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Abstract 

Three new fully implicit methods which are based on the (5,5) Crank-Nicolson method, the (5,5) N-H (Noye-Hayman) 
implicit method and the (9,9) N-H implicit method are developed for solving the heat equation in two dimensional space 
with non-local boundary conditions. The latter is fourth-order while the others are second-order. While the implicit methods 
developed here, like the scheme based on the standard implicit backward time centered space (BTCS) method, use a large 
amount of central processor (CPU) time, the high accuracy of the new fourth-order fully implicit scheme is significant. 
Like the BTCS method, the new methods are also unconditionally stable. @ 1999 Elsevier Science B.V. All fights 
reserved. 

Keywords: Two-dimensional diffusion; Numerical integration technique; Non-local boundary value problem; Finite differ- 
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1. Introduction 

Three new fully implicit  methods which are based on the (5,5) Crank-Nico lson  method,  the (5,5) 
N - H  implicit  method and the (9,9) N - H  implicit  method are developed.  The problem to which the 
three methods are applied is the two dimensional  t ime dependent  diffusion 

(~U ~2U ~2U 

(~--7 = O(X~x2 + O~y (~y2 

with initial condition given by  

u(x, y, o) = f ( x ,  y), 

and boundary  conditions 

u(O, y, t)  = g0(Y, t), 

u(1, y, t )  = gl(Y, t), 
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(1) 

O<.t<<.T, 0~<y~<l ,  (3) 

O~<t~<T, 0~<y~<l ,  (4)  
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0 ~<x, y ~< 1 (2) 
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u(x , l , t )=h~(x , t ) ,  O<~t<~T, 0~<x~<l, (5) 

u(x,O,t)=ho(x)#(t) ,  O<<,t<~T, 0~<x~<l (6) 

with the nonlocal boundary condition 

fo' fo d(x) u ( x ' y ' t ) d x d y = m ( t ) '  O~x, y<<.l, (7) 

where f ,  90, 91, h0, hi, d and m are known functions, while the functions u and # are unknown. 
This kind of problem arises in many important applications in heat transfer, control theory, ther- 

moelasticity and medical science [2-6,8,14]. 
Numerical schemes for the solution of Eqs. (1 ) - (7 )  are described in Section 2. The iterative 

procedure which is used to incorporate (7) with # unknown is described in Section 3. 
The results produced by using these methods for a test are described in Section 4. In each case 

errors are tabulated. Section 5 summarizes the findings of this article. 

2. Finite-difference methods 

The domain [0, 1] 2 × [0, T] will be divided into an M 2 x N mesh with spatial step size h = 1/M 
in  both x and y directions and the time step size k = T/N, respectively. 

Grid points (xi, yj, tn) are given by 

x~ = ih, i = 0, 1,2 . . . .  ,M, (8) 

yj =jh ,  j =  0 ,1 ,2 , . . . ,M,  (9) 

tn = nk, n = 0, 1,2, . . . ,N,  (10) 

in which M is an even integer. We use uinj and #n to denote the finite difference approximations of 
u(ih,jh, nk ) and #(nk ), respectively. 

The numerical methods suggested here are based on 3 approaches: Firstly, the standard fully 
implicit second-order BTCS method [10], or the (5,5) Crank-Nicolson fully implicit method [7], or 
the (5,5) N-H fully implicit method [12], or the (9,9) N-H fully implicit method [12], is used to 
approximate the solution of the two-dimensional diffusion equation at interior grid points. Secondly, 
the Simpson's numerical integration scheme [9] is used to approximate the integral in Eq. (7). 
Thirdly an iteration procedure is employed to handle the non-local boundary condition [1]. 

The problem (1 ) - (6 )  is solved numerically at the spatial points (xi, yj), commencing with initial 
values u ° • ,,j = f(xi ,  yj), i , j  = O, 1,2, .. ,M, and boundary values (2 ) - (6 )  where #(t) is computed using 
an iterative procedure. 

Given numerical solutions of  u and # at time level n, n = 0, 1 ,2 . . . ,  an appropriate initial guess 
for # is made at the time level n +  1, say # at the time level n, then (1 ) - (6 )  by using any of  those 
methods which are mentioned already to find the value of u at the time level n + 1. If  the solution 
satisfies the nonlocal condition (7) within a prescribed tolerance, then the present values of u and 
# are accepted as the approximate solution for u and # at the n + 1 level. Otherwise, a prediction 
for # will be found from Eq. (7). Computations are then repeated with this new prediction until 
Eq. (7) is satisfied within the given tolerance, and this is repeated for higher levels. 



M. Dehghan/Journal of Computational and Applied Mathematics 106 (1999) 255-269 257 

n th t ime level 

j + l  

j 

t 

(n + 1) th t ime level 

i - - 1  i i + 1  

i X 

Fig. 1. (5,1) BTCS computational stencil. 

2.1. The standard (5,1) B T C S  method 

The five point BTCS [10] (backward Euler) for solving the two-dimensional partial differential 
equation (1) uses the following formula: 

S r . n + l  . . t _ . n + l  ~ n+ l  . n + l  x n 
x t " i - - l , j  - -  " i+l , j J  + SY(Ui, j--1 + Ni, j + I )  - -  (1 + 2s~ + 2Sy)Ui~ 1 = --Ui, j ,  (11) 

for i , j  = 1 , 2 , . . . , M -  1, where 

sx = ~xk/h 2, (12) 

Sy "~- o~yk/h 2. ( 13 ) 

In the case ex = C~y = c~, we have 

Sx = Sy = s = kc~/h 2, (14) 

and Eq. (11 ) becomes 

St'. n+ l  . n + l  A - -  n+ l  . n + l  "~ __ ( 1  + 4S)Uin, +1 n ( 1 5 )  ~,Ui_l, j + bti+l, j - -  lgi, j _  1 + Ui, j+ 1 ) = --Ui, j .  

For the classical boundary value problem values of  u n+l ,,s on the boundaries x = 0, 1 and y = 0, 1 are 
provided by the boundary conditions (3 ) - (6 )  at the appropriate grid points. 

The computational molecule of  this method is given in Fig. 1. In the following this will be referred 
to as the (5,1) method, because the computational molecule involves 5 gridpoints at the new time 
level and 1 at the old level. 

The modified equivalent equation for this method is as follows [15]: 

On 02U (~2U ~x (AX)2  0 4 u  eY(1A---? )2 ( 1 + 04u 
~ t  - ~X~Sx2 - eyo---y2 ~-~ (1 + 6Sx)~-~x 4 _ _  6 S y ) ~ y  4 + 0 { 4 }  = 0 ,  (16) 

so the scheme is second-order accurate with respect to h. 
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Fig. 2. The computational molecule for the (5,5) Crank-Nicolson and (5,5) N-H implicit methods. 

2.2. The Crank-Nicolson  (5, 5)  me thod  

If  we replace all spatial derivatives with the average of their values at the n and n + 1 time levels 
and then substitute centred-difference forms for all derivatives, we get the Crank-Nicolson (5,5) 
formula [7] 

S )/gn+l ~ n+l  un+l stun+l ~_.n+l ~ - 2 ( l + s x +  + + ) xk i+l,j  ~ U i - l , j J  y i,j Sy[Ui, j+l i , j - I  

= --  Sy(Ui~ j--1 Al- uin, j+l ) - -  2 (  1 - Sx - Sy)Ui~,s - Sx(U, ~_ 1,j AU uin+l,j )" ( 1 7 )  

In the case ~x = ~y = ~ we have Sx = Sy = s, and the new finite-difference equation is 

~," n+l  A- - n+l  
a'l'14i, J - 1 ^ [ "  n+l _~ t4i--l,J J "  .+, , _ 2 ( 1  + 2s)uin, +1 + a'[Ui+l, j - -  lgi, j+ 1 ) 

= --  S(Uin, j_l ÷ uin, j+l ) --  2(1 - 2s)u~i - s(ui"_ l,j + ui+,,j). (18) 

This scheme has the computational molecule which is shown in Fig. 2. In the following this will 
be referred to as the (5,5) CN method, because the computational molecule involves 5 gridpoints at 
the new time level and 5 at the old level. 

The modified equivalent equation of  the Crank-Nicolson formula (18) is as follows [15]: 

~U 02U ~2U O~x(Ax) 2 04/l  ~ y ( A y )  2 0 4 u  
- -  - -  + 0 { 4 }  = O. ( 1 9 )  

a t  (~X~x2 - -  0~Y~y 2 12 ~X 4 12 ay 4 

It is second-order accurate in the spatial grid size with no second-order cross-derivative terms. 
However, there is no set of  values of s for which the method will be fourth-order accurate. 

2.3. The (5, 5)  N - H  implicit me thod  

This method uses the following finite-difference formula [12] 

. n+l  ~ ~ ) . n+l  . n+l  "t 
(1 - 6sx)(uT+l_ ,j + ui+l,j) -1- (1 -- 6Sy (ui, j_ 1 + ui, j+l) + 4(2 + 3Sx + 3Sy)Ui~, +l 

=(1 ÷ 6Sy)(uin, j_l + uinj+l) + (1 + 6Sx)(uin_l,j + Ui+I,j) ÷ 4(2 -- 3& -- 3Sy)Ui",j. ( 2 o )  
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In the case where Sx = Sy = s the above scheme uses the following simplified form: 
,,- )," n+ l  U n+l -L. - n+ l  A- - n+ l  (1 - os tui_l, j + i,j--1 I /'giwl,j - -  Ui, j+l ) + 8(1 + 3s)u~ +1 

=(1 + 6s)(uT, j_ l + uinj+l + uin_l,j + uin+l,j) + 8(1 -- 3S)Uinj. (21) 

The computational molecule of this scheme is the same as the Crank-Nicolson formula shown in 
Fig. 2. 

The modified equivalent equation of this (5,5) N-H implicit formula is [12] 

~u O2u --~2U ~ )1~ /~4U 
+ x ) ( A Y ) ( s  x + Sy)~x-~Ov 2 + 0{4} = O. (22) at C~x ~ x  2 - ~ y  Oy2 

It contains only the second-order cross-derivative error term in its modified equivalent equation. 

2.4. The fourth-order  (9, 9) N - H  implicit me thod  

This scheme uses the finite difference formula [12] 
n+l  . n+ l  un+l . n+ l  

--(Sx +Sy) (Ui - I , j - I  + / d ' i + l , j - I  + i - l , j + l  + " i + l , j + l )  

.+1  - " - 5Sx)(U +  j + ui+ ,9 +2(1 +Sx - 5Sy)(Ui, j_ 1 + bli, j+l) + 2(1 +Sy _ , _ n+l  x 

+ 4(4 + 5Sx + 5Sy)UT,~ l 

=(Sx + Sy)(Uin_l,j_l + uin-l,j+l + uin_l,j_l + u i n + l , j + l )  

+ 2 ( 1  - -  S x + 5Sy)(Uinj_l + uinj+l) + 2 ( 1  - -  Sy + 5Sx)(U~I,j + uin+l,j) 

+ 4(4 - 5sx - 5Sy)uinj. (23) 

In the case where Sx = sy = s we have 
. n+ l  . n+ l  x . n+ l  "~ 

- 4s)(ui, j_ 1 + ui_l,j) --S(lgi_l,j_ 1 + U i + I , j _ I )  + (1 n+l  

+ 4(2 + 5S)Uin~ 1 + (1 - ,+~ . n + l  , _1. n+ l  . n + l  4S)(Ui+I,j + Ui, j+l ) -- b't, Ui_l,j+ 1 + Ui+l,j+l ) 

=S(Uin_l,j_l + uin_l,j+l + uin+l,j_l + uin+l,j+l) 

+ ( 1  + 4S)(Ui n_ l,j + uin+l,j + uinj-I + uinj+l ) + 4 ( 2  - -  5S)Uin, j. ( 2 4 )  

This scheme has the computational molecule which is shown in Fig. 3. In the following this will 
be referred to as the (9,9) N-H method, because the computational molecule involves 9 gridpoints 
at the new time level and 9 at the old level. 

The modified equivalent equation of  this implicit formula is as follows [12]: 

O~x( Ax )4 ~6u (~u ~2U ~2"'~U + 20(Sx)2 ) 
Ot (Zx ~ X  2 - -  ~ y  ~3y 2 2--~ ~ 1 - -  OX 6 

C~x(Ax)2(Ay)2 (1 + (~6u ~6u C~y(Ax)2(Ay)2(1 + 
144 36SxSy) Ox 4~3y2 144 36SxSy) OX~-Oy 4 

~y( A y )4 . ,  2 ~6u 
+ - 20( y) ) y6 + 0{6} = o, 

which verifies its fourth-order accuracy with respect to h. 

(25) 
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Fig. 3. (9,9) N-H implicit computational molecule. 

3. Simpson's numerical integration procedure 

Given computed values of  u and # at time level n, n=0 ,  1,2, . . . ,  first a suitable initial estimate for 
# is made at the n time level, then, (1 ) - (6 )  is solved by using any of methods mentioned previously 
to find the value of u at the time level n + 1. If the solution satisfies the nonlocal condition (7) 
within a chosen tolerance, then the current values of  u and # are accepted as the solution for u and 
# at the time level n + 1. Otherwise, a new estimate for # will be found from (7). Computations 
are then repeated with this new guess until (7) is satisfied with the given tolerance and then repeat 
this for higher levels [1]. 

Consider the integral 

H(x,  t "+l ) = fo a(x) u(x, y, t "+' ) dy.  (26) 

Application of  Simpson's composite 'one-third' rule [9] gives 

~0 1 h +1 T~-n+l T4-n+l 1 H ( x , t ' + l ) d x  ~ ~ + 4  + 2  + H ~  + (27) - -  J~2i--1 ~t~2i 
i=1 i=1 

d ( ih ) 
H ;  +l = u(xi, y, t "+l ) dy,  

dO 

in which 
/ 2 l i h  / d ( i h )  

H7 +l = u(xi, y, t "+l ) dy  + 
• 10 J2lih 

where 

(28) 

u(xi, y, t "+1 ) dy, (29) 

l i = [ d ( i h ) / 2 h ] ,  ( 3 0 )  

and [. ] represents the integer part of  the argument. Substituting in the second integral of  Eq. (29) 

zi = y/h  - 21i, (31) 
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yields 

where 

f0 i ld(~h) U(X~, y, t "+1 ) dy  = h u(x~, Zi ,  t "+1 ) dzi, 
d2l ih  

(32) 

6~ = (d(ih)/h) - 2li. (33) 

Replacement of u in the integral with a quadratic interpolating polynomial (the Newton's forward- 
difference formula) [13] through the grid values concerned, gives 

/? j0 U(Xi, Zi, in+l) dz i [u(xi, . ,n+l, tn+l) = Y2li, " ) q- ziAu(xi ,  Y21~, 

+ ~z~(z~ - 1 )A2u(x~, Y2~, t n+l )] dzi + O(h4). (34) 

where 

Au(xi, Yzti, t "+1 ) = u(xi," ,,+1 ~ . ,,+1 ~ (35) 721i+1, t ) - -  U(X i ,  V2li~L ) ,  

A2u(xi, Y21,, t "+l ) = u(xi, Y2li+l, tn+l ) -- 2u(xi, Y2t,+l, tn+l ) -[- U(Xi, Y21~, t n+l ). (36) 

Integrating Eq. (34) and collecting like terms and then substituting in Eq. (29) means that 

I l,--1 
/_./tn+l h t n+l + 4 ~ ~ u(xi, t n+l = ~  u(xi, O, ) Y2j-1, ) + 2 Z u ( x i ,  Y2j, t n+l) 

j=l j=l 

+ U(Xi, Y2lt, t"+l) + 36i(1 - 36J4 + 6~/6)u(xi,  Y26, t"+l) 

+ 36~(1 - 6J3)u(x~, Y2t,+l, t "+1) 

+ (~2/4)(2~i -- 3)u(xi ,  Y21~+2, t n+l )1 + O(h4). (37) 
,A 

However, at all interior points we have computed u(xg, yj, t "+1) to say, rth-order, where 
u n +  1 U(xi, Y2I,, t"+l) = i,j "+" O(hr) • (38) 

Substituting these approximations in Eq. (37) gives 

h ,+1 4 x-~ . ,+1 l,-i /4n+l ~[ui, 0 + ~ u i ,  2 J - l + 2 ~ ' " + l ~ ' n + l  • ~ tgi, 2j  ~ Ui, 2li 
j--I j=l 

2 n+l 36~(1 6 / 3 ~ u  "+l  + 3 6 i ( 1 - - 3 6 i / 4 + r i / 6 ) U i ,  zt~ + - -  t /  I i,21i+1 

+ (6/2/4)(26i ,+1 - 3)ui,2t,+2] + O(hq), 

where 

(39) 

(4o) 

q = min{r, 4}. (41) 
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Putting 

p 1 
V(t~+l) = Jo H(x't~+l)dx' 

and using the approximation 

v~+l h ( M/2 
H~ +1 + 4 ~-'~/--[ n+l 

= / ~ 2i--1 
\ i=1 

then gives 

(M/2)-- 1 ) 
~/rn+ 1 + 2  ~ g~ +1 -'[-''M +O(hq), 

i=1 

(42) 

(43) 

un+l . n+l 71_ 4 ~--~- .+1 un+l . n + l ~  Rn+l = - -  u0, 0 u2i_l, o + 2 2i,0 --k UM, 0 --k -1- O(hq). (44) 
9 i=1 "= 

Note that 

h_ /o' 1) n+l = 3 #n+l ho(x) dx -[- R n+l --[- O(h q), (45) 

where R n+l is the summation in v n+l excluding the values at the boundary y = 0. 
Since v n+~ is an approximation to the left-hand side of  Eq. (7) it follows that 

mn+l _ Rn+l [ 1  
#~+1 

h_ f l  ho(x)dx -[- O ( h q - I  )' Jo ho(x) dx ~ O. (46) 
3 

As seen above, the order of  convergence of  # depends on two things: firstly, the order of  the 
finite-difference formula used at interior gridpoints and, secondly, the order of  the numerical quadra- 
ture used to approximately evaluate (7). For example, if U n÷l  is evaluated using a fourth-order 
formula, when q -- 4, #~+~ is only third-order convergent. If  u n+l is found at interior points by a 
second-order formula when q = 2 then #~+~ is only first-order convergent. 

Here as a new estimate for #,+l,p+l we use the following: 

mn+l _ gn+l,p 
#n+l ,p+l  : h f l  ho(x)dx + O ( h q - l ) '  ( 4 7 )  

3 

If  u n÷l is evaluated approximately using the (9,9) N-H implicit formula, when q = 4, #n+l is 
only third-order convergent. If  u "+~ is found at interior points by any of  the BTCS formula or 
Crank-Nicolson formula or the (5,5) N-H implicit formula, when q = 2 then #,+1 is only first-order 
convergent. 

4. Numerical test 

A problem for which exact nonlocal boundary solutions are known is now used to test the methods 
described. Firstly, these methods are applied to solve Eqs. ( 1 ) - (6 )  with #(t)  given, in order to test 
the methods used to compute values of  uT, +1 from un,,j in the interior of  the solution domain. 

Consider Eqs. ( 1 ) - (7 )  with ~x = 0~y = 1, and 

f ( x ,  y)  = exp(x + y), (48) 
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Table 1 
Results for u with T = 1.0, h = 0.05, s = 1/2 

263 

x y Exact u BTCS Crank-Nicolson (5,5) N-H implicit (9,9) N-H implicit 
Error Error Error Error 

0.1 0.1 9.025013 -0.5 × 10 -3 -0.7 x 10 -4 0.7 × 10 -4 -0.3 x 10 -7 
0.2 0.2 11.023176 -0.1 x 10 -2 -0.2 x 10 3 0.2 x 10 -3  -0.1 x 10 6 
0.3 0.3 13.463738 -0.2 x 10 -2 -0.3 x 10 -3 0.3 x 10 -3 -0.2 x 10 -6 
0.4 0.4 16.444647 -0.3 x 10 -2 -0.5 x 10 -3 0.5 x 10 3 -0.2 x 10 -6 
0.5 0.5 20.905243 -0.4 x 10 -2 -0.6 x 10 -3 0.6 x 10 -3 -0.3 x 10 -6 
0.6 0.6 24.532530 -0.4 × 10 -2 -0.6 × 10 -3  0.6 X 10 -3  -0.3 X 10 - 6  

0.7 0.7 29.964100 -0.3 x 10 -2 -0.5 z 10 -3 0.5 x 10 -3 -0.3 x 10 -6 
0.8 0.8 36.598234 -0.3 x 10 -2 -0.4 X 10 -3  0.4 X 10 -3  -0.2 x 10 6 
0.9 0.9 40.447304 -0.1 X 10 -2  -0.2 X 10 -3  0.2 × 10 3 -0.9 X 10 - 7  

g0(Y, t )  = e x p ( y  + 2t) ,  (49)  

g l ( y , t )  = exp(1 + y + 2t) ,  (50) 

ho(x) = exp(x) ,  (51)  

hi(x)  = exp(1 + x  + 2t) ,  (52) 

#( t )  = exp(2t ) ,  (53)  

m(t)  = (4 exp(exp(1 ) /4 )  - 4 e x p ( 1 / 4 )  - exp(1 ) + 1 ) exp(2t ) ,  (54)  

d(x)  = exp(x) /4 ,  (55)  

for  wh ich  the exact  solut ion is 

u(x, y, t)  = exp(x  + y + 2t).  (56)  

The  results for  u u. wi th  h = 0 . 0 5 ,  s =  1/2 at T =  1.0, us ing the four  fully implicit  me thods  d iscussed t,J 

in Sect ion 2 and defining # ( t )  as in Eq. (53)  and excluding Eq. (54),  are shown in Table  1. No te  

that the errors obta ined w h e n  using the C r a n k - N i c o l s o n  scheme or the (5 ,5)  N - H  implici t  me thod  

are genera l ly  more  than a thousand  t imes larger than those obta ined us ing the (9 ,9)  N - H  implici t  

method.  The  errors wi th  the B T C S  me thod  are genera l ly  10000  t imes larger than those obta ined 

us ing the (9 ,9)  N - H  implici t  method.  
W h e n  the absolute  value o f  the error 

ei4" = u(ih,jh, nk ) - ui, j, " (57)  

at the poin t  (0 .5 ,0.5)  at t ime T = 1.0 was  graphed  against  h on a logar i thmic  scale for  var ious  
values  o f  s, it was  found  that the slopes o f  lines were  a lways  close to 2 for  the B T C S  formula ,  

the (5 ,5)  N - H  implici t  fo rmula  and the C r a n k - N i c o l s o n  formula ,  and were  close to 4 for  the (9 ,9)  
N - H  implici t  fo rmula  (see Figs. 4 - 7 ) .  These  results reflect the orders o f  conve rgence  referred to in 

Sect ion 2. 
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Fig. 4. Relation between error in u and grid spacing for the (5,1) BTCS method. 
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Fig. 5. Relation between error in u and grid spacing for the (5,5) Crank-Nicolson method. 

Number of Gridspacings, M 

10 100 

51 i ; , ; ; , ; ,  
I x s=0.25 _ ~  

~ 4 

r 
3'1 t I u 

1 . 0  1 . 5  2 . 0  

- log m { h } 

10 -5 _ 

I 0 - '  ._~ 

10 -3 

Fig. 6. Relation between error in u and grid spacing for the (5,5) N-H implicit method. 

Fig. 5 shows that the accuracy of  the Crank-Nicolson method is not changed as s increases. This 
is because of  the fact that the leading error term in (19) does not depend on the value of  s for 
the same value of  h. It is clear from Fig. 7 that the worst results obtained when using the (9,9) 
N-H implicit method are better than the best results obtained when using the BTCS scheme, the 
Crank-Nicolson method or the (5,5) N-H implicit scheme. 

Secondly, the fully implicit methods described in Section 2 are applied to solve Eqs. (1) - (7) .  
The results obtained for # with h = 0.05, s = 1/2, using the BTCS method, the Crank-Nicolson 
method, the (5,5) N-H implicit method and the (9,9) N-H implicit method, with m(t) defined as in 
(54), and #(t) considered to be unknown and found by (46), are shown in Table 2. Note that the 
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Fig. 7. Relation between error in u and grid spacing for the (9,9) N-H implicit method. 

Table 2 
Results for # with h = 0.05, s = 1/2 

t Exact /~ BTCS Crank-Nicolson (5,5) N-H implicit (9,9) N-H implicit 
Error Error Error Error 

0.1 1.221403 -0 .3  × 10 -2 -0 .1  × 10 -2 0.1 × 10 -2 --0.5 × 10 -5 
0.2 1.491825 --0.4 × 10 -2 --0.2 × 10 2 0.2 × 10 -2 --0.6 × 10 -5 

0.3 1.822119 --0.4 × 10 -2 --0.2 × 10 -2 0.2 × 10 -2 --0.7 × 10 -5 

0.4 2.225541 --0.5 X 10 -2 --0.2 × 10 -2 0.2 × 10 2 --0.8 × 10 5 

0.5 2.718282 --0.7 X 10 -2 --0.3 × 10 2 0.3 × 10 -2 --0.9 × 10 -5 
0.6 3.320117 --0.8 × 10 2 --0.4 × 10 -2 0.4 × 10 -2 --0.1 × 10 -4 

0.7 4.055200 -0 .1  × 10 -1 - 0 . 4  x 10 -2 0.4 × 10 2 - 0 . 2  × 10 -4 
0.8 4.953032 -0 .1  × 10 -1 -0 .5  × 10 -2 0.5 × 10 -2 - 0 . 2  × 10 -4 

0.9 6.049647 -0 .1  × 10 -1 -0 .7  × 10 -2 0.7 × 10 2 -0 .3  × 10 4 
1.0 7.389056 - 0 . 2  × 10 - l  - 0 .8  × 10 -2 0.8 × 10 -2 - 0 . 4  x 10 -4 

e r r o r s  w i t h  t h e  ( 9 , 9 )  N - H  i m p l i c i t  m e t h o d  a re  l e s s  t h a n  o n e - t h o u s a n d t h  o f  t h e  e r r o r s  o b t a i n e d  u s i n g  

t h e  o t h e r  m e t h o d s .  A l s o  n o t e  t ha t  t h e  t o l e r a n c e  w a s  c h o s e n  to  b e  0 .005  f o r  t h e  B T C S  m e t h o d ,  t h e  

C r a n k - N i c o l s o n  a n d  t h e  ( 5 , 5 )  N - H  m e t h o d ,  a n d  0 . 0 0 0 0 0 5  fo r  t h e  ( 9 , 9 )  N - H  m e t h o d .  

W h e n  t h e  a b s o l u t e  v a l u e  o f  t h e  e r r o r  

e" =  (nk) - ( 5 8 )  
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Fig. 9. Relation between error in # and grid spacing for the (5,5) Crank-Nicolson method. 
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Fig. 10. Relation between error in # and grid spacing for the (5,5) N-H implicit method. 

at the point (0.5,0.5) at time T = 1.0 was graphed against h on a logarithmic scale for various 
values of  s, it was found that the slopes of  lines were always close to 1 for the BTCS formula, 
the Crank-Nicolson formula, and the (5,5) N-H implicit formula, but was close to 3 for the (9,9) 
N-H implicit formula (see Figs. 8-11). These results reflect the orders of  convergence referred to 
earlier in Section 2. The interesting feature of  these figures is that the minimum discretisation error 
produced by the (9,9) N-H implicit scheme is smaller than the maximum discretisation error obtain 
when using the BTCS method, the Crank-Nicolson method or the (5,5) N-H implicit scheme. 

The absolute value of  the discretization error at the point (0.5,0.5) at time T = 1.0 is graphed 
against the CPU time on a logarithmic scale for various values of  s (see Figs. 12-15). 
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Fig. 11. Relation between error in # and grid spacing for the (9,9) N-H implicit method. 
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Fig. 12. Relation between the CPU times and the error for the (5,1) BTCS method. 
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Fig. 13. Relation between the CPU times and the error for the (5,5) Crank-Nicolson method. 

5 .  C o n c l u s i o n  

In  this  a r t ic le  three  fu l ly  i m p l i c i t  m e t h o d s ,  the C r a n k - N i c o l s o n  m e t h o d ,  the  (5 ,5 )  N - H  i m p l i c i t  

m e t h o d  and  the (9 ,9 )  N - H  i m p l i c i t  m e t h o d ,  we re  a p p l i e d  to the  t w o - d i m e n s i o n a l  d i f fus ion  equa-  
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Fig. 14. Relation between the CPU times and the error for the (5,5) N-H implicit method. 

1000 
I f I l I I I 1 0  I I I I I I I I  l 

I 0 t 
3.0 4. 

CPU Time (secs) 

10000 100000 

I 10-~0 

-6 

1 0  - 9  
t~  
e~ 
o 

lO -8 ~ 
.,.~ 

10 -7 
.0 

-logl0{C p} 

Fig. 15. Relation between the CPU times and the error for the (9,9) N-H implicit method. 

tion. The latter worked very well for two dimensional nonlocal diffusion problem because of its 
fourth-order accuracy. This method seems particularly suited for parabolic partial differential equa- 
tions with continuous boundary conditions. A comparison with the backward Euler scheme (BTCS) 
of  [1] for the model problem clearly demonstrates the very high accuracy of  the (9,9) N-H implicit 
scheme. The fully implicit methods developed in this report are unconditionally von Neumann stable. 
Note that the fully explicit schemes developed in [11] have greater restriction on stability, and are 
only useful over small time steps. The fully implicit (9,9) N-H scheme is slower than the others, 
but its fourth-order accuracy for every diffusion number is significant. As in the implicit schemes 
the values at interior grid points at new time levels cannot be obtained before computing the values 
at boundaries, an iteration procedure is employed to handle the nonlocal boundary condition. 

The numerical test applied to these methods gives acceptable results and suggests convergence to 
exact solution when h goes to zero. 
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