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Abstract
A new second order upwind Lagrangian particle method for solving Euler equations for com-

pressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics
(SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simu-
lation of complex free surface / multiphase flows. The main contributions of our method, which
is different from SPH in all other aspects, are (a) significant improvement of approximation of
differential operators based on a polynomial fit via weighted least squares approximation and
the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with
limiter, providing accuracy and long term stability, and (c) accurate resolution of states at free
interfaces. Numerical verification tests demonstrating the convergence order for fixed domain
and free surface problems are presented.

Keywords: particle methods, generalized finite differences, meshless methods, smooth particle hydro-

dynamics

1 Introduction and Motivation

Smooth particle hydrodynamics (SPH) [2, 3] is a Lagrangian particle-based method that gain
popularity due to its ability to handle complex free surface flows. Other important SPH prop-
erties are the conservation of mass and adaptivity to density changes. However, the major
drawback of SPH is a very poor accuracy of discrete differential operators. It is widely ac-
cepted [4], including original SPH developers [3], that the traditional SPH discretization has
zero-order convergence for widely used kernels. The limited success of SPH is based on the
hidden Hamiltonian property: the discrete system effectively solves the Hamiltonian dynamics
of particles interacting via special potentials, which is similar but not identical to the solution
of the original fluid dynamics PDE’s, thus leading to non-convergence. A number of ”modern”
or ”corrected” SPH methods (see [3, 4] and references therein) improve certain features of SPH
at the expense of other properties such as conservation or long-time stability, but still remain
zero-order or at best 1st order convergent.
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We have proposed a new Lagrangian particle method for solving compressible Euler equa-
tions that eliminates major deficiencies of SPH: accurate discretization of differential operators
is achieved using weighted least-squares (WLS) approximations also known as generalized fi-
nite differences [6], and long term stability is achieved via upwind discretization methods. An
algorithm for accurate resolution of states on free surfaces is also developed and tested. The
method is also easily generalizable to coupled systems of hyperbolic and elliptic or parabolic
PDE’s.

2 Governing Equations

Following [1], we write the system of Euler equations in one spatial dimension in the Lagrangian
form as
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where V is the specific volume, u is the velocity, P is the pressure, and the equation of state
(EOS) is in the form e = f (P, V ), where e is the specific internal energy. If the matrix A is
diagonalized as A = RΛR−1, equations (1) become
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Based on the governing equations (2), we have developed stable, particle-based, upwind numer-
ical schemes. Details are described in the next section.

3 Numerical Discretization and Main Algorithms

To solve numerically the hyperbolic system of PDE’s (2), the medium (compressible fluid or
gas) is discretized by a distribution of particles. Each particle represents a Lagrangian fluid cell
of equal mass, and stores states of the continuum medium such as density (that is proportional
to the number density of Lagrangian particles), pressure, internal energy, velocity, as well as
material properties and pointers to data structures containing material models, such as the
EOS.

The system 2 represents, in terms of transformed dependent variables, advection equations
with the characteristic speeds 0,

√
K, and −√K. Writing it in a component-wise form and

adding the subscripts l and r to the spatial derivatives to indicate that the corresponding
terms, in the discrete form, will be computed using one-sided derivatives, we obtain the following
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system

Vt =
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An important component of a particle-based numerical scheme is the calculation of differ-
ential operators based on states at the location of particles. Our method achieves accurate
discretization of differential operators using the weighted least-squares (WLS) approximation
also known as the generalized finite differences [6, 7].

The first-order (O(Δt,Δx)) upwind discretization of the system (3-5) is obtained using the
1st order WLS approximation of spatial derivatives , and the 1st order discretization of temporal
derivatives of the state (V, u, P ) at the location of particle j. After the updates of states of
each Lagrangian particle, particles are advanced by a mixture of the forward and backward
Euler schemes:

xn+1 − xn

Δt
=

1

2

(
un + un+1

)
(6)

The first order scheme is stable, provided that the standard CFL condition is satisfied:
dt <= l/max(c, u), where l is the smallest interparticle distance, but diffusive. To reduce the
amount of numerical diffusion of the 1st order scheme and obtain higher order approximations
in space and time, we propose a modified Beam-Warming scheme for the Lagrangian particle
system. For the same reason as in the grid-based Beam-Warming method [8], an additional
term is added to equation (1):

Ut +A(U)Ux − Δt

2
A2(U)Uxx = 0⇒ R−1Ut = −ΛR−1Ux +

Δt

2
Λ2R−1Uxx. (7)

Performing similar manipulations as in the case of the 1st order method, we obtain the system
of equations in upwind form that involves 1st and 2nd order one-sided spatial derivatives. By
discretizing spatial derivatives using the second order WLS, we obtain a numerical scheme that
is second order in both time and space, O(Δt2,Δx2,ΔtΔx), and conditionally stable.

As is typical to a second order scheme, the modified Beam-Warming scheme is oscillatory
in the location of strong solution gradients and discontinuities. This problem was resolved by
developing a limiter method similar to the Van Leer limiter [8]. The multidimensional problems
are solved using the Strang splitting method [5] that maintains second order accuracy.

In a simulation involving Lagrangian particles, it is critical that an efficient neighbor search
algorithm is employed. If the matter is approximately uniformly distributed in the computa-
tional domain, a supercell search algorithm is used. For strongly non-uniform distribution, the
search particle neighbors is based on the construction and search of quad (2D) and octrees
(3D).

The fluid / vacuum interface is modeled in our method by using ghost particles in the vacuum
region. A geometric algorithm places patches of ghost particles outside the fluid boundary,
ensures their proper distance to the interface, and eliminates those particles that were placed
too closely or inside the fluid. Then the ghost particles are assigned the physics states of
vacuum pressure and fluid velocity, using WLS interpolation. The only functionality of ghost
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Figure 1: Gaussian pressure wave propagation with periodic boundaries at time 0.03 (left)
and 0.04 (right). Coarse-resolution simulations results were used to illustrate the behavior
qualitatively.

particles is to serve as neighbors of fluid particles when calculating spatial derivatives. This
simple algorithm adequately handles the fluid / vacuum interface, but a Riemann solver-based
algorithm will be used for interfaces in multiphase problems.

4 Numerical Results

In this section, we present simulation results obtained with the Lagrangian particle method,
including the free surface algorithm.

In the 1st test, we study the propagation of pressure waves in gas with constant initial
density ρ = 0.01 and the initial Gaussian pressure distribution P = 5 + 2 exp−100x2 in the
domain −1.5 ≤ x ≤ 1.5 with periodic boundaries. The polytropic gas EOS is used with
γ = 5/3. The goal of the simulation is to demonstrate the accuracy of the proposed algorithm
in resolving nonlinear waves with the formation of shocks. The benchmark data is obtained
using a highly refined, grid-based 1D MUSCL scheme. The results, shown in Figure 1, are
labeled as 1st for the first order WLS approximation, B.W. for the Beam-Warming scheme
with the second order WLS approximation, and B.W. lim. for the Beam-Warming scheme with
the second order WLS approximation and limiter, respectively. As expected, first order scheme
is diffusive, while the Beam-Warming scheme is dispersive near discontinuities. However, results
demonstrate that the proposed limiter method effectively reduces oscillations near sharp edges,
resulting in the second order of convergence. We have also verified that the Lagrangian particle
method accurately resolves waves in stiff materials with large values of parameters defining the
stiffness and the sound speed. In both cases, the second order convergence was obtained.

The second problem is a verification test for the motion of free boundary. A liquid disk,
modeled using the stiffened polytropic EOS model with γ = 6, P∞ = 7000, and initial ρ = 1,
has initially a Gaussian distribution of pressure. The resulting pressure wave interacts with the
free boundary and causes oscillation of the disk radius. A well-resolved 1D problem was used
as a benchmark solution, and second convergence order was achieved. The verification test
and the fact that the pressure wave maintains good symmetry after many reflections from the
free surface demonstrate that the proposed method for modeling vacuum with ghost particles
works well with the overall algorithm. We have also obtained simulations of gas expansion into
vacuum (see Figure 2, right) and confirmed their accuracy by comparing to theory.
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Figure 2: 2D simulation of liquid disk with free surface (two left images). 3D simulation of gas
expansion into vacuum (two right images show pressure distribution).

5 Conclusions and Future Work

A Lagrangian particle method has been proposed for the simulation of Euler equations de-
scribing compressible inviscid fluids or gases. The method greatly improves the accuracy and
convergence order of SPH. The main contributions of our method are (a) significant improve-
ment of approximation of differential operators based on weighted least squares approximations
and convergence of prescribed order, (b) an upwind second-order particle-based algorithm with
limiter, providing accuracy and long term stability, and (c) accurate resolution of states at
free interfaces. Numerical verification tests demonstrate the second convergence order of the
method, including problems with free surfaces. Future developments will include new high
resolution particle-based WENO-type solvers and coupled multiphysics problems.
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