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In yeast, phosphatidylglycerol (PG) is a minor phospholipid under standard conditions; it can be utilized for
cardiolipin (CL) biosynthesis by CL synthase, Crd1p, or alternatively degraded by the phospholipase Pgc1p. The
Saccharomyces cerevisiae deletion mutants crd1Δ and pgc1Δ both accumulate PG. Based on analyses of the phos-
pholipid content of pgc1Δ and crd1Δ yeast, we revealed that in yeast mitochondria, two separate pools of PG are
present, which differ in their fatty acid composition and accessibility for Pgc1p-catalyzed degradation. In contrast
to CL-deficient crd1Δ yeast, the pgc1Δmutant contains normal levels of CL. Thismakes the pgc1Δ strain a suitable
model to study the effect of accumulation of PG per se. Using fluorescence microscopy, we show that accumula-
tion of PG with normal levels of CL resulted in increased fragmentation of mitochondria, while in the absence of
CL, accumulation of PG led to the formation of largemitochondrial sheets.We also show that pgc1Δmitochondria
exhibited increased respiration rates due to increased activity of cytochrome c oxidase. Taken together, our
results indicate that not only a lack of anionic phospholipids, but also excess PG, or unbalanced ratios of anionic
phospholipids in mitochondrial membranes, have harmful consequences on mitochondrial morphology and
function.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Mitochondrial membranes represent a highly specialized functional
unit comprised of two different lipid bilayers. The composition of the
inner mitochondrial membrane (IMM) is quite unusual, exhibiting a
lowphospholipid:protein (mg/mg) ratio of 0.15,whereas in the outermi-
tochondrial membrane (OMM), this ratio is up to 0.91 [1,2,3]. The IMM
also contains two specific anionic phospholipids: phosphatidylglycerol
(PG) and cardiolipin (CL).

CL, a unique dimeric phospholipid exclusive to mitochondrial
membranes, is synthesized in yeasts in a reaction of PG with cytidine
diphosphate-diacylglycerol (CDP-DAG), catalyzed by the CL synthase,
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Crd1p [4,5,6]. Under standard conditions, PG in yeasts is a minor phos-
pholipid that is mainly used for CL biosynthesis. Alternatively, PG can
be degraded to DAG and glycerol-3-phosphate (G3P) by the PG specific
phospholipase Pgc1p [7]. Accordingly, yeast lacking either CRD1 or PGC1
accumulate PG. In the crd1Δ strain, accumulation of PG is accompanied
by the absence of CL [4,5,6,8,9]; in pgc1Δ cells, PG accumulates but does
not cause significant changes in other phospholipids, including CL [7].
Thus, the pgc1Δ strain provides an excellent model in which to study
the effects of changes in PG levels independent of changes in CL or
other phospholipids.

Diverse biological functions of these two anionic phospholipids have
been described. All proteins of the oxidative phosphorylation (OXPHOS)
systemhave high affinity binding sites for CL. CL thus represents amajor
phospholipid necessary for the proper function of respiratory
complexes and for the stability of OXPHOS supercomplexes [10,11]. CL
also acts as a proton trap and provides a source of charge during
OXPHOS [12]. Furthermore, CL is required for protein import [9], forma-
tion of cristaemorphology [13,14],mitochondrial fusion [15,16], cellular
iron homeostasis [17] and apoptosis [18,19], reviewed in [20]. PG, aside
from its essential role in CL biosynthesis, also fulfills various functions in
specific membranes of some eukaryotic organisms. For example, PG is
the sole phospholipid of thylakoid membranes in eukaryotic oxygenic
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photosynthetic organisms [21,22] and it is an important component of
pulmonary surfactant, an essential fluid produced by alveolar type II
cells that covers the entire surface of the lung [23]. In yeast cells, PG is
a low abundance phospholipid, even under the conditions of aerobic
growth [6]. Therefore, PG is mainly considered to be a metabolic
precursor of CL in yeast.

The absence of CL in mitochondrial membranes is associated with
pleiotropic defects. The crd1Δ yeast strain displays growth defects and
decreased viability on both fermentable and nonfermentable carbon
sources at elevated temperatures, decreased mitochondrial membrane
potential, and decreased respiratory rates [8,9,24]. Respiratory chain
supercomplexes are destabilized in crd1Δ cells [14,25,26] and the lack
of CL leads to mitochondrial DNA instability [8,9,27].

The absence of both PG and CL, which occurs upon deletion of PGS1/
PEL1, the gene encoding phosphatidylglycerolphosphate (PGP)
synthase (Pgs1p), causes even more severe phenotypes: its growth is
strictly dependent on the presence of a fermentable carbon source in
the media and its temperature sensitivity is higher compared to crd1Δ
yeast [28,29,30,31,32,33]. This remarkable difference between the
crd1Δ and pgs1Δ strains, which both lack CL but contain different
amounts of PG, indicates that either PG can partially substitute for
some essential functions of CL or some functions ascribed to CL could
in fact be mediated by PG [9,34]. This interpretation is supported by
other observations. For example, the defective translation of mRNA
coding for Cox4p, an essential subunit of cytochrome c oxidase, detected
in pgs1Δ cells is directly caused by the lack of PG and CL inmitochondri-
al membranes. In the absence of these lipids, binding of a protein
factor(s) specifically to 5´ cis element of COX4 mRNA is observed,
which inhibits translation and lowers the Cox4p levels in pgs1Δ cells
[35]. In contrast, the crd1Δ mutant, which contains PG, has normal
Cox4p protein levels [14]. Similarly, activation of Isc1p, the inositol
sphingolipid phospholipase C, after the diauxic shift is dependent on
PGS1 but not on CRD1 [36]. These results suggest that PG could play
roles beyond just being a biochemical precursor of CL or a structural
part of mitochondrial membranes, and instead is itself an important
player in various cell functions.

Most defects in crd1Δ cells are attributed to the absence of CL.
Nevertheless, these cells also accumulate PG. In this study, we asked
whether the accumulation of PG alone could generate some of the
defects observed in crd1Δ yeast. We used the pgc1Δ mutant, which
contains normal levels of CL but elevated PG, to characterize the specific
effects of PG accumulation onmitochondrial respiration andmorphology.
Comparison of pgc1Δ and CL-deficient (crd1Δ and pgc1Δcrd1Δ) yeast
allowed us to distinguish the effects of the absence of CL from the
accumulation of PG. Based on our data, we report that PG accumulation
induces defects in mitochondrial morphology. Further, accumulation of
PG caused respiratory defects, mainly increased respiration rates and
uncoupling, associated with activation of cytochrome c oxidase.
Table 1
Yeast strains. All strains were in BY4741 or BY4742 background.

Strain Genotyp

pgc1Δ MATα his3, leu2, ura3, lys2, pgc1::KanMX
pgc1Δ + EV MATα his3, leu2, ura3, lys2, pgc 1::KanMX
pgc1Δ + PGC1 MATα his3, leu2, ura3, lys2, pgc 1::KanMX
WT MATa his3, leu2, met15, ura3, lys2
WT + EV MATa his3, leu2, met15, ura3, lys2, YEplac
WT + PGC1 MATa his3, leu2, met15, ura3, lys2, YEplac
crd1Δ MATa his3, leu2, met15, ura3, crd1::KanM
crd1Δ + EV MATa his3, leu2, met15, ura3, crd1::KanM
crd1Δ + PGC1 MATa his3, leu2, met15, ura,3 crd1::KanM
pgc1Δcrd1Δ MATa leu2, ura3, met15, crd1::KanMX, pg
pgc1Δcrd1Δ + EV MATa leu2, ura3, met15, crd1::KanMX, pg
pgc1Δcrd1Δ + PGC1 MATa leu2, ura3, met15, crd1::KanMX, pg
pgc1Δcrd1Δ+ PDA1-GFP MATa leu2, ura3, met15, crd1::KanMX, pg
pgc1Δcrd1Δ + ss-GFP-HDEL MATa leu2, ura3, met15, crd1::KanMX, pg
2. Materials and methods

2.1. Yeast strains and growth conditions

All yeast strains used in this study are listed in Table 1. Cultureswere
maintained on complex YPD media (2% yeast extract, 1% peptone, 2%
glucose). For experiments, yeast were grown aerobically at 28 °C in
defined synthetic medium prepared as described previously [37] with
various carbon sources: SMD (2% glucose) or SMDGE (0.2% glucose, 3%
glycerol, 1% ethanol). Synthetic medium was either supplemented
with 75 μM inositol (I+) or lacked inositol (I-). Transformants were
selected on synthetic medium without uracil.

2.2. RNA isolation and RT-qPCR analysis

The yeast cells were grown in SMDmediumwith or without inositol
to the indicated growth phase. Total RNA was isolated from 3x108 cells.
Briefly, cells were broken by vortexing with 150 μl of glass beads in
100 μl of 10 mM TrisHCl, pH 8.0; 0.1 mM EDTA pH 8.0 for 3 × 45 s
with 1 min cooling on ice in between. RNA was purified using the
GeneJet RNA kit (ThermoScientific). RNA was eluted with 100 μl of
water. 10–20 μg of isolated RNA was treated with DNase I to eliminate
DNA contamination. DNase was removed using the RapidOut DNA re-
moval kit (ThermoScientific). Purified RNA was reverse transcribed to
cDNA using the RevertAid Premium First Strand cDNA Synthesis Kit
(ThermoScientific). Final cDNA was diluted 10 times, and a 5 μl aliquot
was used for qPCR analysis with the following primers: PGC1 (sense,
5´-AGCGATGGTATGGTGGTGG-3´; antisense, 5´-GGAACCATCCTCTTTG
CAGC-3´), ACT1 (sense, 5´-ACCGCTGCTCAATCTTCTTC-3´; antisense, 5´-
GGTCAATACCGGCAGATTCC-3´), IPP1 (sense, 5´-ATGAAGGTGAGACCGA
TTGG-3´; antisense, 5´-CTGGCTTACCATCTGGGATT-3´), and FastStart
Essential DNA Green master (Roche) according to the manufacturer's
instructions. PGC1, ACT1 and IPP1 transcripts were analyzed on the
LightCycler 96 (Roche). PCR products were confirmed by melting
curve analysis. Standard curves were generated from PCR amplification
of template dilutions. Final data were normalized to ACT1 and IPP1
mRNA levels, and mRNA levels in wild type (WT) cells were set to 1.

2.3. Analysis of fatty acids

Extraction of phospholipids was performed by addition of 4.5 ml of
chloroform–methanol–HCl (60:30:0.26) to mitochondrial extracts corre-
sponding to 1mg of proteins, followed by 30min incubation at RT. Subse-
quently, 4.5 ml of 0.1 M MgCl2 was added and following a brief vortex,
incubated for another 30min at RT. Phases were separated by centrifuga-
tion. The organic phase was dried under a stream of nitrogen. Phospho-
lipids were separated by one-dimensional thin layer chromatography
on silica plates using chloroform–methanol–acetic acid (65:25:8) [38].
Source

Research Genetics
, YEplac195 (URA3) [7]
, YEplac195-PGC1 [7]

Research Genetics
195 (URA3) [7]
195-PGC1 [7]
X Research Genetics
X, YEplac195 (URA3) This study
X, YEplac195-PGC1 This study
c1::HIS3 [7]
c1::HIS3, YEplac195 (URA3) This study
c1::HIS3, YEplac195-PGC1 This study
c1::HIS3, pUG35-PDA1-GFP (URA3) This study
c1::HIS3, YIp211-TRP1-TKC-GFP-HDEL (URA3) This study
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The resolved spot of PGwas scraped from the plate and extracted by 1ml
of hexane.

Fatty acids from PG were converted to their methyl esters by the
method of Christoperson and Glass [39]. Analysis was performed by
the application of 1 μl aliquots to a gas chromatography apparatus
(GC2010Plus, Shimadzu, Japan) equipped with BPX70 capillary column
(30 m × 0.25 mm × 0.25 μm, SGE Analytical Science, Australia)
under temperature programming (160–234 °C at 4.5 °C/min
increments). Individual fatty acid methylesters were identified by com-
parison with authentic standards of C4 − C24 fatty acid methylesters
mixture (Supelco, USA).

2.4. Fluorescence microscopy

Living yeast cells grown in SMDGE medium were concentrated by
brief centrifugation, immobilized on a 0.17 mm coverglass by a thin
film of 1% agarose diluted in 50 mM phosphate buffer pH 6.3 and
observed using LSM510-META confocal microscope (Zeiss) with a 100×
PlanApochromat oil-immersion objective (NA = 1.4). Fluorescence sig-
nals of GFP and Mitotracker Red CMX-Ros (excited by 488 nm line of Ar
laser, and 561 nm line of solid state laser) were detected using band-
pass 505–550, and 575–615 nm emission filters, respectively. The length
ofmitochondriawas analyzedwith ImageJ software (ImageJ, U. S. Nation-
al Institutes of Health, Maryland, USA).

2.5. Measurement of mitochondrial respiration and OXPHOS

Yeast cells were grown in SMDGE medium with or without inositol
for 24 h. Intact mitochondria were isolated as described previously [7]
with a modified homogenization buffer: 0.6 M mannitol, 20 mM
HEPES/KOH pH 7.1, 1 mM EGTA, 0.2% (w/v) fatty acid free bovine
serumalbumin. The finalmitochondrial pelletwas suspended in the ho-
mogenization buffer at ~10 mg/ml of protein. The reaction buffer used
for mitochondrial respiration and OXPHOS studies was 0.6 Mmannitol,
20 mM Hepes/KOH pH 7.1, 2 mM MgCl2, 1 mM EGTA, and 0.1% (w/v)
fatty acid free bovine serum albumin. Respiration rates were measured
with a Clark-type oxygen electrode (Hansatech). The final concentra-
tion of mitochondrial proteins in the reaction mixture was 150 μg/ml,
1 ml of the reaction mixture was used. NADH (0.5 mM) was used as a
respiratory substrate. Phosphorylation was estimated from ADP-
stimulated respiration using total oxygen consumption. The concentra-
tion of ADP in each reactionwas 0.2mM.Mitochondria were uncoupled
by the addition of 15 μM carbonyl cyanide m-chlorophenyl hydrazine
(CCCP).

2.6. Enzymatic assays

The mitochondrial lysate was prepared by suspending mitochondria
in 0.5 M aminocaproic acid and dodecyl maltoside to the final concentra-
tion of 2% (w/v) and lysis was performed for 60 min on ice. Lysate was
centrifuged at 15,000 g for 10min at 4 °C. Supernatantwas used in further
analyses. Activity of cytochrome c reductasewasmeasured in 1ml of QCR
buffer (40mMNa-phosphate buffer pH 7.4, 0.5mMEDTA pH 8.5, 20mM
sodium malonate, 50 μM cytochrome c, and 0.005% (w/v) dodecyl
maltoside). Simultaneously, 2 μl of the mitochondrial lysate and 2 μl of
2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol were added and the
reaction was monitored at 550 nm for 1 min.

Activity of cytochrome c oxidasewasmeasured in 1ml of COXbuffer
(40 mMNa-phosphate buffer pH 7.4, 0.5 mM EDTA pH 8.5, 20 μM cyto-
chrome c, 30 μMascorbic acid, 0.005% (w/v) dodecylmaltoside; solution
was allowed to stand overnight to oxidize surplus of ascorbic acid). 2–
5 μl of the mitochondrial lysate were added to the buffer and the reac-
tion was monitored at 550 nm for 5 min.

ATP-hydrolase activity was measured in 1 ml of TC buffer (200 mM
KCl, 10 mM Tris/HCl pH 8.2, 2 mMMgCl2) using 1 mg of the mitochon-
drial proteins. The reactionwas started at 37 °C by the addition of ATP to
a final concentration of 5 mM. After 5 and 10 min, respectively, 95 μl of
the mixture was transferred into a new 1.5 ml tubes containing 5 μl of
3 M trichloroacetic acid. The mixture was incubated on ice for 30 min
and then centrifuged at 16,000 g for 10 min at 4 °C. One ml of the Sum-
ner reagent (8.8% (w/v) FeSO4 x7H2O, 375 mM H2SO4, 6.6% (w/v)
(NH4)6Mo7O24 x4H2O) was mixed with 90 μl of the mitochondrial
supernatant and incubated at room temperature for 15 min. The
absorbance was measured at 610 nm.

2.7. In-gel activity staining

For activity staining, mitochondria were suspended in 0.5 M
aminocaproic acid and digitonin was added for a 3:1 ratio of digitonin/
mitochondrial proteins (w/w). The lysis mixture was incubated 60 min
on ice. The lysate was centrifuged for 10 min at 15,000 g at 4 °C and the
protein concentration was determined by the Bradford assay [40]. 50 μg
of proteins from mitochondrial lysate was mixed with 1.5 μl CB solution
(0.5Maminocaproic acid, 5% (w/v) Coomassie Brilliant BlueG-250), incu-
bated for 10 min on ice and separated on 3–9% gradient blue native gel
with a power limit of 1.5 W at 4 °C as described [41]. After the run, the
gel was stained in the reaction buffer. ATPase activity was visualized
using 35 mM Tris containing 270 mM glycine, 14 mM MgSO4, 0.2% (w/
v) Pb(NO3)2 and 8 mM ATP. Staining took place overnight at RT.

2.8. Western blot analysis

Proteins obtained uponmitochondrial lysiswere separated either on
3–9% native or 12% denaturing polyacrylamide gels and blotted onto a
nitrocellulose membrane. The membrane was blocked using 5% milk
in TBS buffer (50 mM Tris/HCl pH 8.0, 150 mM NaCl, 0.05% (v/v)
Tween 20) overnight. Then, the membrane was immunostained using
the following antibodies: Complex III, rabbit anti-Rip1p MGB72.T
(dilution 1:500); Complex IV, mouse monoclonal anti-Cox2p 4B12
(dilution 1:500) and rabbit anti-Cox4p (1:1000). Visualization of
secondary anti-mouse (Sigma) or anti-rabbit (Sigma) antibodies was
done using ECL+ kit (Amersham) or NCBI/BHT kit (Sigma).

2.9. Miscellaneous

Preparation of mitochondria, steady-state phospholipid analysis,
andmeasurements of Pgc1p and PGP synthase activity were performed
as described previously [7]. Statistical comparisons were carried out by
one-way analysis of variance using SigmaPlot 11 software (Systat
software, San Jose, CA). All graphs show the mean ± SEM.

3. Results

3.1. CL synthase, Crd1p, and phospholipase C, Pgc1p, utilize distinct pools of
PG

We compared PG and CL levels in strains lacking PGC1 and/or CRD1
grown under respiratory conditions in synthetic minimal media
containing glycerol and ethanol as carbon source (SMDGE), with (I+)
or without (I-) inositol (Fig. 1). Inositol is a soluble precursor of
phosphatidylinositol (PI) and a knownmajor regulator of phospholipid
biosynthesis [42,43]. The CL biosynthetic pathwayhas been shown to be
repressed by exogenous inositol at the rate-limiting step of the path-
way, conversion of CDP-DAG to PGP by the PGP synthase, Pgs1p [28,29].

All tested mutant strains, pgc1Δ, crd1Δ, and pgc1Δcrd1Δ, contained
significantly increased levels of PG compared to the WT. The additive ef-
fect of the double deletion mutant, pgc1Δcrd1Δ, indicates that processes
of PG utilization, either for biosynthesis of CL by Crd1p or for degradation
to DAG and G3P by Pgc1p, are mutually independent. The effect of exog-
enous inositol was much more pronounced in strains lacking PGC1. The
relative amounts of PG in these strains were much higher when cells
were grown in SMDGE I− medium compared to SMDGE I+. In strains



Fig. 1. Pgc1p buffers PG levels in yeast. S. cerevisiae cells were grown in SMDGE I− or I+
medium in the presence of [32P] orthophosphoric acid for five to six generations. Steady-
state phospholipid analysis showing: A, PG as a percentage of [32P] orthophosphoric acid
labeled cellular phospholipids and B, CL as a percentage of [32P] orthophosphoric acid la-
beled cellular phospholipids. Data represent mean values of three experiments ±SEM.
Statistically significant differences between mutant strains and WT and between I− and
I+ media are marked.⁎, p b 0.05; ⁎⁎, p b 0.01; ⁎⁎⁎, p b 0.001.
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containing PGC1, the effect of exogenous inositol on PGwas at the border
of statistical significance (Fig. 1A). These results indicate that the PG spe-
cific phospholipase C, Pgc1p, is able to partially alleviate the elevation of
PG levels, especially in cells grown inmediawithout inositol. Importantly,
accumulation of PG in pgc1Δ cells was not accompanied by significant
Fig. 2. Deletion of PGC1 and CRD1 induces accumulation of PG, which differ in fatty acid
composition and accessibility to degradation by Pgc1p. A, Steady-state analysis of total
cellular phospholipids. Yeast cellswere grown in SMDGE I−URA−mediumwith [32P] or-
thophosphoric acid for five to six generations. PG is shown as a percentage of [32P] ortho-
phosphoric acid incorporated into cellular phospholipids. Data represent mean values of
three independent experiments ±SEM. Statistically significant differences between mu-
tant strains and WT and between I− and I+ media are marked. *p b 0.05; ⁎⁎, p b 0.01;
⁎⁎⁎, p b 0.001. B, Gas chromatography analysis of PG fatty acids. Yeast cells were grown
in SMD I− URA− media. Relative amounts of individual fatty acids derived from PG ex-
tracted from crude mitochondrial fractions are shown. Data represent mean values from
two independent experiments ±SEM. C, In vitro analysis of Pgc1p activity. Conversion of
[14C] PG originated from either pgc1Δ or crd1Δ cells to DAG is shown. [14C] PGwas isolated
from either pgc1Δ or crd1Δ cells that were grown in SMD I− in the presence of [14C] ace-
tate for six generations. Description of the in vitro Pgc1p degradation assay could be found
in [7]. Data represent mean values of three independent experiments ±SEM. Statistically
significant differences between pgc1Δ with EV and PGC1 are marked. ⁎⁎, p b 0.01. EV —
multicopy empty vector, PGC1 — multicopy vector containing PGC1 controlled by its
own promotor.
changes of CL levels (Fig. 1B). The relative changes of PG fraction in cellu-
lar phospholipid content were correlated with the changes of absolute
amounts of PG detected in mitochondria isolated from the analyzed
strains (Supplementary Fig. S1).

Image of &INS id=
Image of Fig. 2
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Next, we measured the relative amounts of PG in all studied mutant
strains, pgc1Δ, crd1Δ, and pgc1Δcrd1Δ, when PGC1 is overexpressed
(Fig. 2A). Overexpression of PGC1 from a multicopy plasmid under its
own promoter was verified by quantification of PGC1mRNA levels and
in vitro analysis of Pgc1p degradation activity in all strains (data not
shown). In pgc1Δ cells overexpressing PGC1 we detected WT levels of
PG. In contrast, no decrease in PG was observed in the crd1Δ mutant
upon PGC1 overexpression. In the double deletion mutant, pgc1Δcrd1Δ,
PGC1 overexpression decreased the relative amounts of PG to the PG
levels of the crd1Δ strain. These observations indicated that Pgc1p was
not capable of degrading the PG pool generated by CRD1 deletion.

Indeed, fatty acyl chain analysis revealed that PG isolated from the
pgc1Δ and crd1Δ cells significantly differ in their fatty acid composition.
Specifically, we found an approximately three-fold increased palmitoleic
acid (C16:1) in PG isolated from the pgc1Δ cells compared to crd1Δ. This
increasewas fully at the expense of palmitate (C16:0) (Fig. 2B). High rel-
ative abundance of C16:0 PG acyl chains detected in crd1Δ cells is in a
good agreement with the previously published data reporting elevated
level of PG in crd1Δ cells compared toWT, but with a predominant frac-
tion of C16:0 in both these strains [34]. It is noteworthy that comparison
of results obtained in SMDGE and SMDmedia revealed that the PG fatty
acid composition is independent on the carbon source (data not shown).
Significantly slower growth rates detected in strains grown in SMDGE
URA− I− made problematic to collect enough PG for reasonably accu-
rate gas chromatography analysis under these conditions, however.
Therefore, data from strains grown in SMD URA− I− are presented in
Fig. 2B.

Analyses of Pgc1p activity using [14C] PG isolated from either pgc1Δ
or crd1Δ strains as a substrate (Fig. 2C) indicated that upon overexpres-
sion of PGC1 in pgc1Δ strain, mitochondria exhibited in vitro increased
Pgc1p activity irrespectively of the origin of PG used as a substrate.
Taken together, our results indicate that two separate pools of PG
coexist in mitochondria. These two pools differ in their fatty acid com-
position and accessibility to Pgc1p-catalyzed degradation, but not
their ability to be degraded by Pgc1p per se.

3.2. Accumulation of PG in the pgc1Δ strain results from increased Pgs1p
activity in I− media that is not compensated by Pgc1p activity

Regulation of phospholipid metabolism is a complex process which
responds to various intracellular and environmental signals. A
Fig. 3. Expression of PGC1 is independent of inositol. Enzymatic activity of Pgs1p is increased in I
PCR following growth ofWT cells in SMD I+ or I−media to indicated growth phase. The result
growth were set to 1. Data represent mean values of four independent experiments ±SEM. Sta
⁎⁎, p b 0.01; ⁎⁎⁎, p b 0.001. B, In vitro enzymatic activity of Pgs1p. Yeast cells were grown in SMD I
enzymatic activity is defined as the amount of enzyme that catalyzes the formation of 1 nmol of
three independent experiments ±SEM. Statistically significant differences between I− and I+
substantial part of this regulation in yeast involves inositol, a soluble
precursor of PI biosynthesis [43]. Our results showed that accumulation
of PG in the pgc1Δ strain was much higher in I−medium compared to
I+ medium (Fig. 1). Therefore, we asked the question: what was the
role of inositol in this enhanced PG accumulation?

First, we compared levels of the PGC1 transcript in cells grown in the
presence and in the absence of exogenous inositol in logarithmic phase,
during the diauxic shift and in post-diauxic phase cultures. After the
diauxic shift, the amount of PGC1 mRNA was approximately two-fold
higher compared to the logarithmic phase (Fig. 3A). This result is in
line with previous transcriptional studies of the genes involved in CL
biosynthesis, namely PGS1 [44,45] and CRD1 [46], which showed in-
creased expression of these genes after diauxic shift. Independent
from the actual expression level, however, the amount of PGC1 mRNA
remained insensitive to the presence of inositol in media (Fig. 3A). We
also tested the effect of inositol on Pgc1p in vitro activity. No changes
in Pgc1p activity were detected, irrespective of whether inositol was
added to the growth medium or directly to the in vitro enzymatic
assay reaction (data not shown).

Next, we tested whether the activity of the PGP synthase, Pgs1p, is
regulated by inositol in pgc1Δ strains in a similar way as previously de-
scribed for yeast with wild type PGC1 gene [45,47]. In vitro Pgs1p activity
was several-fold higher in I− medium compared to I+ medium in all
tested strains, independent of Pgc1p expression (Fig. 3B). Based on
these data we conclude that increased accumulation of PG in the pgc1Δ
strains in the absence of inositol is the result of increased PGP synthesis
that is not compensated by regulated removal of excess PG by Pgc1p.

3.3. Absence of Pgc1p induces fragmentation of mitochondrial network

The mitochondrial network undergoes a continuous rearrangement
through dynamic fusion and fission events. Several mechanisms involv-
ing lipids in this process have been proposed, including CL being essen-
tial for fusion of the IMM [15,16]. However, normal mitochondrial
morphology was reported in crd1Δ yeast when grown in complex
(YPD) or synthetic medium with 2% glucose [15,48]. Using Mitotracker
stain, we checked the mitochondrial morphology in the strains lacking
CRD1, crd1Δ and pgc1Δcrd1Δ, grown in SMDGE, which revealed an in-
creased occurrence of mitochondria coalesced into large, flat sheets re-
sembling the morphology of the cisternae of endoplasmic reticulum
(ER) (Fig. 4A,B). The fraction of cells containing Mitotracker-positive
- medium. A, Analysis of PGC1 transcription. PGC1mRNA abundancewas analyzed by qRT-
s were normalized to ACT1 and IPP1mRNA, themRNA levels inWT I+ cells in log phase of
tistically significant differences between different phases of growth are marked. ⁎, p b 0.05;
+ or I−media. PGP synthase activity was determined inmitochondrial fractions. A unit of
product/min under the assay conditions described in [7]. Data representmean values from
media are marked. ⁎⁎, p b 0.01; ⁎⁎⁎, p b 0.001.

Image of Fig. 3


Fig. 4. CL-deficient mutants exhibit flat Mitotracker-stained sheets. Abnormal mitochon-
driawere visualized byMitotracker Red CMX-Ros staining in cells grown in SMDGEmedi-
um for 24 h. A, Three examples of pgc1Δcrd1Δ cells containing Mitotracker-stained large
flat sheets are presented as mean projections of five consecutive confocal sections from
the cell cortex with axial spacing of 370 nm. Flat sheets detected in other analyzed strains
includingWTweremorphologically identical at the resolution offluorescencemicroscopy.
B, isosurface projections of full 3D stacks, encompassing the whole cell. Bar: 2 μm. C, Sta-
tistical evaluation of sheet occurrence in the analyzed strains. Fraction of cells showing
this morphological feature was determined in WT, pgc1Δ, crd1Δ and pgc1Δcrd1Δ strain
cultures grown in SMDGE I+ or I-media. Data represent mean values of three indepen-
dent experiments±SEM. At least 300 cells were evaluated in each experiment. Statistical-
ly significant differences between mutant strains and WT and between I− and I+media
are marked. ⁎⁎⁎, p b 0.001.

Fig. 5. Flat Mitotracker-stained sheets observed in CL-deficient cells correspond to mor-
phologically abnormal mitochondria. A-C, pgc1Δcrd1Δ cells expressing the mitochondrial
marker PDA1-GFP or D-E, ER marker ss-GFP-HDEL were grown in SMDGE I− medium for
24 h, stained with Mitotracker Red CMX-Ros and observed. Mean projections of five con-
secutive confocal sections from the cell cortex with axial spacing of 370 nm (A-D), and a
single transversal confocal section (E) are presented. Bar: 5 μm.
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sheets was further increased in the pgc1Δcrd1Δ double mutant
cultivated in the medium without inositol. PGC1 deletion alone had no
detectable effect in this respect, however (Fig. 4C). The mitochondrial
origin of these structures was confirmed by co-localization of the
Mitotracker-positive sheets with fluorescently tagged Pda1p, the E1
alpha subunit of the pyruvate dehydrogenase complex that concen-
trates in spots within the mitochondrial matrix [49,50]. Interestingly,
in contrast to the tubularmitochondria, where Pda1-GFP signal covered
most of the Mitotracker-stained volume at the resolution of fluores-
cence microscopy, Pda1-GFP spots overlapping with Mitotracker-
stained sheets were confined exclusively to the border of these sheets
(Fig. 5A-C). Clear separation of themitochondrial sheets from the distri-
bution of ss-GFP-HDEL, containing a signal sequence for ER localization
and the ER retention signal His-Asp-Glu-Leu (HDEL), excluded any
overlap of these structures with the ER network (Fig. 5D,E).

To assess the degree of fragmentation of the mitochondrial network
in the studied mutant strains, the lengths of individual mitochondria
were measured in cells grown in the presence or absence of inositol
(Fig. 6). In all analyzed strains, widely dispersed distributions of mito-
chondrial lengthswere detected. Compared toWT, themutant distribu-
tions were shifted towards shorter mitochondria (Fig. 6C). This
tendency was most pronounced in pgc1Δ cells grown in the absence
of inositol, in which we found 71% of mitochondria shorter than 1 μm,
compared to 48% in the wild type cells grown in SMDGE I-, and 58% in
the pgc1Δ cells grown in SMDGE I+. Notably, apart from the pgc1Δ
strain, the fragmentation of the mitochondrial network was not sensi-
tive to the presence/absence of inositol in the growth medium
(Fig. 6C). These results indicated that PG levels significantly contribute

Image of &INS id=
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Fig. 6. Yeast cells accumulating PG exhibit fragmentedmitochondria. Yeast cell were grown in SMDGEmedia for 24 h. A,Mitochondrial networks visualized byMitotracker staining. Mean
projections of five consecutive confocal sectionswith axial spacing of 370 nmencompassing the cell cortex are shown in cultures grown in presence or B, absence of inositol in the growth
medium. Bar: 5 μm. C, Statistical analysis of the mitochondrial length distributions in the analyzed strains. Median (central line), first and third quartile (lower and upper box borders,
respectively) and 10 and 90 percentiles (error bars) are depicted in a box plot. Data were collected in three independent experiments. At least 250 cells were analyzed in each experiment.
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to mitochondrial morphology. At normal levels of CL, the accumulation
of PG increases mitochondrial fragmentationwhile in the absence of CL,
it leads to the formation of large mitochondrial sheets. Alternatively,
both effects could be induced by PG reaching a certain threshold
value, independent on CL content.

3.4. pgc1Δ cells exhibit increased respiration compared to wild type cells

To characterize the impact of excess PG on mitochondrial functions
we measured the rate of O2 consumption in mitochondria isolated
from the studied strains grown in SMDGE I+ or I−media. In the pres-
ence of NADH and absence of ADP (i.e. in non-phosphorylating state)
oxygen flux is mainly the result of proton leak through the IMM.
Under these experimental conditions, mitochondria isolated from
pgc1Δ yeast grown in I− media exhibited approximately two-fold
higher O2 consumption (LEAK respiration) compared to mitochondria
from WT, crd1Δ or pgc1Δcrd1Δ strains (Fig. 7A). No significant differ-
ence among mitochondria isolated from cells grown in the presence of
inositol was observed. Slightly higher LEAK respiration values were de-
tected in mitochondria from crd1Δ and pgc1Δcrd1Δ yeast grown in I−
compared to I+media. Determination of the respiratory capacity ofmi-
tochondria in the ADP-activated state of OXPHOS revealed similar
results: about two-fold higher OXPHOS capacity of mitochondria from
pgc1Δ yeast grown in I− media compared to mitochondria from WT,
crd1Δ, or pgc1Δcrd1Δ yeast. In I+ media, lower OXPHOS capacity was
detected in crd1Δ and pgc1Δcrd1Δ mitochondria compared to mito-
chondria ofWT and pgc1Δ cells (Fig. 7B). This observation was in accor-
dance with earlier reported lower OXPHOS capacity of crd1Δ mutant
grown in complex media [8,9,14,24,51].

Mitochondrial respiration was also analyzed in an experimentally
induced uncoupled state caused by the addition of the protonophore
CCCP. This allowed themeasurement of themaximum electron transfer
system (ETS) capacity of mitochondria. Again, the highest consumption
of O2 was detected in mitochondria from pgc1Δ yeast grown in I−
media (Fig. 7C). Interestingly, in this strain the uncoupled respiration
rates were not increased compared to the OXPHOS capacity. A similar
resultwas observed inmitochondria from pgc1Δ yeast grown in I+me-
dium, although respiration rates were lower compared to I−media. In
contrast, the respiration rates of WT mitochondria increased ~1.5-fold
following artificial uncoupling by CCCP, compared to theOXPHOS respi-
ration values, similar to previously published data [24]. These results
suggest that mitochondria from pgc1Δ yeast are uncoupled. Mitochon-
dria from the CL-deficientmutants exhibited significantly lower ETS ca-
pacity compared to WT mitochondria. This decrease was more

Image of Fig. 6


Fig. 7.Mitochondrial respiration is affected by PGC1 deletion. Yeast cells were cultivated in SMDGE I+ or I−media for 24 h. Isolatedmitochondria were used to measure of oxygen con-
sumption. NADHwas used as a respiratory substrate.Mitochondrial respiration in the presence of A, NADH (LEAK respiration); B, NADH and ADP (OXPHOS capacity) and C, protonophore
CCCP (Electron Transfer System capacity). D, Respiratory control index as ameasure of OXPHOS coupling. Data representmean values of 3–6 independent experiments±SEM. Statistically
significant differences between mutant strains and WT and between I− and I+ media are marked. ⁎, p b 0.05; ⁎⁎, p b 0.01; ⁎⁎⁎, p b 0.001.
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pronounced inmitochondria isolated from crd1Δ and pgc1Δcrd1Δ yeast
grown in I+ media.

Next, the respiratory control index (RCI) was calculated to measure
the coupling between respiration and phosphorylation in mitochondria
isolated from the mutant strains. Low RCI values detected in mitochon-
dria isolated from crd1Δ and pgc1Δcrd1Δ cells reflected the known in-
stability of respiratory supercomplexes induced by the absence of CL
in these strains [9,11,14,24]. However, the RCI values of pgc1Δ mito-
chondria were also significantly decreased even though they contained
normal levels of CL. The RCI values were insensitive to the presence of
inositol in the growth medium (Fig. 7D).

3.5. PG levels modulate the activity of cytochrome c oxidase

Elevated PG has been suggested to compensate for the lack of CL in
CL-deficient mitochondria [9,34]. CL is critical for the stability of the re-
spiratory supercomplexes [14,25,26]. Therefore, we used blue native-
PAGE analysis to investigate the stability of mitochondrial respiratory
supercomplexes in mutants bearing the PGC1 deletion with elevated
levels of PG and standard levels of CL. Cytochrome c reductase (Complex
III) and cytochrome c oxidase (Complex IV) were immunoblotted with
antibodies against the subunits Rip1p and Cox2p, respectively
(Fig. 8A). Complex V was visualized by “in-gel activity assay” (Fig. 8B).
In agreement with previously published data [14,25,26,51,52,53], we
observed a clear reduction of the amount of supercomplexes III2IV2

and V2 in favor of the lower forms of supercomplexes in crd1Δ and
pgc1Δcrd1Δ mutants. Interestingly, reduction of supercomplex V2 was
repeatedly less pronounced in crd1Δ and pgc1Δcrd1Δ mitochondria
isolated from cells growing in the absence of inositol compared tomito-
chondria isolated from cells grown in the presence of inositol (Fig. 8B).
The stability of respiratory supercomplexes in pgc1Δ cellswas, however,
comparable to the stability of respiratory supercomplexes of WT cells
andwas independent from the presence of inositol in the growthmedia.

Consistent with previously published data [14,53], we detected
lower activity of Complex III in CL-deficient crd1Δ and pgc1Δcrd1Δ
mitochondria compared to WT. In pgc1Δ mitochondria, activity of
Complex III was also very slightly decreased (Fig. 8C). However, we ob-
served strikingly increased activity of Complex IV in thesemitochondria
compared to WT. The activity of cytochrome c oxidase was increased
1.7-fold in mitochondria from pgc1Δ yeast grown in I+ media and
4.8-fold when grown in I−media (Fig. 8C). In vitro activity of Complex
V (Fig. 8C) and in-gel activity of succinate dehydrogenase (Complex II)
was also measured (data not shown), demonstrating comparable activ-
ities of these complexes in all tested strains.We conclude that excess PG
in mitochondrial membranes has no influence on the stability of respi-
ratory chain supercomplexes in mitochondria with an otherwise nor-
mal lipid composition, but induces a specific increase of Complex IV
activity.

It has been shown that the absence of PG and CL resulted in transla-
tional inhibition of Cox4p, a subunit of cytochrome c oxidase [35]. We
tested, therefore, whether an opposite situation, accumulation of PG in
mitochondrial membranes of the pgc1Δ mutant, has any effect on
Cox4p expression.We compared the relative amounts of Cox4p inmito-
chondria isolated from WT, pgc1Δ, crd1Δ, and pgc1Δcrd1Δ cells by im-
munoblotting (Fig. 9). No significant difference in Cox4p levels
between mitochondria isolated from WT and the mutant strains were

Image of Fig. 7


Fig. 8. Activity of Complex IV is increased in yeast strains with PGC1 gene deletion. A, Immunoblot of mitochondrial lysates separated by blue native-PAGE using anti-Rip1p (subunit of
Complex III) and anti-Cox2p (Complex IV) antibodies. Bottom panels represent immunoblots following SDS-PAGE and serve as loading controls. B, In-gel staining for Complex V activity.
C, in vitro activities of Complex III, Complex IV and Complex V. Data in C represent mean values from 4 to 5 independent experiments ±SEM. Statistically significant differences between
mutant strains and WT and between I− and I+ media are marked. ⁎, p b 0.05; ⁎⁎, p b 0.01; ⁎⁎⁎, p b 0.001.
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detected. These findings indicate that deletion of PGC1 and the subse-
quent increase of PG levels has no effect on the abundance of Cox4p
protein and that the observed higher activity of Complex IV is not due
to increased Cox4p expression.

4. Discussion

Two routes of PG consumption in yeast have been described, via
i) synthesis of CL by Crd1p, and ii) degradation of PG to G3P and DAG
by Pgc1p. Consequently, PG accumulates in yeasts when either CRD1
or PGC1 is deleted [4,5,6,7,8,9]. Our data suggest that each of these dele-
tions elevates a distinct pool of PG (Fig. 1A). Similarly, the existence of
two separate PG pools was previously reported in hearts of rats after
fasting or induction of diabetes [54].

In pgc1Δ cells the PG content decreased to WT levels upon expres-
sion of PGC1 from a multicopy plasmid, but elevated PG levels could
not be lowered in crd1Δ cells by overexpression of PGC1. In the double
mutant pgc1Δcrd1Δ, PGC1 overexpression reduced the PG content to
the level observed in the crd1Δ strain (Fig. 2A). This selectivity of
Pgc1p was not caused by the substrate specificity of the enzyme. It is
true that we detected different fatty acid compositions of PG in the
Fig. 9. The amount of Cox4p is not affected by PGC1 deletion. Immunoblot analysis of
Cox4p. Upper panel with Porin serves as a loading control. For loading, 5 (left) and 10 μg
of mitochondrial protein (right) was used.
pgc1Δ and crd1Δ mutants (Fig. 2B), but at the same time, we showed
that both of these pools can be consumed by Pgc1p in vitro (Fig. 2C). Ap-
parently, PG dedicated for Crd1p-catalyzed CL biosynthesis is inaccessi-
ble to Pgc1p in vivo. We hypothesize that this limited accessibility of the
Crd1p-specific PG fraction reflects a different subcellular localization of
the Crd1p and Pgc1p enzymes. Crd1p activity has been localized to the
matrix side of the IMM [55,56]. In the frame of the proposed model,
we expect the Crd1p-specific pool of PG to localize there, too. Currently,
it is not knownwhich of themembranes hosts the Pgc1p activity. Based
on our data, we suggest that the active site of Pgc1p is not exposed to
the mitochondrial matrix. Additional study will be necessary to verify
this hypothesis.

An alternative explanation of different fatty acid composition of PG
in the pgc1Δ compared to crd1Δ mutant (Fig. 2B) could be raised from
the interpretation that PG partially takes over some CL functions in
crd1Δ cells [9,34]. CL ismassively remodeled by the action of a phospho-
lipase Cld1p and a transacylase Taz1p [57,58,59]. Accordingly, cld1Δ
cells exhibit altered CL acyl composition compared towild type. Eventu-
al remodeling of “CL-like” PG in crd1Δ mutant remains hypothetical,
however, as the phospholipase activity was shown to be highly
CL-specific [59].

Accumulation of PG in the PGC1 deletion strains further increased in
media without inositol ([7]; Fig. 1A), where Pgs1p-catalyzed PG biosyn-
thesis is upregulated (Fig. 3B) [42,43,45,47]. Increased accumulation of
PG in I− media compared to I+ media was not observed in crd1Δ
cells, indicating that most likely Pgc1p-mediated PG degradation
compensates for increased Pgs1p activity in I−media. Importantly, ex-
pression (Fig. 3A) and in vitro activity of Pgc1p (not shown) was inde-
pendent of inositol and in vitro activity of the inositol-dependent
Pgs1p protein was not affected by Pgc1p expression (Fig. 3B). Higher
PG accumulation in the pgc1Δ cells grown on the inositol-free media
can be, therefore, fully ascribed to the increase in Pgs1p activity.

The role of the lipid composition in mitochondrial morphology is a
well-known phenomenon [15,16,60,61,62,63,64] Results from the
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analysis ofmitochondrial length distribution in the pgc1Δ strain indicat-
ed a fragmented mitochondrial network compared to WT and CL-
deficient strains (crd1Δ and pgc1Δcrd1Δ) even though themitochondri-
al membranes in pgc1Δ cells contained normal levels of CL (Fig. 6). The
occurrence of fragmentedmitochondria in pgc1Δ cells indicates that the
elevation of the Pgc1p-specific pool of PG favors mitochondrial fission
over fusion, similar to the morphology found in other fusion-defective
mutants [15,61,65,66,67]. In psd1Δ yeast, which lack the gene coding
for phosphatidylserine decarboxylase crucial for the mitochondrial
phosphatidylethanolaminebiosynthesis, impairedmitochondrial fusion
has also been described as a result of changes in the lipid composition of
mitochondrial membranes [15,61].

Normal mitochondrial morphology has been reported by earlier stud-
ies in crd1Δ cells [15,48]. In contrast to this fact, we observed an increased
occurrence of mitochondria coalesced into large, flat sheets in crd1Δ cells
cultivated in synthetic minimal medium with a nonfermentable carbon
source (Fig. 4A,B). It is known that under respiratory conditions, crd1Δ
mutant accumulates higher amounts of PG compared to fermentative
conditions [5,8]. It could be that the sheet formation is induced by higher
levels of PG in crd1Δ cultivated in nonfermentable compared to ferment-
able carbon source. This holds true also for pgc1Δcrd1Δ cells, inwhich the
frequency of sheets further increased with the PG content in I− media
(Fig. 4C). These results suggest that formation of mitochondrial sheets
could be a consequence of PG accumulation.

It is noteworthy here that the primary place for PG accumulation in
strains lacking Crd1pwould be the IMM. Accordingly, morphology sim-
ilar to that of CL-deficient mitochondria was observed in MICOS (mito-
chondrial contact site and cristae organizing system)mutants defective
in maintaining the IMM structure [68]. In addition, our co-localization
experiments revealed a specific structure of the sheets. The mitochon-
drial matrix protein, Pda1p [49,50], localized exclusively to distinct
foci at the border of the sheets, while the inner area of the sheet
remained void of Pda1p-GFP signal, suggesting fragmentation of the
IMM within these altered mitochondria.

Alterations of mitochondrial morphology often reflect changes in
mitochondrial functionality and/or the energetic state of the cell [69].
Fused mitochondria are preferred when optimal mitochondrial energy
production is needed or present [70,71]. In contrast, fragmented mito-
chondria are frequently found in resting cells andmay represent amor-
phological state when respiration activity is damaged or not required
[71,72,73]. The lack of CL in crd1Δ mutant was reported to cause sub-
optimal respiratory chain function as evidenced by decreased respirato-
ry rates, decreased RCI, and destabilization of respiratory chain
supercomplexes [8,9,14,24,25,26,34,74,75]. Based on the respiratory
characteristics of the pgc1Δ strain, accumulation of excess PG in the
presence of normal CL levels has no impact on the stability of
supercomplexes III2IV2 and V2 (Fig. 8A,B), and it has negligible effect
on the in vitro activity of Complexes III and V (Fig. 8C). The major
observed respiration-related impact of PGC1 deletion was the increase
in Complex IV activity. Especially in inositol-free medium, the in vitro
activity of Complex IV was almost 5 times higher compared to the WT
strain (Fig. 8C). Probably due to the aforementioned instability of the
respiration supercomplexes in CL-defective strains (note the remark-
able decrease of III2IV2 and also V2 in cells bearing the CRD1 gene dele-
tion, Fig. 8A,B), this boost of Complex IV activity could not be detected in
pgc1Δcrd1Δ cells (Fig. 8C). Accordingly, pgc1Δ but not pgc1Δcrd1Δ
mitochondria exhibited an increased rate of respiration (Fig. 7 A-C),
and the respiratory control index in crd1Δ and pgc1Δcrd1Δ was low
compared to pgc1Δ strain (Fig. 7D).

It has been shown that the important factor for the supercomplex
stabilization and function of Complex IV is the level of expression of
Complex IV subunits [76]. Su and Dowhan reported that in the absence
of anionic phospholipids, subunit of Complex IV, Cox4p, is highly re-
pressed at the translational level [35]. Inspired by their observation,
we tested whether the elevated PG in pgc1Δ mitochondria induced
the opposite effect on Cox4p expression. The immunoblot detection
revealed no difference in the amounts of this protein in the WT,
pgc1Δ, crd1Δ, and pgc1Δcrd1Δ mitochondria, however (Fig. 9).

An alternative explanation for the increased activity of Complex IV in
mitochondria with increased levels of PG is based on shape differences
between cylindrical PG and conical CL molecules. In this interpretation,
excess PG or rather changed ratio of PG/CL in the outer leaflet of the
IMMcould provoke the imbalance in themembrane curvature resulting
in a leak of protons through the IMM. Complex IV in this case would be
activated tomaintain the electromotive force. The idea of a leaky IMM in
pgc1Δ yeast is supported by our observation that the rate of oxygen con-
sumption in pgc1Δ mitochondria following the addition of ADP
(OXPHOS capacity) cannot be further increased by the addition of
protonophore CCCP (Fig. 7B,C). The uncoupled respiration in the
pgc1Δ cells corresponds well with the increased fragmentation of
pgc1Δ mitochondria (Fig. 6). Fragmented yeast mitochondria are
observed after in vitro dissipation of the electrical gradient across the
IMM with ionophores [77], and in mammalian cells, mitochondrial
fusion is strongly inhibited by treatment with protonophores [78,79].

Taken together, our results show that not only the loss of CL, but also
defective removal of a direct CL precursor, PG, from the IMM significantly
affectsmitochondrialmorphology and function. This observation strongly
supports recent studies, which suggested that the decreased CL levels
and/or accumulation of another CL precursor, monolysocardiolipin,
could be a primary cause of mitochondrial phenotypes observed in
yeast defective in CL remodeling [14,80]. It remains to be established,
however, whether increased accumulation of PG per se contributes to
observe mitochondrial defects also in mammalian cells.
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