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a b s t r a c t

In this paper, a new locally one-dimensional (LOD) scheme with error of O(∆t4 + h4)
for the two-dimensional wave equation is presented. The new scheme is four layer in
time and three layer in space. One main advantage of the new method is that only
tridiagonal systems of linear algebraic equations have to be solved at each time step.
The stability and dispersion analysis of the new scheme are given. The computations of
the initial and boundary conditions for the two intermediate time layers are explicitly
constructed, whichmakes the scheme suitable for performing practical simulation in wave
propagation modeling. Furthermore, a comparison of our new scheme and the traditional
finite difference scheme is given, which shows the superiority of our new method.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Simulating wave propagation has important applications in geophysics, especially in oil exploration. The simplest, and
yet the most important and popular, approach is the finite difference method. One of the first papers on this subject was
that of [1] where a finite difference scheme for the acoustic wave equation in homogeneous media was proposed, which is
fourth-order accurate in space and second-order accurate in time. Already, a lot of progress has beenmade in this direction.
For instance, some explicit fourth-order finite difference schemes for the acoustic wave equation can be found in [2–5]. To
improve the efficiency, one uses the finite difference approach coupled with some splitting methods. Two kinds of splitting
methods, the alternating direction implicit (ADI) method and the locally one-dimensional (LOD) method, have been proven
to be very efficient in the numerical solution of parabolic and hyperbolic equations (see, e.g., [6–8]). Both methods reduce
the multidimensional problem to a sequence of locally one-dimensional problems with tridiagonal systems which can be
solved easily. Parallelization of splitting methods has also been investigated [9–12].

The ADI method was first introduced in [13,14] for the heat equation in two space variables. The method was extended
to mildly nonlinear problems [15], problems in three space dimensions and elliptic equations [16–18]. Improved forms
of the ADI methods are derived in [19]. Moreover, a general formulation of the ADI methods for parabolic and hyperbolic
problems is developed in [20]. Furthermore, Kellogg generalized the ADI method for the efficient approximation of operator
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equations [21]. Regarding the analysis of ADI methods, Lees used the energy method to establish the unconditional stability
of the ADI methods [22]. Lees also formulated two finite difference methods for the numerical solution of the wave
equation [23]. A high order version of the ADI scheme for the wave equation was proposed in [24,18].

One drawback of the ADI method is that it involves a restriction on the computational region, for example, in the case
with three space variables, themethod is valid under the restriction that the region is a cube [17]. The LODmethodwas then
proposed approximately ten years later; for instance, in [25], Samarskii introduced a LOD finite differencemethod for solving
hyperbolic equations in two space dimensions. The LODmethod provides a more competitive option since it can be applied
to arbitrary regions, but itwasmentioned that ‘‘high accuracy differencemethods are difficult to use’’ [7].We remark that the
aforementioned ADI methods such as the method of Lees, and the high accuracy methods of Samarskii [6] and Fairweather
and Mitchell [24] cannot be written in LOD form.While high accuracy ADI methods are investigated extensively, to the best
of our knowledge there are only a few studies on high accuracy LOD schemes. To name one example, in [26], the fourth-order
LOD scheme in time and space based on Richardson extrapolation is discussed. In this paper, we present and analyze a novel
high accuracy LOD scheme which has an error of O(1t4 + h4) and is easy to implement.

The paper is organized as follows. The derivation of the new LOD scheme is presented in Section 2. The stability and
dispersion of themethod are analyzed in Sections 3 and 4 respectively. In Section 5, we discuss how the initial and boundary
conditions are computed,while in Section 6, numerical results are given as an illustration to confirm our theoretical findings.
Finally, a conclusion is given in Section 7.

2. The new LOD scheme

In this section, we will describe our new LOD methods. Consider the following wave equation:

∂2u
∂2t

= v2


∂2u
∂2x

+
∂2u
∂2y


(2.1)

with (x, y, t) ∈ Ω = Ω × [0 ≤ t ≤ T ], where Ω = {(x, y) : 0 < x, y < 1}, subject to the initial conditions

u(x, y, 0) = f1(x, y),
∂u(x, y, 0)

∂t
= f2(x, y), (x, y) ∈ Ω, (2.2)

and the boundary conditions
u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂Ω × [0 ≤ t ≤ T ], (2.3)

where ∂Ω is the boundary of Ω and v is the wave velocity. We shall assume that the given initial and boundary conditions
are sufficiently smooth for achieving the order of accuracy of the difference scheme under consideration.

The wave equation is typically written as the pair of equations [25]

1
2

∂2u
∂t2

= v2 ∂2u
∂x2

, (2.4)

1
2

∂2u
∂t2

= v2 ∂2u
∂y2

. (2.5)

In [25], the second-order time derivative is approximated by the standard central difference scheme. In order to obtain our
higher order scheme, we use the following expression:

∂2u
∂t2

≈
aun+s

− (a + b)un
+ bun−1+s

1t2
, s ∈ (0, 1) (2.6)

to approximate the derivative ∂2u
∂t2

, where1t is the time step, and s, a, b are coefficients that will be determined. Throughout
the paper, we use un to denote the approximate value of u(x, y, t) at a general grid point (xj, ym, tn), j = 0, 1, . . . ,Nx;

m = 0, 1, . . . ,Ny. Here we have assumed that the velocity v is constant. Using the Taylor expansion, s, a and b should
satisfy

a =
2
s
, b =

2
1 − s

. (2.7)

Let hx and hy be the grid spacings in the x and y directions respectively. Then repeated applications of the finite difference
methods to (2.4)–(2.5) lead to the following scheme:

bun
− (a + b)un−1+s

+ aun−1

1t2
= v2 c1δ

2
xu

n−1+s
− c2δ2

xu
n
− c3δ2

xu
n−1

h2
x

,

aun+s
− (a + b)un

+ bun−1+s

1t2
= v2 c

′

1δ
2
yu

n
− c ′

2δ
2
yu

n+s
− c ′

3δ
2
yu

n−1+s

h2
y

,

bun+1
− (a + b)un+s

+ aun

1t2
= v2 c1δ

2
xu

n+s
− c2δ2

xu
n+1

− c3δ2
xu

n

h2
x

,

(2.8)
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which can be written as follows:

(b + τxc2δ2
x )u

n
+ (a + τxc3δ2

x )u
n−1

= (a + b + τxc1δ2
x )u

n−1+s,

(a + b + τyc ′

1δ
2
y )u

n
= (a + τyc ′

2δ
2
y )u

n+s
+ (b + τyc ′

3δ
2
y )u

n−1+s,

(b + τxc2δ2
x )u

n+1
+ (a + τxc3δ2

x )u
n

= (a + b + τxc1δ2
x )u

n+s,

(2.9)

with

τx =
v21t2

h2
x

, τy =
v21t2

h2
y

, (2.10)

where δ2
x , δ

2
y are the second-order central difference operators in the x, y directions respectively, e.g., δ2

xu
n
j,m = un

j+1,m −

2un
j,m + un

j−1,m. The coefficients c1, c2, c3, and c ′

1, c
′

2, c
′

3 will be determined in the following paragraphs.
For ease of notation, let

A = b + τxc2δ2
x , B = a + τxc3δ2

x ,

C = a + b + τxc1δ2
x , D = a + b + τyc ′

1δ
2
y ,

E = a + τyc ′

2δ
2
y , F = b + τyc ′

3δ
2
y .

(2.11)

Then (2.8) can be rewritten as

Aun
+ Bun−1

= Cun−1+s,

Dun
= Eun+s

+ Fun−1+s,

Aun+1
+ Bun

= Cun+s.

(2.12)

Canceling un+s and un−1+s in the above expression, we obtain

AEun+1
+ (AF + BE)un

+ BFun−1
= CDun. (2.13)

Obviously, AE = BF whenever

ac2 = bc3, bc ′

2 = ac ′

3. (2.14)

Assuming this, (2.13) can be reduced to

AE(un+1
− 2un

+ un−1) = [CD − (A + B)(E + F)]un. (2.15)

Let

L = un+1
− 2un

+ un−1
≈ 1t2

∂2u
∂t2

+
1t4

12
∂4u
∂4t

+ O(1t6); (2.16)

then

δ2
x L = 1t2h2

x
∂4u

∂t2∂x2
+ O(1t2h4

+ 1t4h2),

δ2
y L = 1t2h2

y
∂4u

∂t2∂y2
+ O(1t2h4

+ 1t4h2),

δ2
x δ

2
y L = 1t2h2

xh
2
y

∂6u
∂t2∂x2∂y2

+ O(1t2h4
+ 1t4h2),

(2.17)

and

δ2
xu

n
= h2

x
∂2u
∂x2

+
h4
x

12
∂4u
∂x4

+ O(h6),

δ2
yu

n
= h2

y
∂2u
∂y2

+
h4
y

12
∂4u
∂y4

+ O(h6),

δ2
x δ

2
yu

n
= h2

xh
2
y

∂4u
∂x2∂y2

+
h4
xh

2
y

12
∂6u

∂x4∂y2
+

h2
xh

4
y

12
∂6u

∂x2∂y4
+ O(h6),

(2.18)
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where h = max(hx, hy). Using (2.17) and (2.18) in (2.15), we obtain

ab
∂2u
∂t2

− (a + b)(c1 − c2 − c3)v2 ∂2u
∂x2

− (a + b)(c ′

1 − c ′

2 − c ′

3)v
2 ∂2u
∂y2

+
ab1t2

12
∂4u
∂t4

+ ac2v21t2
∂4u

∂t2∂x2

+ bc ′

2v
21t2

∂4u
∂t2∂y2

−
(a + b)(c1 − c2 − c3)v2h2

x

12
∂4u
∂x4

−
(a + b)(c ′

1 − c ′

2 − c ′

3)v
2h2

y

12
∂4u
∂y4

− v41t2[c1c ′

1 − (c2 + c3)(c ′

2 + c ′

3)]
∂4u

∂x2∂y2
+ O(1t4 + h4) = 0. (2.19)

Comparing this equation with (2.1), we have

ab = (a + b)(c1 − c2 − c3), ab = (a + b)(c ′

1 − c ′

2 − c ′

3). (2.20)

Inserting (2.7) into (2.20), we get

c1 − c2 − c3 = 2, c ′

1 − c ′

2 − c ′

3 = 2. (2.21)

To keep the truncation errors of our scheme to O(1t4 + h4), we require, in (2.19), that

ab1t2

12
∂4u
∂t4

+ ac2v21t2
∂4u

∂t2∂x2
+ bc ′

2v
21t2

∂4u
∂t2∂y2

−
(a + b)(c1 − c2 − c3)v2h2

x

12
∂4u
∂x4

−
(a + b)(c ′

1 − c ′

2 − c ′

3)v
2h2

y

12
∂4u
∂y4

− v41t2[c1c ′

1 − (c2 + c3)(c ′

2 + c ′

3)]
∂4u

∂x2∂y2
= 0. (2.22)

Here we have assumed that the velocity v is constant. Using (2.1) and the relationship

∂4u
∂t4

= v4


∂4u
∂x4

+
2∂4u

∂x2∂y2
+

∂4u
∂y4


(2.23)

to replace the time derivatives in the above expression, and letting the coefficients of ∂4u
∂x4

, 2∂4u
∂x2∂y2

, ∂4u
∂y4

be zero, we get

ab
12

v21t2 + ac2v21t2 −
(a + b)(c1 − c2 − c3)

12
h2
x = 0,

ab
6

+ ac2 + bc ′

2 − [c1c ′

1 − (c2 + c3)(c ′

2 + c ′

3)] = 0,

ab
12

v21t2 + bc ′

2v
21t2 −

(a + b)(c ′

1 − c ′

2 − c ′

3)

12
h2
y = 0.

(2.24)

Substituting (2.14) and (2.21) into (2.15),we get ab = 24. Therefore s =
1
2±

√
3
6 . For the symmetry of s, we choose s =

1
2−

√
3
6 ;

then a = 6 + 2
√
3 and b = 6 − 2

√
3. Inserting a and b into (2.25), we obtain

c1 = 1 +
1
τx

, c2 =
2(1 − τx)

aτx
, c3 =

2(1 − τx)

bτx
, (2.25)

c ′

1 = 1 +
1
τy

, c ′

2 =
2(1 − τy)

bτy
, c ′

3 =
2(1 − τy)

aτy
. (2.26)

Therefore, we have proven the following theorem.

Theorem 2.1. Defining a = 6 + 2
√
3, b = 6 − 2

√
3, s =

1
2 −

√
3
6 and using the above c1, c2, c3 from (2.25) and c ′

1, c
′

2, c
′

3
from (2.26) in (2.8), we see that the new LOD scheme (2.8) has an error of O(1t4 + h4).

3. Stability analysis

In this section,wewill use the Fouriermethod to analyze the stability of our new LOD scheme (2.8). Let un
j,m = zneijσ1eimσ2 .

Then

δ2
xu

n
j,m = −4 sin2

σ1

2


zneijσ1eimσ2 ,

δ2
yu

n
j,m = −4 sin2

σ2

2


zneijσ1eimσ2 ,

δ2
x δ

2
yu

n
j,m = 16 sin2

σ1

2


sin2

σ2

2


zneijσ1eimσ2 ,

(3.1)
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and

L1un
j,m =


b − 4τxc2 sin2

σ1

2


un
j,m :=L1uj,m,

L2un
j,m =


a − 4τxc3 sin2

σ1

2


un
j,m :=L2uj,m,

L3un
j,m =


a + b − 4τxc1 sin2

σ1

2


un
j,m :=L3uj,m,

L4un
j,m =


a + b − 4τyc ′

1 sin
2
σ2

2


un
j,m :=L4uj,m,

L5un
j,m =


a − 4τyc ′

2 sin
2
σ2

2


un
j,m :=L5uj,m,

L6un
j,m =


b − 4τyc ′

3 sin
2
σ2

2


un
j,m :=L6uj,m.

(3.2)

Substituting the above two sets of formulas into (2.13) yields

ρ2
−


2 +

L3L4 − (L1 +L2)(L5 +L6)L1L5


ρ + 1 = 0, (3.3)

where ρ = zn+1/zn is the amplification factor. The necessary and sufficient condition for stability is |ρ| ≤ 1, which is
equivalent to

− 4 ≤

L3L4 − (L1 +L2)(L5 +L6)L1L5 ≤ 0. (3.4)

Notice that bL1 = aL2, bL5 = aL6. Therefore (3.4) is reduced to

2 ≤

L3L4L1L5 ≤ 6. (3.5)

Since L3L1 = (3 −
√
3)

3 − (τx + 1) sin2  σ1
2


3 − (1 − τx) sin2  σ1

2

 , (3.6)

and

2 − τx

2 + τx
≤

3 − (τx + 1) sin2  σ1
2


3 − (1 − τx) sin2  σ1

2

 ≤ 1, (3.7)

we have

(3 −
√
3)

2 − τx

2 + τx
≤

L3L1 ≤ 3 −
√
3. (3.8)

Analogously, we have

(3 +
√
3)

2 − τy

2 + τy
≤

L4L5 ≤ 3 +
√
3. (3.9)

Therefore, the necessary and sufficient condition for stability is

γ1ϵ

[
1
3
, 1
]

, γ2ϵ

[
1
3
, 1
]

, γ1γ2 ≥
1
3
, (3.10)

where

γ1 =
2 − τx

2 + τx
, γ2 =

2 − τy

2 + τy
. (3.11)

Thus we have proven the following theorem.

Theorem 3.1. The new LOD scheme (2.8) is stable if and only if (3.10) with (3.11) is satisfied.



1348 W. Zhang et al. / Journal of Computational and Applied Mathematics 236 (2011) 1343–1353

Fig. 4.1. The normalized phase error for different CFL numbers at a propagation angle θ = 0°. Left: new LOD scheme. Right: typical fourth-order accuracy
scheme in space and time.

4. Plane wave analysis

In this section, we will derive the numerical dispersion relation for the scheme (2.8). We first assume that

u = eωt−k·x, (4.1)

where ω is the pulsation, x = (x, y), k = (k1, k2) is the wave propagation angle where k1 = |k| cos(θ) and k2 = |k| sin(θ).
For simplicity, we set hx = hy = h. Inserting (4.1) into (2.8) or its equivalent (2.15) gives the following dispersion relation:

sin2 ω1t
2

=


a + b − 4τx(c2 + c3)S1


a + b − 4τy(c ′

2 + c ′

3)S2


−

a + b − 4τxc1S1


a + b − 4τyc ′

1S2


4(b − 4τxc2S1)(a − 4τyc ′

2S2)
−1

, (4.2)

where S1 = sin2 k1h
2 and S2 = sin2 k2h

2 . It is interesting to compare (4.2) with the dispersion relation associated with a
typical fourth-order scheme, e.g., the one in [5]. For simplicity we consider the case with homogeneous media here. It is
straightforward that a difference scheme with accuracy of O(1t4 + h4) for (2.1) is

un+1
j,m = 2un

j,m − un−1
j,m +

v41t4

12h4
(δ4,2

x + 2δ2,2
x δ2,2

y + δ4,2
y )un

j,m +
v21t2

12h2
(δ2,4

x + δ2,4
y )un

j,m, (4.3)

where δ4,2
x , δ2,4

x and δ2,2
x are difference operators defined by

δ4,2
x un

j,m = un
j+2,m − 4un

j+1,m + 6un
j,m − 4un

j−1,m + un
j−2,m,

δ2,4
x un

j,m = −un
j+2,m + 16un

j+1,m − 30un
j,m + 16un

j−1,m − un
j−2,m,

δ2,2
x un

j,m(:= δ2
xu

n
j,m) = un

j+1,m − 2un
j,m + un

j−1,m.

(4.4)

The difference operators δ4,2
y , δ2,4

y and δ2,2
y are defined in a similar way. Substituting (4.1) into (4.3) leads the following

dispersion relation:

sin2 ω1t
2

=
v41t4

48h4
(T 4,2

x − 2T 2,2
x T 2,2

y + T 4,2
y ) +

v21t2

48h2
(T 2,4

x + T 2,4
y ), (4.5)

where

T 4,2
x = −16 sin2


k1h
2


+ 4 sin2(k1h), T 2,2

x = 4 sin2

k1h
2


,

T 2,4
x = 64 sin2


k1h
2


− 4 sin2(k1h), (4.6)

T 4,2
y = −16 sin2


k2h
2


+ 4 sin2(k2h), T 2,2

y = 4 sin2

k2h
2


,

T 2,4
y = 64 sin2


k2h
2


− 4 sin2(k2h). (4.7)
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Fig. 4.2. The normalized phase error for different CFL numbers at a propagation angle θ = 15°. Left: new LOD scheme. Right: typical fourth-order accuracy
scheme in space and time.

Fig. 4.3. The normalized phase error for different CFL numbers at a propagation angle θ = 30°. Left: new LOD scheme. Right: typical fourth-order accuracy
scheme in space and time.

Fig. 4.4. The normalized phase error for different CFL numbers at a propagation angle θ = 45°. Left: new LOD scheme. Right: typical fourth-order accuracy
scheme in space and time.

The dispersion relation of the exact wave equation (2.1) is

ω2
= v2

|k|
2. (4.8)

For comparison, in Figs. 4.1–4.4, we have shown the dispersion curves associated with (4.2), (4.5) and (4.8). These curves
give the variations of the nondimensional phase as a function of the inverse of the number of grid points per wavelength
for various values of the CFL number α = v1t/h. Four different propagation angles θ = 0°, 15°, 30°, 45° are displayed
corresponding to Figs. 4.1–4.4. In Figs. 4.1–4.4, the left figure represents the phase error for the new LOD scheme and
the right one shows that for the fourth-order scheme. There are five curves displayed in each figure. The horizontal line
represents the dispersion relation of the exact wave equation as it has no phase error. The other four curves correspond to
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four different CFL numbers, i.e., 0.2, 0.3, 0.4, 0.5. Comparing the left figure and the right figure in Figs. 4.1–4.4 respectively
shows that the phase error of the new LOD scheme is smaller than that of the typical fourth-order schemes at different
propagation angles.

5. Initial and boundary conditions

In this section, we present how the initial and boundary conditions are computed for our new scheme (2.8).
The initial condition u(x, y, 0) is given in (2.2). We consider how to obtain the initial condition u−1 first. Suppose f1 and

f2 in (2.2) are smooth enough. From

u1
− u−1

1t
= 2


∂u
∂t

0

+
1t2

6


∂3u
∂t3

0


+ O(1t4)

= 2
[
f2 +

v21t2

6
∂2f2
∂x2

+
∂2f2
∂y2

]
+ O(1t4), (5.1)

we have the following approximation of u−1 with fourth-order accuracy in time:

u−1
= u1

− 21t
[
f2 +

v2∆2t
6


∂2f2
∂x2

+
∂2f2
∂y2

]
, (5.2)

since

u1
− 2u0

+ u−1

1t2
=


∂2u
∂t2

0

+
1t2

12


∂4u
∂t4

0

+ O(1t4)

= v2


∂2u
∂x2

+
∂2u
∂y2

0

+
v21t2

12


∂4u
∂x4

+ 2
∂4u

∂x2∂y2
+

∂4u
∂y4

0

+ O(1t4) (5.3)

= v2


∂2f1
∂x2

+
∂2f1
∂y2


+

v21t2

12


∂4f1
∂x4

+ 2
∂4f1

∂x2∂y2
+

∂4f1
∂y4


+ O(1t4). (5.4)

Using (5.2) and (5.4) to cancel u1, we then obtain

u1
= u0

+ 1t

f2 +

v21t2

6
1f2


+

v21t2

2


1f1 +

v21t2

12
∆2f1


, (5.5)

where 1f1 and 1f2 represent the Laplacians of f1 and f2 respectively, and ∆2 is the biharmonic operator. The approximation
of u1 with (5.5) reaches fourth-order accuracy in space and time. From the first equation in (2.9) we have

(b + τxc2δ2
x )u

1
+ (a + τxc3δ2

x )u
0

= (a + b + τxc1δ2
x )u

s, (5.6)

and then we have

us
=

bu1
+ au0

a + b
+

τxc2δ2
xu

1
+ τxc3δ2

xu
0

a + b
+

τxc1δ2
xu

s

a + b
. (5.7)

As

δ2
xu

s
=

bu1
+ au0

a + b
+ O(h4), (5.8)

thus the following approximation of us:

us
j,m =

bu1
+ au0

a + b
+

τxc2δ2
xu

1
j,m + τxc3δ2

xu
0
j,m

a + b
+

τxc1(bδ2
xu

1
j,m + aδ2

xu
0
j,m)

(a + b)2
,

j = 1, 2,Nx − 2,Nx − 1; m = 0, 1, . . . ,Ny (5.9)

reaches fourth-order accuracy in time and space. Using (5.9), we can obtain the initial values of us
j,m (j = 1, 2,Nx−2,Nx−1;

m = 0, 1, . . . ,Ny), then using these us
j,m, we can obtain all initial values of us

j,m (j = 0, 1, . . . ,Nx;m = 0, 1, . . . ,Ny) based
on (5.6).

For the boundary conditions we only need to calculate the values of un+s at the four angle points. On the basis of a similar
procedure, we can obtain the four values of un+s at the four angle points:

un+s
j,m =

bun+1
j,m + au0

j,m

a + b
+

τxc2δ2
xu

n+1
+ τxc3δ2

xu
n
j,m

a + b
+

τxc1(bδ2
xu

n+1
+ aδ2

xu
n
j,m)

(a + b)2
, j = 0,Nx; m = 0,Ny. (5.10)
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Fig. 6.1. A log–log plot for the L2 norm errors (left) and maximum norm errors (right) for our new LOD scheme and the typical difference scheme. Blue
curve: the new LOD scheme. The order of convergence is 3.92 measured in L2 norm (left) and 3.95 in maximum norm (right). Red curve: typical difference
scheme. The order of convergence is 3.81 measured in L2 norm (left) and 3.93 in maximum norm (right). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 6.1
Numerical error of ‖ · ‖2 and maximum norms for LOD errors, and the comparison with the typical fourth-order schemes when the time sample is fixed.

Nx = Ny New LOD scheme Typical 4th-order scheme
‖ · ‖2 norm Max norm ‖ · ‖2 norm Max norm

10 1.750667e−06 3.851468e−06 2.329224e−06 1.021110e−05
20 1.142944e−07 2.400185e−07 2.739788e−07 6.380173e−07
40 7.312223e−09 1.499019e−08 1.905867e−08 3.994203e−08
80 4.624411e−10 9.364429e−10 1.225941e−09 2.497254e−09

160 2.906791e−11 5.850472e−11 7.749125e−11 1.572023e−10
320 2.382459e−12 4.789535e−12 4.990827e−12 1.386324e−11

Table 6.2
Numerical error of ‖ · ‖2 and maximum norms for LOD errors, and the comparison with the typical fourth-order schemes when the spatial sample is fixed.

1t New LOD scheme Typical 4th-order scheme
‖ · ‖2 norm Max norm ‖ · ‖2 norm Max norm

0.0008 3.777039e−12 7.568214e−12 8.580509e−12 1.771971e−11
0.0001 1.254529e−11 2.511082e−11 3.243765e−11 6.530024e−11
0.0016 1.907065e−10 3.813522e−10 5.187181e−10 1.050492e−09
0.0020 6.907978e−10 1.381601e−09 1.883205e−09 3.851588e−09
0.0025 2.432300e−09 4.864608e−09 6.599718e−09 1.370526e−08
0.0040 2.785763e−08 5.571525e−08 7.006676e−08 1.616834e−07

6. Numerical computations

In this section we will present numerical examples to illustrate our theoretical results obtained in the early sections. For
simplicity we set Nx = Ny := N . The exact solution of the wave equation (2.1) is chosen as

u(x, y, t) = sin(πx) sin(πy) cos(
√
2π t). (6.1)

In Table 6.1, we fix the time step 1t = 0.0002 and consider six different spatial grids. To measure the approximation error,
we use the L2 norm

‖ · ‖2 :=
1
N


Nx−
j=1

Ny−
m=1

[un
j,m − uexact(xj, xm, tn)]2

 1
2

, (6.2)

and the maximum norm, where uexact(xj, xm, tn) is the exact solution. Table 6.1 shows the results after 100 time step
extrapolations. We can see that the L2 and the maximum norm errors of the new LOD scheme are smaller than that of
the fourth-order scheme. In Fig. 6.1, we have shown log–log plots for the L2 norm errors (left) and maximum norm errors
(right) for our new LOD scheme and the typical difference scheme. The blue circles represent the errors for the LOD scheme
with various mesh sizes and the blue line represents the least-square fitted line, obtained by using the blue circles. The red
dots represent the errors for the typical difference scheme with various mesh sizes and the red line represents the least-
square fitted line, obtained by using the red dots. In the left figure of Fig. 6.1, the slope of the blue line is 3.92 which suggests
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Fig. 6.2. A log–log plot for the L2 norm errors (left) and maximum norm errors (right) for our new LOD scheme and the typical difference scheme. Blue
curve: the LOD scheme. The order of convergence is 5.59 measured both in L2 norm (left) and in maximum norm (right). Red curve: typical difference
scheme. The order of convergence is 5.64 measured in L2 norm (left) and 5.71 in maximum norm (right). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6.3. A snapshot of the wavefield propagation at time 0.9 s in a two-layer medium. The velocity is 1500 m/s in the upper layer and 2200 m/s in the
bottom layer.

that the order of convergence of the new LOD scheme is 3.92 while the slope of the red line is 3.81 which suggests that the
order of convergence of the typical difference scheme is 3.81. In the right figure of Fig. 6.1, the slope of the blue line is 3.95
while the slope of the red line is 3.93. From these results, we see that the observed convergence order of our LOD scheme
with respect to space may reach very close to 4.

In Table 6.2, we keep the CFL number fixed at 0.2 and consider different time steps where only time error is dominant.
The results are those after 100 time step extrapolations. From Table 6.2, we also see that both the L2 norm and themaximum
norm errors of the new LOD scheme are smaller than those of the typical fourth-order scheme. The results in Tables 6.1 and
6.2 are consistent with the dispersion analysis results in Section 4. The order of convergence with respect to time can be
obtained similarly. In Fig. 6.2, two log–log plots for the L2 norm errors (left) and the maximum norm errors (right) for our
new LOD scheme and the typical difference scheme are shown. In the left figure of Fig. 6.2, the slope of the blue line is 5.59
while the slope of the red line is 5.64. In the right figure of Fig. 6.2, the slope of the blue line is 5.64 while the slope of the
red line is 5.71. From these results, we see that the observed convergence order for both schemes with respect to time can
exceed 4 when the CFL number is fixed.

The second numerical test is for an inhomogeneous model with two layers, and the velocities in the two layers are
respectively c1 = 1500 m/s and c2 = 2200 m/s. The initial conditions are f1 = f2 = 0. A point source is set on the right
hand side of (2.1) to induce waves. We use the Ricker wavelet as its shape is similar to that found in a real geophysical oil



W. Zhang et al. / Journal of Computational and Applied Mathematics 236 (2011) 1343–1353 1353

exploration. The point source is depicted by

f (x, z, t) = δ(x − x0, z − z0) sin(60t)e−150t2 , (6.3)

where δ is the Dirac function, and (x0, z0) = (1500 m, 900 m) is the position of the source. In the numerical calculations,
we set hx = hy = 15 m, 1t = 0.0014 s. Fig. 6.3 shows a snapshot of the wavefield at time t = 0.9 s. The direct wave
propagating in two layers and the reflected wave caused by the interface are clearly shown in Fig. 6.3. The wavefronts of
direct waves in each layer behave as part of circle while the circle in the second layer is larger than the one in the first layer
as the velocity of the second layer is larger. The amplitude of the reflected wave in the first layer is relatively weak.

7. Conclusions

We proposed and analyzed a new locally one-dimensional (LOD) scheme with error of O(1t4 + h4) for the two-
dimensional wave equation. More precisely, the order of convergence, stability and dispersion are rigorously analyzed.
The new scheme involves only three layers in space while the traditional finite difference scheme with the same accuracy
needs four layers in space. Numerical results prove that the new scheme has even better accuracy than the typical finite
difference scheme of the same order. The initial and boundary conditions for the two intermediate time layers are explicitly
constructed, which makes the scheme suitable for performing practical simulation in wave simulation modeling.
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