass of the Fox–Wright generalized hypergeometric pΨq

functions. This will be done by Theorem 3, which contains a key result for determining some remarkably general two-
sided exponential inequalities leading, in turn, to a number of two-sided exponential inequalities for hypergeometric-type
functions as its corollaries.
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Theorem 3. Let the real-valued function f = 0 be twice continuously differentiable at the origin. Suppose also that

f (0) = 1 and f ′(0) > f ′′(0) > [f ′(0)]2. (19)

Then

ef
′(0)|x| 5 f (x) 5 1−

(
1− e|x|

)
f ′(0), (20)

where the equality holds true in (20) when x = 0.

Proof. We assume that x > 0 and, for some positive real numbers α and β , we consider the following auxiliary functions:

F+R (x) := f (x)− 1+ β
(
1− ex

)
and F+L (x) := f (x)− e

αx.

Since(
F+R (0)

)′
=
(
f ′(x)− βex

)
|x=0 = 0

(
β = f ′(0)

)
and (

F+R (0)
)′′
= f ′′(0)− f ′(0) < 0,

the origin x = 0 is the abscissa of the local maximum of F+R (x). Therefore, we have

F+R (x) 5 F
+

R (0) = 0,

which readily implies that

f (x) 5 1−
(
1− ex

)
f ′(0).

Similar arguments would lead us to the left-hand estimate in (20). For nonpositive values of x, we write

FR(x) := f (−x)− 1+ β
(
1− e−x

)
and FL(x) := f (−x)− e−αx (x = 0).

By repeating the above procedure, we get

f (−x) 5 1− f ′(0)+ f ′(0)e−x.

Then, keeping (19) in mind, we deduce that the condition α = f ′(0) is necessary to ensure a local minimum of FL(x) at the
origin. We thus conclude that

FL(x) = f (−x)− e−f
′(0)x = 0.

This completes the proof of the two-sided inequality (20) asserted by Theorem 3. �

Rewriting the Fox–Wright function as follows:

pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ x] = ∞∑
m=0

Ψm
xm

m!

Ψm :=
p∏
j=1
0
(
aj + αjm

)
q∏
j=1
0
(
bj + βjm

) ;m ∈ N0


and noting that

Ψ0 :=

p∏
j=1
0
(
aj
)

q∏
j=1
0
(
bj
) 6= 1,

we will henceforth concentrate upon the so-called normalized Fox–Wright generalized hypergeometric function defined by

pΨ
?
q

[
(ap, αp)
(bq, βq)

∣∣∣∣ x] := Ψ−10 pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ x] .
Clearly, we have

pΨ
?
q [·|0] = 1.

If pΨ ?
q [·|x] satisfies Eq. (19), that is, if

∂

∂x p
Ψ ?
q

[
(ap, αp)
(bq, βq)

∣∣∣∣ 0] > ∂2

∂x2 p
Ψ ?
q

[
(ap, αp)
(bq, βq)

∣∣∣∣ 0] > (
∂

∂x p
Ψ ?
q

[
(ap, αp)
(bq, βq)

∣∣∣∣ 0])2 , (21)
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then, by Theorem 3, we can deduce an exponential inequality like Eq. (20) for pΨ ?
q [·|x]. Of course, the same follows for

pΨq[·|x], but under the following condition:

Ψ1

Ψ0
<
Ψ2

Ψ1
< 1

(
Ψ2 < Ψ1 and Ψ 21 < Ψ2Ψ0

)
, (22)

which is equivalent to (21). The building blocks ofΨm (m = 0, 1, 2) are Gamma functions, and the ones involved in (22) are
closely related to the well-known Gautschi quotient [11]:

Q (λ, µ) :=
0(λ+ µ)

0(λ)
=: (λ)µ (min{λ,µ} > 0) (23)

and to the so-called Gurland’s ratio [11]:

T (λ, µ) :=
0(λ)0(µ)[
0
(
λ+µ

2

)]2 (min{λ,µ} > 0). (24)

Indeed, for

a`, bj, α`, βj > 0 (` = 1, . . . , p; j = 1, . . . , q),

the constraint Ψ2 < Ψ1 is well defined and it is equivalent to the following inequality:
p∏
j=1

0(aj + 2αj)
0(aj + αj)

5

q∏
j=1

0(bj + 2βj)
0(bj + βj)

which, in the notation for the Gautschi quotient given by (23), assumes the form:

p∏
j=1

Q (aj + αj, αj) 5
q∏
j=1

Q (bj + βj, βj). (25)

The second constraint for the parameters involved in (22) is

Ψ 21 < Ψ2Ψ0,

which can be rewritten as follows:
q∏
j=1

T (bj, bj + 2βj) 5
p∏
j=1

T (aj, aj + 2αj) (26)

by using the notation for the Gurland quotient in (24).
Let us now denote the parameter space of the exponential inequalities for the Fox–Wright function pΨq by

pDq(Q , T ) :=

{
(ap, bq,αp,βq) ∈ R2(p+q)+ :

p∏
j=1

Q (aj + αj, αj) 5
q∏
j=1

Q (bj + βj, βj)

and
q∏
j=1

T (bj, bj + 2βj) 5
p∏
j=1

T (aj, aj + 2αj)

}
, (27)

where

tk := (t1, . . . , tk).

We remark that

pDq(Q , T ) 6= ∅.

Indeed, by specifying the parameters as follows:

α` = βj = 1 (` = 1, . . . , p; j = 1, . . . , q)

and keeping in mind that all

a`, bj > 0 (` = 1, . . . , p; j = 1, . . . , q),

we arrive at

Ψ2 < Ψ1

p∏
j=1

(1+ aj) 5
q∏
j=1

(1+ bj) (28)
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and

Ψ 21 < Ψ2Ψ0

p∏
j=1

aj 5
q∏
j=1

bj. (29)

The relations (28) and (29) clearly show the claim that pDq(Q , T ) is not empty.

Theorem 4. Let (ap, bq,αp,βq) ∈ pDq(Q , T ). Then

Ψ0eΨ1Ψ
−1
0 |x| 5 pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ z] 5 Ψ0 − (1− e|x|)Ψ1 (x ∈ R) , (30)

where the equality holds true when x = 0 and

Ψ0 =

p∏
j=1
0
(
aj
)

q∏
j=1
0
(
bj
) and Ψ1 =

p∏
j=1
0
(
aj + αj

)
q∏
j=1
0
(
bj + βj

) .
Proof. Since, by hypothesis,

(aj, bk, αj, βk) ∈ pDq(Q , T ),

the condition (21) is fulfilled. Furthermore, because the Fox–Wright function pΨ ?
q [·|x] is normalized and it is continuously

differentiable twice at the origin, all prerequisites of Theorem3are satisfied. Consequently, bymeans of Theorem3, it follows
that

eΨ1Ψ
−1
0 |x| 5 pΨ

?
q

[
(ap, αp)
(bq, βq)

∣∣∣∣ x] 5 1− Ψ1Ψ−10 (
1− e|x|

)
,

which proves Theorem 4. �

At this point we are faced with the following important dilemma:
(i) To accept the general result (30) which is hardly applicable because of the description constraints of the set pDq(Q , T )

involving the T and Q expressions; or
(ii) To find some simpler domain reducing the description constraints of pDq(Q , T ) by some already known estimates for

Gurland’s ratio T and Gautschi’s ratio Q .
In order to realize the option (ii), we will need a few auxiliary results.

Lemma 2. The following two-sided inequality holds true for the Gurland quotient:

(
1+

α

a

)2α (
1+

1
a

)−α2
5 T (a, a+ 2α) 5

(
1+

α

a

)α
(α ∈ [0, 1]; a > 0) (31)

with equality on both sides for α ∈ {0, 1}.

Proof. We recall the following two-sided inequality reported by Merkle [11, Corollary 1, Eq. (22–23)]:

(a+ α)2α

aα(2−α)(a+ 1)α2
5 T (a, a+ 2α) 5

(a+ α)1+α

a(a+ 1)α
(α ∈ [0, 1]; a > 0).

Obvious transformations and the use of the classical Bernoulli inequality would give us (31) as asserted by Lemma 2. �

Consider Ψ 21 < Ψ0Ψ2, that is, Eq. (26) in the form:

T :=

q∏
j=1

T (bj, bj + 2βj) 5
p∏
j=1

T (aj, aj + 2αj) =: P .

We now majorize T and minorize P by means of (31). Since all of the α and β parameters are positive, for the inequality
T 5 P to hold true, it is sufficient to show that

q∏
j=1

(
1+

βj

bj

)βj
5

p∏
j=1

(
1+

αj

aj

)2αj (
1+

1
aj

)−α2j
(αj, βk ∈ [0, 1]; j = 1, . . . , p; k = 1, . . . , q).
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We next consider (25) in the form:

Q1 :=
p∏
j=1

Q (aj,+αj, αj) 5
q∏
j=1

Q (bj + βj, βj) =: Q2. (32)

In order to transform the relation (25) in the above manner, we need the following lemma.

Lemma 3. The following inequality holds true for the Gautschi quotient:

Q (a, α) =
0(a+ α)
0(a)

=

(
a−

1− α
2

)α (
a >

1− α
2
;α ∈ [0, 1]

)
. (33)

Moreover, for all a, α > 0,

Q (a, α) =
0(a+ α)
0(a)

5 aα
(
1+

α

a

)α− 12
. (34)

Proof. The first inequality (33) is due to Lazarević and Lupaş [12, p. 248, Corollary]; the second inequality (34) can easily be
deduced from a known result [13, Remark 1, Eq. (5)]. �

Majorizing Q1 and simultaneously minorizing Q2 by means of the estimates (33) and (34), we get

Q1 5
p∏
j=1

a
αj
j

(
1+

αj

aj

)αj−1/2
=: Q̂1

and

Q2 =
q∏
j=1

(
bj −

1− βj
2

)βj
=: Q̂2.

Obviously, the inequality Q̂1 5 Q̂2 suffices for the inequality Ψ2 < Ψ1 to hold true.
Finally, if we define the new domain:

pD′q :=

{
(ap, bq,αp,βq):

q∏
j=1

(
1+

βj

bj

)βj
5

p∏
j=1

(
1+

αj

aj

)2αj (
1+

1
aj

)−α2j

and
p∏
j=1

a
αj
j

(
1+

αj

aj

)αj− 12
5

q∏
j=1

(
bj −

1− βj
2

)βj}
, (35)

then we can deduce the following result.

Corollary. Let

(ap, bq,αp,βq) ∈ pD
′

q(
aj >

1− αj
2
; bk >

1− βj
2
; αj, βk ∈ [0, 1]; j = 1, . . . , p; k = 1, . . . , q

)
.

Then the following two-sided exponential inequality holds true:

Ψ0eΨ1Ψ
−1
0 |x| 5 pΨq

[
(ap, αp)
(bq, βq)

∣∣∣∣ z] 5 Ψ0 − Ψ1 (1− e|x|) (x ∈ R) (36)

with the equalities when x = 0.

Remark 1. The previous exposition does not cover the case when α = 1. In this respect, we notice that the relationship:

0(a+ α) = (a+ α − 1)[α]0 (a+ {α}) (α = 1)

reduces the case of a generalα to the case of Lemmas 2 and 3, since (by definition) {α} ∈ [0, 1). However, we can list another
set of suitable estimates for Gurland’s ratio, derived by Kečkić and Vasić [14], in which (by extending the range of α) we lose
the unit interval from the domain of a. In our setting, the result of Kečkić and Vasić [14] reads as follows:

aa (a+ 2α)a+2α

(a+ α)a+α
5 T (a, a+ 2α) 5

(a− 1)a−1 (a+ 2α − 1)a+2α−1

(a+ α − 1)2(a+α−1)
, (37)

provided that

min{a, a+ 2α} > 1. �
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4. Two-sided exponential inequalities forBλ,µ(p+1Ψq; c; r) and B̃λ,µ(p+1Ψq; c; r)

It is clear by Theorems 1 and 2 that, in order to obtain exponential inequalities for the Mathieu-type series (5) and its
alternating variant (6), we are firstly confronted by the problem of estimating JΨc (u, v) and J̃Ψc (u, v), but now for p+1Ψq.
Indeed, we have already proved that

Bλ,µ

(
p+1Ψq; c; r

)
= JΨc (λ+ 1, µ)+ µ JΨc (λ, µ+ 1)

and

B̃λ,µ

(
p+1Ψq; c; r

)
= J̃Ψc (λ+ 1, µ)+ µ̃JΨc (λ, µ+ 1).

Therefore, by means of Theorem 4, and keeping (11) and (15) in mind, we have the following result.

Theorem 5. Let

(ap+1, bq,αp+1,βq) ∈ p+1Dq(Q , T ) (ap+1 = u; αp+1 = 1).

Then

L1 5 JΨc (u, v) 5 R1 and L̃1 5 J̃Ψc (u, v) 5 R̃1, (38)

where

L1 := Ψ0

∫
∞

c1

[c−1(x)]
xu(x+ r)v

e
rΨ1
Ψ0 x dx, (39)

R1 := (Ψ0 − Ψ1)
∫
∞

c1

[c−1(x)]
xu(x+ r)v

dx+
Ψ1

ru+v−1

∫ r
c1

0

[c−1( rx )]
(1+ x)v

xu+v−2exdx, (40)

L̃1 := Ψ0

∫
∞

c1

sin2
(
π
2 [c
−1(x)]

)
xu(x+ r)v

e
rΨ1
Ψ0 x dx, (41)

R̃1 := (Ψ0 − Ψ1)
∫
∞

c1

sin2
(
π
2 [c
−1(x)]

)
xu(x+ r)v

dx+
Ψ1

ru+v−1

∫ r
c1

0

sin2
(
π
2 [c
−1( rx )]

)
(1+ x)v

xu+v−2exdx, (42)

and

Ψ0 := Ψ0(u) =

0(u)
p∏
j=1
0
(
aj
)

q∏
j=1
0
(
bj
) and Ψ1 := Ψ1(u) =

0(u+ 1)
p∏
j=1
0
(
aj + αj

)
q∏
j=1
0
(
bj + βj

) . (43)

Because (38) does not completely describe the behaviour of the lower and upper bounding functions, we have to specify the
asymptotics of c(x) for large x, bearing the convergence of the underlying integrals in mind. Therefore, by assuming that

c(x) = O
(
x1/(u+v−1−ε)

)
(x→∞; ε > 0) (44)

we easily see that all of the constituting integrals for L1, L̃1, R1, R̃1 converge for this decay rate. We, therefore, prescribe in
what follows that c(x) has the asymptotics indicated in (44).

Theorem 6. Let

(ap+1, bq,αp+1,βq) ∈ p+1Dq(Q , T )
(
ap+1 = u;αp+1 = 1

)
and

c(x) 5 Kc x1/(u+v−1−ε) (x→∞; ε > 0; Kc ∈ R+). (45)

Then

L2 5 JΨc (u, v) 5 R2, (46)

where

L2 :=
Ψ0

cu+v−11 (u+ v − 1)

(
1+

u+ v − 1
u+ v

r
c1

)−v
+

rΨ1
cu+v1 (u+ v)

(
1+

u+ v
u+ v + 1

r
c1

)−v
(47)
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and

R2 :=
Ψ1

cε1(ε + 1) K
u+v−1−ε
c

(
1
ε
+

cv1
(c1 + r)v

+
er/c1 − 1
ε + 2

(
1+

(ε + 1)cv1
(c1 + r)v

))
+

Ψ0 − Ψ1

rεK u+v−1−εc
B(ε, v − ε) (ε − v 6∈ N0; r ∈ [0, c1]). (48)

Moreover, without any growth assumption upon c(x),

J̃Ψc (u, v) 5
Ψ1

cu+v−11 (u+ v)

(
1

u+ v − 1
+

cv1
(c1 − r)v

+
er/c1 − 1
u+ v − 1

(
1+

(u+ v)cv1
(c1 − r)v

))
+
Ψ0 − Ψ1

ru+v−1
B(1− u, u+ v − 1) (u < 1; u+ v − 1 > 0; r ∈ [0, c1]). (49)

Here B(α, β) given by

B(α, β) :=
∫ 1

0
tα−1 (1− t)β−1dt (min{R(α),R(β)} > 0)

=
0(α)0(β)

0(α + β)
= B(β, α)

is the classical Beta function.

Proof. By noting that

[c−1(x)] = 1 when x = c1

(in view of the monotonous character of the sequence c) and that

ex = 1+ x (x ∈ R),

we now make use of the following known formula [15, p. 313, Eq. 3.194(1)]:∫ A

0

xµ−1dx
(1+ x)ν

=
Aµ

µ
2F1

[
ν, µ
µ+ 1

∣∣∣∣− A] (| arg(1+ A)| < π;R(µ) > 0) (50)

and Luke’s inequality [10, Theorem 13, Eq. (4.20)]:

1
(1+ θx)σ

5 p+1Fp

[
σ , ap
bp

∣∣∣∣− x] 5 1− θ + θ

(1+ x)σ

(
θ =

p∏
j=1

aj
bj
; x > 0; σ > 0; bj = aj (j = 1, . . . , p)

)
. (51)

Putting p = 1 in (51), we thus get

JΨc (u, v) =
Ψ u+v0

ru+v−1Ψ u−11

∫ rΨ1
c1Ψ0

0

xu+v−2 (1+ x)
(Ψ1 + Ψ0x)v

dx

=
Ψ0

cu+v−11 (u+ v − 1)
2F1

[
v, u+ v − 1
u+ v

∣∣∣∣− rc1
]
+

rΨ1
cu+v1 (u+ v) 2

F1

[
v, u+ v
u+ v + 1

∣∣∣∣− rc1
]

=
Ψ0

cu+v−11 (u+ v − 1)

(
1+

u+ v − 1
u+ v

r
c1

)−v
+

r Ψ1
cu+v1 (u+ v)

(
1+

u+ v
u+ v + 1

r
c1

)−v
.

This proves the lower bound asserted by Theorem 6.
Denoting by R11 and R12 the first and the second integrals on the right-hand side of (40), respectively, straightforward

calculation would yield

R11 =
∫
∞

0

[c−1(x)]
xu(x+ r)v

dx 5
1
K ?c

∫
∞

0

xv−1−εdx
(x+ r)v

=
B(ε, v − ε)
K ?c rε

(K ?c := K
u+v−1−ε
c ). (52)

Since R12 contains ex, we take its arc one estimates by the secant on [0, rc1 ], that is,

ex 5 1+
c1
r

(
er/c1 − 1

)
x

(
x ∈

[
0,
r
c1

])
. (53)
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We thus conclude that

R12 =
∫ r/c1

0

[c−1(r/x)]
(1+ x)v

xu+v−2exdx 5
(
r
Kc

)u+v−1−ε ∫ r/c1

0

xε−1 ex

(1+ x)v
dx

=

(
r
Kc

)u+v−1−ε ∫ r/c1

0

xε−1

(1+ x)v
dx+

ru+v−2−εc1(er/c1 − 1)

K u+v−1−εc

∫ r/c1

0

xε

(1+ x)v
dx.

Applying (50) with

µ = ε, A =
r
c1
, and ν = v,

we express the upper bound for R12 in terms of the Gaussian hypergeometric function 2F1 as follows:

R12 5
ru+v−1

cε1 K ?c

(
ε−1 2F1

[
v, ε
ε + 1

∣∣∣∣− rc1
]
+
er/c1 − 1
ε + 1 2F1

[
v, ε + 1
ε + 2

∣∣∣∣− rc1
])

(r ∈ [0, c1]).

Finally, by means of (51), we finish the evaluation procedure resulting in the inequality:

R12 5
ru+v−1

cε1 (ε + 1) K
u+v−1−ε
c

(
ε−1 +

cv1
(c1 + r)v

+
er/c1 − 1
ε + 2

(
1+

(ε + 1)cv1
(c1 + r)v

))
. (54)

Inserting (52) and (54) into (40), we complete the proof of the upper bound in (46).
It remains to give a proof of the second main inequality (49). In this case, combining the obvious estimate:

0 5 sin2(θ) 5 1 (θ ∈ R)

with (53), we obtain

J̃Ψc (u, v) 5 (Ψ0 − Ψ1)

∫
∞

0

dx
xu(x+ r)v

+
Ψ1

ru+v−1

∫ r/c1

0

xu+v−2ex

(1+ x)v
dx

=
Ψ0 − Ψ1

ru+v−1
B(1− u, u+ v − 1)+

Ψ1

cu+v−11 (u+ v − 1)
2F1

[
v, u+ v − 1
u+ v

∣∣∣∣− rc1
]

+
Ψ1(er/c1 − 1)

cu+v−11 (u+ v)
2F1

[
v, u+ v
u+ v + 1

∣∣∣∣− rc1
]
.

Now, by applying Luke’s formula (51) oncemore, we evaluate the 2F1[·]-terms in the last relation. Some obvious calculations
lead to the asserted upper bound. �

Remark 2. The above-derived bounds for JΨc (u, v) and J̃Ψc (u, v) are neither unique nor sharp. Because[
c−1(x)

]
≡ 0 (x ∈ [0, c1)) ,

we can enlarge the integration domain of R11 from [c1,∞) to R+ without any loss of generality. But, by evaluating that
integral, we get the Beta function, while (in the first case) we arrive at the incomplete Beta function or, equivalently, a special
Gaussian 2F1[·] expression. We have just chosen the simpler way here.

Theorem 7. Let

(ap+1, bq,αp+1,βq) ∈ p+1Dq(Q , T ) (ap+1 = λ;αp+1 = 1).

Also let

λ,µ > 0 and r ∈ [0, c1].

Then

L3 5 Bλ,µ

(
p+1Ψq; c; r

)
5 R3 and L̃3 5 B̃λ,µ

(
p+1Ψq; c; r

)
5 R̃3, (55)

where

L3 := Ψ0

∫
∞

c1

[c−1(x)]
xλ(x+ r)µ

(
λ

x
e
Ψ1 r
λΨ0 x +

µ

x+ r

)
e
Ψ1 r
Ψ0 x dx, (56)
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R3 :=
∫
∞

c1

[c−1(x)]
xλ(x+ r)µ

(
λ(Ψ0 − Ψ1)− Ψ1

x
+
µ(Ψ0 − Ψ1)

x+ r

)
dx

+
Ψ1

rλ+µ

∫ r/c1

0

[c−1(r/x)] xλ+µ−1

(1+ x)µ

(
λ+ 1+

µ

1+ x

)
exdx, (57)

L̃3 := Ψ0

∫
∞

c1

sin2
(
π
2 [c
−1(x)]

)
xλ(x+ r)µ

(
λ

x
e
Ψ1 r
λΨ0 x +

µ

x+ r

)
e
Ψ1 r
Ψ0 x dx, (58)

R̃3 :=
∫
∞

c1

sin2
(
π
2 [c
−1(x)]

)
xλ(x+ r)µ

(
λ(Ψ0 − Ψ1)− Ψ1

x
+
µ(Ψ0 − Ψ1)

x+ r

)
dx

+
Ψ1

rλ+µ

∫ r/c1

0

sin2
(
π
2 [c
−1(r/x)]

)
xλ+µ−1

(1+ x)µ

(
λ+ 1+

µ

1+ x

)
exdx. (59)

Here the constants Ψ0 and Ψ1 are given by

Ψ0 := Ψ0(λ) =

0(λ)
p∏
j=1
0
(
aj
)

q∏
j=1
0
(
bj
) and Ψ1 := Ψ1(λ) =

0(λ+ 1)
p∏
j=1
0
(
aj + αj

)
q∏
j=1
0
(
bj + βj

) .

Proof. The proof of Theorem 7 is essentially a synthesis of previous results, except for the fact that the constants
Ψk (k = 0, 1) change according to u ∈ {λ, λ+ 1} in (12) and (14). But, by using the familiar relationship:

0(x+ 1) = x0(x),

we have

Ψ0(λ+ 1) = λΨ0(λ) and Ψ1(λ+ 1) = (λ+ 1)Ψ1(λ).

By these observations, we can complete the proof of the above-asserted results immediately. �

At the end of this section, we prescribe a reasonable polynomial growth order behaviour upon c(x). The lower bound of
B̃λ,µ

(
p+1Ψq; c; r

)
will then become zero. However, all three other bounds are of interest, too.

Theorem 8. Let

(ap+1, bq,αp+1,βq) ∈ p+1Dq(Q , T ) (ap+1 = λ;αp+1 = 1).

Suppose also that

c(x) 5 Kcx1/(λ+µ−ε) (ε > 0; Kc ∈ R+). (60)

Then

L4 5 Bλ,µ

(
p+1Ψq; c; r

)
5 R4, (61)

where

L4 :=
Ψ0

(λ+ µ)cλ+µ1

(
1+

(λ+ µ)r
(λ+ µ+ 1)c1

)−µ (
λ+

µ(λ+ µ+ 1)c1
(λ+ µ)(c1 + r)+ c1

)
(62)

and

R4 :=
λ+ µ

(ε + 1)cε1K ?c

(
Ψ0

ε
+
λ+ µ+ 1
λ+ µ

c1Ψ1(er/c1 − 1)
(ε + 2)r

)
+

cµ−ε1

K ?c (c1 + r)µ

(
λ+

µc1
c1 + r

)(
Ψ0

ε + 1
+
c1Ψ1(er/c1 − 1)
(ε + 2)r

(
1+

c1 + r
(λ+ µ)c1 + λr

))
. (63)

Moreover, without prescribing any growth rate for the sequence c, the following inequality holds true:

0 5 B̃λ,µ

(
p+1Ψq; c; r

)
5

Ψ0

(λ+ µ+ 1)cλ+µ1

(
1+

(2c1 + r)c
µ

1

(c1 + r)µ+1

)
. (64)
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Proof. As in the case of Theorem 7, the proof of the results asserted by Theorem 8 is essentially a synthesis of previous
results. So, we give here only its sketch and leave the details involved as an exercise for the interested reader.
By the obvious lower bounds:

[c−1(x)] = 1 (x = c1),

we make the following change of variables:

rx−1 7→ x.

Finally, by taking into account the obvious inequality:

eλx = 1 (λ ∈ R+)

in the case when

x ∈
[
0,
r
c1

]
(r 5 c1),

we get

L3 =
Ψ0

rλ+µ−1

∫ r/c1

0

xλ+µ−2

(1+ x)µ

(
λ+

µx
1+ x

)
dx

=
Ψ0r

(λ+ µ)cλ+µ1

(
λ2F1

[
µ, λ+ µ
λ+ µ+ 1

∣∣∣∣− rc1
]
+ µ2F1

[
µ+ 1, λ+ µ
λ+ µ+ 1

∣∣∣∣− rc1
])

=
Ψ0r

(λ+ µ)cλ+µ1

(
1+

(λ+ µ)r
(λ+ µ+ 1)c1

)−µ (
λ+ µ

(
1+

(λ+ µ)r
(λ+ µ+ 1)c1

)−1)
,

which is equivalent to (62). By the way, we have applied here the result (50) and the left-hand inequality in (51).
To achieve the upper bound R4, we start with estimating the integrand in R3 by means of the following inequality:[
c−1(x)

]
5 c−1(x) 5

(
x
Kc

)λ+µ−ε
(Kλ+µ−εc =: K ?c ).

After some routine calculation, we thus deduce that

R3 5
λΨ0

εcε1K ?c
2F1

[
µ, ε
ε + 1

∣∣∣∣− rc1
]
+

µΨ0

ε cε1K ?c
2F1

[
µ+ 1, ε
ε + 1

∣∣∣∣− rc1
]
+
(λ+ 1)Ψ1(er/c1 − 1)

(ε + 1) cε−11 rK ?c
2F1

[
µ, ε + 1
ε + 2

∣∣∣∣− rc1
]

+
µΨ1(er/c1 − 1)

(ε + 1) cε−11 r K ?c
2F1

[
µ+ 1, ε + 1

ε + 2

∣∣∣∣− rc1
]
=: H1.

It remains now to make use of Luke’s upper bound in (51) to the above hypergeometric terms. This results in the following
inequality:

H1 5
(λ+ µ)Ψ0

ε(ε + 1)cε1K ?c
+

cµ1 Ψ0
(ε + 1)cε1 K ?c (c1 + r)µ

(
λ+

µ c1
c1 + r

)

+
(λ+ µ+ 1)c1−ε1 Ψ1(er/c1 − 1)

(ε + 1)(ε + 2) rK ?c
+
cµ+1−ε1 Ψ1(er/c1 − 1)
(ε + 2)rK ?c (c1 + r)µ

(
λ+ 1+

µc1
c1 + r

)
, (65)

which is equivalent to (63).
Finally, by applying the elementary inequality:

sin2(θ) 5 1 (θ ∈ R+)

to the integrand of R3, followed by the same tools and estimates as before, this last expression assumes the form:

R3 5
Ψ0

cλ+µ1

(
λ2F1

[
µ, λ+ µ
λ+ µ+ 1

∣∣∣∣− rc1
]
+ µ2F1

[
µ+ 1, λ+ µ
λ+ µ+ 1

∣∣∣∣− rc1
])
, (66)

which leads us to the asserted upper-bound result in (64). �
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