
 Procedia Materials Science   6  ( 2014 )  741 – 751 

Available online at www.sciencedirect.com

2211-8128 © 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer review under responsibility of the Gokaraju Rangaraju Institute of Engineering and Technology (GRIET)
doi: 10.1016/j.mspro.2014.07.090 

ScienceDirect

 

3rd International Conference on Materials Processing and Characterisation (ICMPC 2014) 

Application of Artificial bee Colony Algorithm for Optimization of 
MRR and Surface Roughness in EDM of EN31 tool steel 

Milan Kumar Dasa, Kaushik Kumarb, Tapan Kr. Barmana*and Prasanta Sahooa 
aDepartment of Mechanical Engineering, Jadavpur University, Kolkata 700032, India 

bDepartment of Mechanical Engineering, BIT Mesra, Ranchi 835215, India 

Abstract 

The objective of this paper is to find out the combination of process parameters for optimum surface roughness and material 
removal rate (MRR) in electro discharge machining (EDM) of EN31 tool steel using artificial bee colony (ABC) algorithm. For 
experimentation, machining parameters viz., pulse on time, pulse off time, discharge current and voltage are varied based on 
central composite design (CCD). Second order response equations for MRR and surface roughness are found out using response 
surface methodology (RSM). For optimization, both single and multi-objective responses (MRR and surface roughness: Ra) are 
considered. From ABC analysis, the optimum combinations of process parameters are obtained and corresponding values of 
maximum MRR and minimum Ra are found out. Confirmation tests are carried out to validate the analyses and it is seen that the 
predicated values show good agreement with the experimental results. This study also investigates the influence of the machining 
parameters on machining performances. It is seen that with an increase in current and pulse on time, MRR and surface roughness 
increase in the experimental regime. Finally, surface morphology of machined surfaces is studied using scanning electron 
microscope (SEM) images. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Gokaraju Rangaraju Institute of Engineering and Technology (GRIET). 
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1. Introduction 

Electrical discharge machining (EDM) is a well-established machining option for manufacturing geometrically 
complex parts or hard materials that are extremely difficult-to-machine by conventional machining processes. Its 
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unique feature of using thermal energy to machine electrically conductive parts regardless of hardness has been its 
distinctive advantage in the manufacture of mould, die, automotive, aerospace and surgical components (Ho and 
Newman, 2003). It uses preciously controlled sparks that occur between an electrode and a work piece in presence of 
a dielectric fluid (Jameson, 2001). 

EDM parameter selection is done in the industry based on experience. In some cases, selected parameters are 
conservative and far from the optimum, and at the same time selecting optimized parameter requires many costly 
and time consuming experiments. Many researchers tried to optimize the machining performance by adapting 
different optimization techniques. Pradhan and Biswas (2008) have presented a neuro-fuzzy model to predict MRR 
of AISI D2 tool steel with current (Ip), pulse on time (Ton) and duty cycle (τ) as process parameters. The model 
predictions are found to be in good agreement with the experimental results. Pradhan et al. (2009) have also 
proposed two neural network models for the prediction of surface roughness and compared with the experimental 
results. Kanagarajan et al. (2008) have chosen Ip, Ton, electrode rotation, and flushing pressure as design factors to 
study the process performance such as surface roughness and MRR on tungsten carbide/cobalt cemented carbide and 
the most influential parameters for minimizing surface roughness have been identified using RSM. Jaharah et al. 
(2008) have investigated the machining performance such as surface roughness, electrode wear rate and MRR with 
copper electrode and AISI H3 tool steel workpiece. Kuppan at el. (2007) have derived mathematical model for MRR 
and average Ra in deep hole drilling of Inconel 718. It revealed that MRR is more influenced by peak current and 
duty factor, and the parameters are optimized for maximum MRR with the desired Ra value using desirability 
function approach. Puertas at el. (2004) have analyzed the impact of EDM parameters on surface quality, MRR and 
electrode wear in cobalt-bonded tungsten carbide workpiece. Chiang (2008) has explained the influences of Ip, Ton 
and voltage on the responses viz., MRR, electrodes wear ratio, and Ra and the influence of parameters and their 
interactions are investigated using ANOVA. Asilturk and Cunkas (2010) have used artificial neural network (ANN) 
and multiple regression method to model surface roughness of AISI 1040 steel and it is seen that ANN estimates 
surface roughness with higher accuracy than the multiple regression method. Chen and Mahdivian (2000) have 
developed a theoretical model to estimate MRR and surface quality of the work-piece made of bright mild steel. Lin. 
et al. (2001) have used Taguchi method to study the feasibility of improving surface integrity through combined 
process of EDM with ball burnish machining (BBM). Mahdavinejad (2008) has presented the optimization and 
control of EDM process using the neural model predictive control method. Rao et al. (2008) have optimized MRR of 
die sinking EDM by considering the simultaneous affect of various input parameters using multi perceptron neural 
network models. Payal et al. (2008) have studied the parameters affecting surface roughness along with structural 
analysis of surfaces with respect to material removal parameters in EDM of EN 31 tool steel with copper brass and 
graphite as tool electrodes. Lajis et al. (2009) have discussed the feasibility of machining tungsten carbide ceramics 
with a graphite electrode. Taguchi method is used to determine the main effects, significant factors and optimum 
machining condition to the performance of EDM. Das et al. (2013) have optimized the multi-responses viz. material 
removal rate and surface roughness in EDM of EN 31 tool steel using weighted principal component analysis 
(WPCA). Rao and Pawar (2009) have attempted optimization of process parametric combination for better response 
in WEDM using artificial bee colony (ABC) method.  

Machining operation should produce the final product with minimum time and at desired level of surface finish. 
Machining time is dependent on the material removal rate (MRR) of the process. For industrial purpose, it is 
obvious that MRR should be the maximum from the economic point of view. On the other hand, surface roughness 
plays an important role for the tribological operation of any component. It has large impact on the mechanical 
properties like fatigue behavior, corrosion resistance, creep life etc. Conventionally, surface roughness is the 
deviation of surface from the mid plane which can be expressed by different statistical parameters like variances of 
height, the slope, curvature etc (Sahoo, 2008). 

This research is focused to find out the optimum combination of machining process parameters within a given 
range for better responses in EDM using artificial bee colony (ABC) algorithm. Four process parameter viz., pulse 
on time, pulse off time, discharge current and voltage are considered. Surface roughness parameter (Ra) and MRR 
are considered as the responses. The experimental observations and mathematical models are used for both single 
and multi objective optimization problems. EN 31 steel is used as work piece, which has high degree of hardness, 
compressive strength and abrasion resistance. Finally, the surface morphology is studied with the help of scanning 
electron microscopy (SEM). 
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2. Artificial bee colony (ABC) algorithm 

Inspired by the intelligent foraging behavior of honey bees, Karaboga (2005) introduced ABC algorithm for 
optimizing numerical problems. It can be noted that three parameters are of prime importance in the foraging 
behavior of honey bees, those are, food source (nectar), employed foragers and unemployed foragers, and the 
foraging behavior leads to two modes, i.e., recruitment of nectar source and abandonment of nectar source. In ABC, 
the colony of artificial bees contains generally two groups of bees: employed bees and onlooker bees. The employed 
bees have all the idea about the food source (nectar position) and quality of food (nectar amount). In the hive all the 
employed bees with all their information of foods started waggle dance. This dance is the indication of all the 
characteristics of their foods, i.e., the amount as well as quality of foods. In the hive there are also some unemployed 
bees called onlooker bees. They watch the waggle dance and get the information about all the food sources and 
attracted to the best food source. In the next stage the onlooker bees become employed and they started consuming 
the nectar from the best food source. When this food source becomes abandoned the employed bee become a scout 
bee and starts to find new food source. As early as a scout finds a new food source it becomes an employed bee and 
the cycle goes on until the best food source (optimum solution) is obtained. In ABC algorithm the number of 
employed bee and onlooker bee is equal to the number of solutions in the population.  

The artificial bee colony algorithm consists of four main phases viz. initial phase, employed bee phase, onlooker 
bee phase and scout bee phase. The clarification of each phase is defined as follows: 

Initial phase 

At the first step, ABC algorithm generates a randomly distributed initial population contains NS solution. Where 
NS is the number of food sources and is equal to the number of employed bees. Since each food source Xi is a 
solution vector to the optimization problem, each Xi vector holds n variables, (Xij, j=1.…….n) which are to be 
optimized. After initialization, the solution is subjected to repeated cycles C=1….MCN (maximum cycle number). 
This is for the search process of the employed bees, onlooker bees and scout bees. 

Employed bee phase: 

Employed bees search for new food sources (Vij) having more nectar within the neighborhood of the food source 
(Xij) in the memory. They find a neighbor food source and then evaluate its profitability (fitness). The neighbor food 
source (Vij) can be determined by using the formula given by: 

ij ij ij ij kjv x r ( x x )                   (1) 
Where Xkj is the randomly selected food source, i is randomly chosen parameter index k≠i and rij is a random 
number within the range of (0,1). After producing the new food source (Vij) its fitness calculated and a greedy 
selection is applied between Vij and Xij. This fitness value is the indication of waggle dance of the employed bee. 

Onlooker bee phase 

Unemployed bees consist of two groups of bees: onlooker bees and scouts. The employed bees share their food 
source information with onlooker bees waiting in the hive and then onlooker bees choose their food source 
depending on the probability values calculated using the fitness values provided by employed bees. The probability 
value Pi with which Xi is chosen by an onlooker bee can be calculated by: 

i i
i n

i ii 1

fitness ( x )p
fitness ( x )

                 (2) 

After a food source Xi for an onlooker bee is probabilistically chosen, a neighborhood source Vi is determined by 
using equation (1), and its fitness value is computed. As in the employed bees phase, a greedy selection is applied 
between Vi and Xi. Hence, more onlookers are recruited source and positive feedback behavior appears. 
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Scout bee phase 

Employed bees whose solutions cannot be improved through a predetermined number of trials, specified by the 
user of ABC algorithm and called “limit” or “abandonment criteria” herein, become scouts and their solutions are 
abandoned. Then, the converted scouts start to search for new solutions, randomly. For instance discovered by the 
scout that was the employed bee of Xi. The artificial bee colony algorithm including main phases is visible in Fig. 1. 

 

 

 

 

 

 

 

 

 

Fig. 1. Algorithm of artificial bee colony 

3. Experimental study 

3.1. Experimental details 

The experiments are conducted on CNC EDM (EMT 43, Electronica). The tool is made up of copper with square 
cross section. Commercial grade EDM oil is used as dielectric fluid. Pulse on time (X1), pulse off time (X2), 
discharge current (X3) and applied voltage (X4) are considered as process parameters and material removal rate 
(MRR) and surface roughness (Ra) are chosen as the responses. The material used in these experiments is EN 31 tool 
steel. It has an excellent strength-to-weight ratio, high wear resistance, good corrosion resistance and is widely used 
in the tool and die making and aerospace industry. The dimension of the specimens is 20 mm X 20 mm rectangular 
and 15 mm height. The tensile test of EN 31 tool steel has been done at room temperature by using UTM made by 
Instron with 100 KN grip capacity, and 8810 controller; in displacement controlled mode. Chemical and mechanical 
properties of EN 31 tool steel are listed in Table 1. Experiments are conducted based on central composite design 
(CCD) with three levels of each of the four design factors. The levels of each factor are chosen as -2, -1, 0, 1, 2 in 
closed form to have a rotatable design. For four process variables, the design required 31 experiments with 16 
factorial points, 8 axial points to form a central composite design with α=2 and 7 centre points. Table 2 shows the  

       Table 1.Chemical and Mechanical properties of EN 31 tool steel 

Work piece material Chemical composition (wt%) Mechanical property 

EN 31 tool steel 1.07% C, 0.57% Mn, 0.32% Si, 0.04% P, 
0.03% S, 1.13% Cr and 96.84% Fe 

Modulus of Elasticity-197.37 GPa, Yield Strength (2% 
Strain Offset)-528.97 MPa, Ultimate Tensile Strength-

615.40 Mpa and Poisson’s Ratio-0.294 

 

Algorithm  

1  :  Initialize the population of solution Xi, i = 1 (1) NP  
2  :  Evaluate the population, cycle 1, k = 0.  
3  :  Memorize the best solution, Xbest and set Xbest1 = Xbest  
4  :  Repeat (Exploration phase)  
5  :  Produce new solution Xnew = Vi for the employee bees and evaluate them.  
6  :  Apply the greedy selection process for the employed bees.  
7  :  Rank the population and calculate the fitness.  
8  :  Calculate the probability Pi for the solution Xi.  
9  :  Produce the new solution Vi for the onlookers from the solution selected depending on Pi and evaluate 

them.  
10  :  Apply the greedy selection process for the onlookers.  
11  :  Determine the abandoned solution for the scout if exist, and replace it with a new randomly produced 

solution Xi.  
12  :  Memorize the best solution Xbest achieved so far.  
13  :  Set k = k + 1; cycle = cycle + 1.  
14  :  Until (termination condition is met, i.e., cycle = MCN) 
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           Table 2. Experimental parameters and their levels 

Design factors Unit Notation 
                                           Levels   

-2 -1 0 1 2 

Pulse on time (Ton) μs X1 100 200 300 400 500 

Pulse off time  (Toff) μs X2 1900 1800 1700 1600 1500 

Discharge Current (Ip) Amp X3 4 8 12 16 20 

Voltage (V) Volt X4 20 40 60 80 100 

 Table 3. Experimental design matrix and results 

Exp. No. X1 X2 X3 X4 MRR (gm/min) Ra (μm) 

1 200 1800 16 80 0.2121 11.98 

2 400 1800 8 40 0.1329 10.57 

3 200 1800 8 80 0.0999 10.02 

4 300 1700 12 60 0.2275 10.95 

5 300 1700 12 20 0.3895 12.20 

6 300 1500 12 60 0.3349 10.95 

7 400 1800 16 40 0.3179 12.12 

8 200 1800 8 40 0.1419 9.51 

9 400 1800 8 80 0.1088 11.31 

10 300 1700 12 60 0.2275 10.95 

11 200 1600 16 80 0.3355 11.64 

12 400 1600 8 40 0.2198 11.30 

13 400 1600 16 80 0.3345 12.98 

14 200 1600 8 40 0.2235 9.59 

15 300 1700 12 60 0.2275 10.95 

16 300 1700 12 60 0.2275 10.95 

17 500 1700 12 60 0.2357 11.68 

18 300 1700 12 100 0.2343 11.38 

19 300 1700 20 60 0.4949 12.86 

20 300 1900 12 60 0.1201 11.94 

21 400 1600 8 80 0.1399 9.79 

22 300 1700 4 60 0.0897 6.53 

23 300 1700 12 60 0.2275 10.95 

24 400 1600 16 40 0.4949 12.34 

25 300 1700 12 60 0.2275 10.95 

26 200 1600 8 80 0.1535 9.24 

27 100 1700 12 60 0.2300 9.53 

28 300 1700 12 60 0.2275 10.95 

29 200 1800 16 40 0.3089 11.82 

30 400 1800 16 80 0.2228 12.60 

31 200 1600 16 40 0.4911 11.60 

factors and their levels in coded and actual values. The experiment has been carried out as per the experimental 
layout shown in Table 3. The weight of test pieces is measured before and after machining by using a precision 
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weighing machine and machining time is set in the machine for calculating material removal rate. Roughness 
measurement is done using a stylus-type profilometer, Talysurf (Taylor Hobson, Surtronic 3+). Roughness 
measurements in the transverse direction on the work pieces are repeated five times and average of five 
measurements of surface roughness parameter values are recorded. 

3.2. Response surface methodology 

Response surface method (RSM) adopts both mathematical and statistical techniques which are useful for the 
modeling and analysis of problems in which a response of interest is influenced by several variables and the 
objective is to optimize the response. RSM helps in analyzing the influence of the independent variables on a 
specific dependent variable (response) by quantifying the relationships amongst one or more measured responses 
and the vital input factors. The mathematical models thus developed relating the machining responses and their 
factors facilitate the optimization of the machining process. In most of the RSM problems, the form of the 
relationship between the response and the independent variables is unknown. Thus the first step in RSM is to find a 
suitable approximation for the true functional relationship between response of interest ‘Yu’ and a set of controllable 
variables {X1, X2, ……Xn}. Usually when the response function is not known or non-linear, a second order model is  
utilized (Montgomery, 2001) and it can be described as follows: 

 
k k k

2
u 0 i i ii i ij i j

i 1 i 1 j i
Y X X X X                (3) 

where, uY represents the corresponding response, e.g. MRR and Ra of the EDM process in the present research. iX  is 

the input variables, 2
iX and i jX X are the squares and interaction terms, respectively, of these input variables. The 

unknown regression coefficients are 0 i ij, , and ii . The second term under the summation sign of this polynomial 
equation attributes to linear effects, whereas the third term of the above equation corresponds to the higher order 
effects and lastly the forth term of the equation includes the interactive effects of the parameters. 

4. Result and discussion 

The influences of the electrical discharge machining parameters (pulse on time, pulse off time, current and 
voltage) on the response variables selected have been assessed for EN 31 tool steel. The second order model is 
postulated in obtaining the relationship between MRR and Ra parameter and the machining variables using RSM. 
The analysis is carried out using MINITAB software (Minitab, 2001). Based on Eq. 3, empirical relationship 
between response and factors in un-coded forms are given as follows: 

u 1 2 3
7 2 7 2 2

4 1 2 3
5 2 7 6

4 1 2 1 3
7

1 4

Y ( MRR ) 0.192508 0.000320325 X 0.000790717 X 0.107146 X

0.0158419 X 2.00747 10 X 3.34534 10 X 0.000803596 X

4.44251 10 X 2.13644 10 X X 6.27547 10 X X

1.51344 10 X X 5.3 5 6
2 3 2 4

3 4

2848 10 X X 6.49928 10 X X
0.00022819 X X

          (4) 

u a 1 2 3 4
5 2 5 2 2 2

1 2 3 4
6 7

1 2 1 3 1 4
5

2 3 2 4

Y ( R ) 57.7911 0.0257658 X 0.0620792 X 1.06777 X 0.264396 X

1.1675 10 X 1.50 10 X 0.0158125 X 0.00178 X

6.7 10 X X 0.00025125 X X 1.25 10 X X

0.00024 X X 9.5875 10 X X 3 40.00151562 X X

         (5) 
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ABC algorithm is now used to optimize the above mentioned equations. The corresponding computer code for 
ABC algorithm is developed in MATLAB 7.8 with the following control parameters (Table 4). 

 Table 4. Control parameters 

Number of population = 10 Number of onlooker bees = 50% of population Number of cycles = 1000 

Number of employed bees = 50% of population Number of scouts per cycle = 1 Limit = 500 

4.1. Single objective optimization 

To optimize the above mentioned RSM-based equations (Eq. 4 and Eq. 5) with the help of ABC algorithm where 
the responses are separately treated. It is noticed that between these two responses, MRR is to be maximized and 
surface roughness (Ra) is to be minimized. The program has been run for 1000 iteration and every time it converges 
to the optimum solution. It reveals the robustness of the optimization. Fig. (2a) and Fig. (2b) show the variation of 
MRR and Ra with the number of iteration respectively. It is clear from the figures that after 34 iteration the result 
converges to the maximum MRR and after 76 iteration the result converges to the minimum Ra and then no more 
improvement in the solution is noticed. So this can be considered as the best possible solutions within the given  

 
Fig. 2. Convergence of ABC algorithm (a) for MRR; (b) for Ra 

 Table 5. Results of confirmation test for MRR and Ra 

Process 
parameters 

Optimu
m Value 
of MRR 

Optimum 
Value of 

Ra 

MRR obtained 
from ABC 

analysis (gm/min) 

MRR 
obtained 

from 
experimental 

(gm/min) 

% of 
error of 
MRR 

Ra obtained 
from ABC 

analysis (μm) 

Ra obtained 
from 

experiment
al (μm) 

% of 
error of 

Ra 

Pulse on time 
(Ton) in μs 320 100       

Pulse off time 
(Toff) in μs 1500 1510 0.931935 0.923715 0.88 5.218 5.258 0.76 

Current (Ip) in 
Amp 20 4       

Voltage (V) in V 20 84       

range of solutions. From this analysis the optimum combination of process parameters within the given range is 
obtained as pulse on time = 320 μs, pulse off time = 1500 μs, discharge current = 20 amp and voltage = 20 volt for 

a b 
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maximum MRR and the optimum value of response i.e. MRR is =0.931935 gm/min. On the other hand, for 
minimum Ra, a combination of pulse on time = 100 μs, pulse off time = 1510 μs, current = 4 amp and voltage = 84 
volt can be set and optimum value of response i.e. Ra is = 5.219 μm. An experiment is performed with those 
optimum values of process parameters obtained from the analysis to confirm the results of the analysis. For single 
response optimization the error is 0.88% for MRR and 0.76% for Ra. The results of the confirmation test show a 
good agreement with the predicted value. The confirmation result is shown in Table 5. 

4.2. Multi-objective optimization 

In multi-objective optimization of EDM process, instead of treating the response seperately, both of them are 
optimized simultaneously. For this, the following objective function is developed (Rao et al., 2008): 

1 u a 2 u

amin max

w Y ( R ) w Y ( MRR )Min( Z )
R MRR

               (6) 

Where uY ( MRR )  and uY ( Ra )  are the second order response surface equations, as given in Eqs. 4 and 5, 
respectively, Ramin and MRRmax are the minimum and the maximum values of Ra and MRR, respectively, and 1w  
and 2w  are the weight values assigned to Ra and MRR, respectively. These weight values can be anything provided 
that sumation of the weights will be 1 and it depends on the priorities of the considered responses as set by the 
process engineers. Here, equal weights for both the responses are considered, i.e. 1 2w w 0.5 . The convergence 
of ABC algorithm for multi-responses i.e. MRR and Ra is shown in Fig. 3. The optimum combination of process 
parameters of multi-objective optimization is obtained using ABC algorithm. Thus, a combination of pulse on time 
= 100 μs, pulse off time = 1500μs, current = 20 amp and voltage = 20 volt can be set for obtaining maximum MRR 
and minimum Ra. MRR and Ra values are obtained as 0.922175 gm/min and 6.07936 μm, respectively, and the 
optimal solution (Z) is 0.09253. 

In order to veryfy the obtained optimal results in the case of multi-objective optimization problem of this process 
a confirmation test has been carried out. For multi-response optimization the error is 0.97% for MRR and 0.91% for 
Ra. The results of the confirmation test show a good agreement with the predicted result. The confirmation result is 
shown in Table 6. 

 

Fig. 3. Convergence of ABC algorithm for multi-reponses 
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  Table 6. Results of confirmation test for multi-responses 

Process parameters Optimizati
on Value 

MRR obtained 
from ABC 

analysis 
(gm/min) 

MRR obtained 
from 

experimental 
(gm/min) 

% of error 
of MRR 

Ra obtained 
from ABC 

analysis 
(μm) 

Ra obtained 
from 

experimental 
(μm) 

% of error 
of Ra 

Pulse on time (Ton) in μs 100       

Pulse off time (Toff) in μs 1500 0.922175 0.91323 0.97 6.079 6.135 0.91 

Current (Ip) in Amp 20       

Voltage (V) in V 20       

4.3. Effect of process parameters on responses 

Fig. 4 and Fig. 5 show the estimated three-dimensional surface as well as contour plots for MRR and roughness 
parameter as function of the independent machining parameters. In all these figures, two of the four independent 
variables are held constant at centre level. All these figures depict the variation of MRR and roughness parameters 
with controlling variables within the experimental regime. 

Fig. 4 shows the impact of, pulse on time, pulse off time, pulse current and voltage on material removal rate. It is 
revealed that with the increase of discharge current and pulse on time MRR increases and with the decrease of pulse 
off time and voltage MRR increases. With the increase of pulse current, the spark energy and consequently, the 
surface temperature of work piece rises, and material melting and MRR increase rapidly. Spark energy intensifies 
with the increase of pulse current and pulse on time. The increase of pulse off time causes the plasma channel to 
become smaller, which reduces the attack of positive ions on the workpiece surface and lowers MRR. Low values of 
voltage can give rise to increase in MRR. However, application of very low values has arcing tendency. Also, higher 
values of voltage can result in relatively lower metal removal rates. 

On the other hand, the effect of input parameter of pulse on time, pulse off time, pulse current and voltage on 
surface roughness has been demonstrated in Fig. 5. Surface roughness decreases with decease in pulse on time, pulse 
off time, discharge current and an increase in voltage. As the discharge current increase, so does the discharge heat 
concentration on the work piece surface, which results in large craters, i.e., greater surface roughness. As the voltage 
increaes, spark also increases and due to this, larger but sallower craters are formed at higher voltage due to 
expansion of the plasma channel in the discharge gap. 

 

  
Fig. 4. Surface and contour plots of MRR in EDM (a) pulse on time vs current; (b) pulse off time vs voltage 

a b 
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Fig. 5. Surface and contour plots of Ra in EDM (a) pulse on time vs current; (b) pulse off time vs voltage 

4.4. Surface morphology analysis 

Surface morphology study is done by scanning electron microscopy (SEM) (JEOL, JSM-6360) in order to 
analyze the microstructure of the work-piece surface before and after machining. Fig. 6(a) and Fig. 6(b) show the 
SEM micrographs before machining and after machining respectively. It is seen after machining, the surface is 
rougher and the machined surface contains plenty of globules, which are unevenly distributed due to the machining 
of the surface. This is because at high temperature gradient produced due to the thermal energy in the work-piece 
erosion occurs from the surface and the debris particles remain attached to the work-piece surface. 

   

Fig. 6. SEM images (a) before machining; (b) after machining 
5. Conclusion 

In the present paper, MRR and surface roughness (Ra) is estimated experimentally for electro discharge 
machining using EN 31 tool steel as work piece. A central composite design is used for experimental plan. 
Emperical equations for MRR and Ra in terms of four important EDM parametrs viz. pulse on time, pulse off time, 
current and voltage are obtained. Then artificial bee colony (ABC) algorithm is successfully employed for finding 
out the optimal parametric combinations of the four process parametrs of EDM for optimum MRR and Ra. Also, 
ABC is applied for finding out the optimal process parameters of multi-responses (MRR and Ra). The optimum 

a b 

a b 
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values optained from the analysis show good agreement with that of experimental values. It is seen that MRR and Ra 
are proportional to pulse on time and discharge current in the experimental regime. Finally, surface morphology is 
studied using SEM images. 
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