A SECOND-ORDER APPROXIMATION FOR THE VARIANCE OF A RENEWAL REWARD PROCESS *

Mark BROWN
Department of Mathematics, The City College, City University of New York, New York, N.Y. 10031, U.S.A.
\section*{Herbert SOLOMON}
Department of Statistics, Stanford University, Stanford, Calif. 94305, U.S.A.

Received 7 October 1974
Revised 20 December 1974

Let $\{C(t), t \geqslant 0\}$ be a renewal reward process. We obtain the approximation $\operatorname{Var} C(t)=c t+d+o(1)$, and explicitly identify c and d.

renewal process renewail reward process	cumulative process variance time curve

1. Introduction

Consider a sequence of independent random vectors $\left\{\left(X_{i}, Y_{i}\right), i=0,1\right.$, $2, \ldots\}$, where $\left(X_{i}, Y_{i}\right), i \geqslant 1$, are identically distributed. Assume that $\left\{X_{i}, i=0,1, \ldots\right\}$ is a renewal sequence. Define $S_{j}=\Sigma_{i=0}^{j} X_{i}$ for $j=0,1, \ldots$, and $N(t)=\left\{\min j: S_{j}>t\right\}$. Consider the process

$$
C(t)=\left\{\begin{array}{ll}
0, & t<X_{0}, \\
\sum_{i=0}^{N(t)-1} Y_{i}, & t \geqslant X_{0},
\end{array} \quad t \geqslant 0 .\right.
$$

The process C is called a renewal reward process, and is a generalization of a renewal process and a special case of a cumulative process.

[^0]Renewal reward processes occur in various stochastic optimization models ([6], [7, pp.51-54]), particularly in Markov and semi-Markov decision processes [7, pp. 156-161]. Examples are found in inventory models, queues, counter models, dispatching problems and many others. In these models, Y_{i} represents the reward or cost associated with a given policy over the renewal interval (S_{i-1}, S_{i}]. The reward or cost is assumed to occur at the end of the interval rather than accumulato eraunually.
Many results for renewal processes generalize to renewal reward processes. Some of these are the strong law and elementary renewal theorem [8,pp.27-28], central limit theorem [8,p.30], and Blackwell and key renewal theorems [1].
We derive the approximation $\operatorname{Var} C(t)=c t+d+o(1)$, where c and d are explicitly computed (Theorem 1 and Corollary 1). This generalizes the well-known approximation to $\operatorname{Var} N(t)($ see $[9, \mathrm{p} .28])$ which has been useful in inference for renewal processes ([2], [3, p.81]). Smith [8, p.28] has shown under suitable conditions that $\operatorname{Var} C(t)=c t+\mathrm{o}(t)$, so that the coefficient c is krown. Our contribution is showing that under strogger conditions $\operatorname{Var} C(t)=c t+d+o(1)$, and we evaluate d explicitly. The sharpened approximation to $\mathrm{E}\{C(t)\}$ (Lemma 1) and $\operatorname{Var} C(t)$ (Theorem 1 and Corollary 1) should be useful in sharpening the central limit (normal) approximation to the distribution of $C(t)$.

2. Derivation of results

We will prove a few lemmas needed for our main result (Theorem 1, Corollary 1). We use the notation $C_{0}(t)$ for a renewal reward process with $X_{0} \equiv Y_{0} \equiv 0$, and $C(i)$ for a general renewal reward process. We use $N_{0}(t)$ for an ordinary renewal process ($X_{0} \equiv 0, Y_{i} \equiv 1, i=0,1, \ldots$) and $N(t)$ for a general renewal process ($Y_{i} \equiv 1, i=0,1, \ldots$). Define

$$
\begin{array}{ll}
D_{0}(t)=\mathrm{E}\left\{C_{0}(t)\right\}, & D(t)=\mathrm{E}\{C(t)\}, \\
M_{0}(t)=\mathrm{E}\left\{N_{0}(t)\right\}, & M(i)=\mathbb{E}\{N(t)\} .
\end{array}
$$

Denote the distribution of X_{0} by F_{0} and of X_{1} (and thus of X_{i} for $i \geqslant 1)$ by F. F is said to be non-lattice if there does not exist a $w>0$ such that $\Sigma_{n=0}^{c o} F\{n w\}=1 . F$ is said to belong to the class g if some convolution of F has an absolutely continuous component. Define

$$
\mu_{j}=\mathbb{E}\left\{X^{i}\right\}, \quad \lambda_{j}=\mathbb{E}\left\{Y^{j}\right\}, \quad n_{i j}=\mathbb{E}\left\{X^{i} Y^{j}\right\},
$$

whenever these expectations ${ }^{\text {axist. By existence of an expectation }}$ $\mathbf{E}\{g(X, Y)\}$ we mean that $\mathbf{E}\{|g(X, Y)|\}<\infty$. A function h on $[0, \infty)$ is said to be of bounded variation on $[0, \infty)$ if the total variation of h over $[0, \infty)$ is finite. We will use the fact that an integrable function of bounded variation on $[0, \infty)$ is directly Riemann integrable [4, p.362].

Lemma 1. If F is non-lattice and μ_{2}, λ_{1} and n_{11} exist, then

$$
D_{0}(t)=a t+b+o(1)
$$

where $a=\lambda_{1} / \mu_{1}$ and $b=\frac{1}{2} \mu_{1}^{-2} \mu_{2} \lambda_{1}-\mu_{1}^{-1} n_{11}$. If, in addition, $\mathbf{E}\left\{X_{0}\right\}$ and $\mathrm{E}\left\{Y_{0}\right\}$ exist, then

$$
D(t)=a t+b+\mathbf{E}\left\{Y_{0}\right\}-a \mathbf{E}\left\{X_{0}\right\}+o(1)
$$

Proof. The lemma follows by a standard-type application of the key renewal theorem, similar to [4, p. 366] or [5]. We condition on X_{1}, obtaining

$$
D_{0}(t)=\int_{0}^{t} D_{0}(t-s) \mathrm{d} F(s)+\int_{0}^{t} \mathrm{E}\{Y \mid X=s\} \mathrm{d} F(s)
$$

thus

$$
\begin{aligned}
D_{0}(t)-a t= & \int_{0}^{t}\left[D_{0}(t-s)-a(t-s)\right] \mathrm{d} F(s) \\
& +a \int_{t}^{\infty}(1-F(s)) \mathrm{d} s-\int_{t}^{\infty} \mathbf{E}\{Y \mid X=s\} \mathrm{d} F(s)
\end{aligned}
$$

Under the above assumptions,

$$
a \int_{t}^{\infty}(1-F(s)) \mathrm{d} s-\int_{i}^{\infty} \mathrm{E}\{Y \mid X=s\} \mathrm{d} F(s)
$$

is directly Riemann integrable. Applying the key renewal theorem,

$$
\begin{aligned}
\lim _{t \rightarrow \infty}\left\{D_{0}(t)-a t\right\} & =\mu_{1}^{-1} \int_{t=0}^{\infty}\left[a \int_{s=t}^{\infty}(1-F(s)) \mathrm{d} s-\int_{s=t}^{\infty} \mathrm{E}\{Y \mid X=s\} \mathrm{d} F(s)\right] \mathrm{d} t \\
& =\mu_{1}^{-1}\left(\frac{1}{2} \mu_{1}^{-1} \lambda_{1} \mu_{2}-n_{11}\right)
\end{aligned}
$$

For general C,

$$
\begin{aligned}
D(t)-a t= & \int_{0}^{t}\left[D_{0}(t-s)-a(t-s)\right] \mathrm{d} F_{0}(s)-a t\left(1-F_{0}(t)\right) \\
& -a \int_{0}^{t} s \mathrm{~d} F_{0}(s)+\int_{0}^{t} \mathrm{E}\left\{Y_{0} \mid X_{0}=s\right\} \mathrm{d} F_{0}(s)
\end{aligned}
$$

Now $\eta_{0}(t)-a t \rightarrow b$, thus there exists T such that $t>T$ implies $\left|D_{0}(t)-a t-b\right| \leqslant 1$. Therefore

$$
\sup _{t}\left\{\left|D_{0}(t)-a t\right|\right\} \leqslant \sup _{t \leqslant T}\left\{\left|D_{0}(t)\right|\right\}+a T+|b|+1 .
$$

But

$$
\left|D_{0}(t)\right|=\mathrm{E}\left\{\left|\sum_{i=1}^{N(t)-1} Y_{i}\right|\right\} \leqslant \mathrm{E}\left\{\sum_{i=1}^{N(t)}\left|Y_{i}\right|\right\}=\mathrm{E}\{N(t)\} \mathbf{E}\{|Y|\}
$$

by Wald's identity (see [7]). Thus

$$
\sup _{t \leqslant T}\left\{\left|D_{0}(t)\right|\right\} \leqslant \mathbf{E}\{N(T)\} \mathbf{E}\{|Y|\}<\infty,
$$

thus

$$
\sup _{t}\left\{\left|D_{0}(t)-a t\right|\right\}<\infty
$$

Thus by the dominated convergence theorem,

$$
\int_{0}^{t}\left[D_{0}(t-s)-a(t-s)\right] \mathrm{d} F_{0}(s) \rightarrow b
$$

Also, since $1-F_{0}(t)$ is monotone and $\int_{0}^{\infty}\left(1-F_{0}(t)\right) \mathrm{d} t=\mathrm{E}\left\{X_{0}\right\}<\infty$, it follows that $t\left(1-F_{0}(t)\right) \rightarrow 0$. Thus

$$
D(t)-a t=b+\mathbf{E}\left\{Y_{0}\right\}-a \mathbf{E}\left\{X_{0}\right\}+o(1) .
$$

This concludes the proof. \square

Define

$$
r(t)=M_{0}(t)-\mu_{1}^{-1} t-\frac{1}{2} \mu_{1}^{-2} \mu_{2}
$$

and set $l=\int_{0}^{\infty} r(t) \mathrm{d} t$ whenever $\int_{0}^{\infty}|r(t)| \mathrm{d} t<\infty$. Define $V_{r}(x)$ to be the total variation of r over $[-x, \infty]$.

Lemma 2. If $F \in \mathcal{G}$ and $\mu_{3}<\infty$, then

$$
l=\frac{1}{4} \mu_{1}^{-3} \mu_{2}^{2}-\frac{1}{6} \mu_{1}^{-2} \mu_{2} .
$$

Proof. Smith [10, p. 2] derived the powerful result that $F \in G$ and $\mu_{3}<\infty$ implies
(i) $\lim _{t \rightarrow \infty}\{t r(t)\}=0$,
(ii) $\int_{0}^{\infty}|r(t)| \mathrm{d} t<\infty$,
(iii) $r(t)$ is of bounded variation on $[0, \infty)$.

First note that for $x>0$,

$$
V_{r}(x) \leqslant V_{r}(0)+\mu_{1}^{-1} x .
$$

Consider the function

$$
g(t)=\int_{x=0}^{t} x r(t-x) \mathrm{d} F(x)
$$

Now

$$
\int_{0}^{\infty}|g(t)| \mathrm{d} t \leqslant \mu_{1} \int_{0}^{\infty}|r(t)| \mathrm{d} t<\infty
$$

(by (ii)), thus g is integrable, and

$$
\int_{0}^{\infty} g(t) \mathrm{d} t=l \mu_{1}
$$

Moreover, g is of bounded variation on $[0, \infty)$ since

$$
\begin{aligned}
\sum_{i}\left|g\left(t_{i}\right)-g\left(t_{i-1}\right)\right| & \leqslant \int_{0}^{\infty} x\left(\sum_{i}\left|r\left(t_{i}-x\right)-r\left(t_{i-1}-x\right)\right|\right) \mathrm{d} F(x) \\
& \leqslant \int_{0}^{\infty} x V_{r}(x) \mathrm{d} F(x) \leqslant V_{r}(0) \mu_{1}+\mu_{1}^{-1} \mu_{2}
\end{aligned}
$$

$\left(V_{r}(0)<\infty\right.$ by (iii)). Therefore g is directly Riemann integrable.
Now

$$
M_{0}(t)=1+\int_{0}^{t} M_{0}(t-x) \mathrm{d} F(x)
$$

Subtract $\mu_{1}^{-1} t+\frac{1}{2} \mu_{1}^{-2} \mu_{2}$ from both sides and then multiply by t to obtain

$$
t r(t)=\int_{0}^{t}(t-x) r(t-x) \mathrm{d} F(x)+Z(t)
$$

where

$$
Z(t)=g(t)+\mu_{1}^{-1} t \int_{t}^{\infty}(1-F(x)) \mathrm{d} x-\frac{1}{2} \mu_{1}^{-2} \mu_{2} t(1-F(t))
$$

By the key renewal theorem

$$
\lim _{t \rightarrow \infty}\{t r(t)\}=\mu_{1}^{-1} \int_{0}^{t} Z(t) \mathrm{d} t=\mu_{1}^{-1}\left[l \mu_{1}+\frac{1}{6} \mu_{1}^{-1} \mu_{3}-\frac{1}{4} \mu_{1}^{-2} \mu_{2}^{2}\right]
$$

But, by (i), $\lim _{t \rightarrow \infty}\{\operatorname{tr}(t)\}=0$, thus $l=\frac{1}{4} \mu_{1}^{-3} \mu_{2}^{2}-\frac{1}{6} \mu_{1}^{-2} \mu_{3}$. This concludes the proof.

Define

$$
r^{*}(t)=D_{0}(t)-a t-b
$$

and set $l^{*}=\int_{0}^{\infty} r^{*}(t) \mathrm{d} t$ whenever $\int_{0}^{\infty}\left|r^{*}(t)\right| \mathrm{d} t<\infty$.
Lemma 3. If $F \in \mathcal{G}, \mu_{3}, \lambda_{1}$ and n_{21} exist, then

$$
l^{*}=\lambda_{1} l+\frac{1}{2} \mu_{1}^{-1} n_{21}-\frac{1}{2} \mu_{1}^{-2} \mu_{2} n_{11} .
$$

Moreover, r^{*} is directly Riemann integrable and

$$
\lim _{t \rightarrow \infty}\left\{t r^{*}(t)\right\}=0 .
$$

Proof. Note that

$$
\mathbf{E}\{X|Y|\} \leqslant\left[\mathbf{E}\left\{X^{2}|Y|\right\} \mathbf{E}\{|Y|\}\right]^{\frac{1}{2}},
$$

so that n_{11} exists. Also,

$$
C_{0}(t)=\sum_{i=1}^{N_{0}(t)-1} Y_{i}=\sum_{i=1}^{N_{0}(t)} Y_{i}-Y_{N_{0}(t)} .
$$

Since $N_{0}(t)$ is a stopping time [7],

$$
D_{0}(t)=\lambda_{1} M_{0}(t)-\mathrm{E}\left\{Y_{N_{0}(t)}\right\}
$$

Subtracting $a t+b$ from both sides we obtain

$$
r^{*}(t)=\lambda_{1} r(t)+\mu_{1}^{-1} n_{11}-\mathrm{E}\left\{Y_{N_{0}(t)}\right\}
$$

Thus if $\mu_{1}^{-1} n_{11}-\mathbf{E}\left\{Y_{N_{0}(t)}\right\}$ is integrable, then

$$
l^{*}=\lambda_{1} l+\int_{0}^{\infty}\left(\mu_{1}^{-1} n_{11}-\mathrm{E}\left\{Y_{N_{0}(t)}\right\}\right) \mathrm{d} t
$$

But

$$
\begin{equation*}
\mu_{1}^{-1} n_{11}=\int_{0}^{\infty} \mathrm{E}\{Y \mid X=x\} \mu_{1}^{-1} x \mathrm{~d} F(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}\left\{Y_{N_{0}(t)}\right\}=\int_{0}^{\infty} \mathbf{E}\{Y \mid X=x\}(M(t)-M(t-x)) \mathrm{d} F(x) . \tag{2}
\end{equation*}
$$

(2) follows by letting $h(t)=\mathrm{E}\left\{Y_{N_{0}(t)}\right\}$ and setting up the renewal equation

$$
h(t)=\int_{0}^{t} h(t-y) \mathrm{d} F(y)+\int_{t}^{\infty} \mathrm{E}\{Y \mid X=x\} \mathrm{d} F(x)
$$

The solution to this renewal equation is

$$
\begin{aligned}
h(t) & =\int_{z=0}^{t} \int_{x=t-z}^{\infty} \mathbf{E}\{Y \mid X=x\} \mathrm{d} F(x) \mathrm{d} M(z) \\
& =\int_{x=0}^{\infty} \int_{z=t-x}^{t} \mathrm{~d} M(z) \mathrm{E}\{Y \mid X=x\} \mathrm{d} F(x) \\
& =\int_{x=0}^{\infty}(M(t)-M(t-x)) \mathrm{E}\{Y \mid X=x\} \mathrm{d} F(x) .
\end{aligned}
$$

It follows from (1) and (2) that

$$
\begin{equation*}
\mu_{1}^{-1} n_{11}-\mathrm{E}\left\{Y_{N_{0}(t)}\right\}=\int_{x=0}^{\infty} \mathrm{E}\{Y \mid X=x\}(r(t-x)-r(t)) \mathrm{d} F(x) \tag{3}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\mu_{1}^{-1} n_{11}-\mathbf{E}\left\{Y_{N_{0}(t)}\right\}\right| \mathrm{d} t \leqslant \\
& \leqslant \int_{x=0}^{\infty}\left[\int_{t=0}^{\infty}(|r(t-x)|+|r(t)|) \mathrm{d} t\right] \mathbf{E}(|Y| \mid X=x) \mathrm{d} F(x) \\
& \leqslant \int_{x=0}^{\infty}\left[2 \int_{0}^{\infty}|r(t)| \mathrm{c} \left\lvert\, t+\frac{1}{2} \mu_{1}^{-1} x^{2}+\frac{1}{2} \mu_{1}^{-2} \mu_{2} x\right.\right] \mathbf{E}\{|Y| \mid X=x\} \mathrm{d} F(x) \\
& \quad=2 \mathrm{E}\{|Y|\} \int_{0}^{\infty}|r(t)| \mathrm{d} t+\frac{1}{2} \mu_{1}^{-1} \mathrm{E}\left\{X^{2}|Y|\right\}+\frac{1}{2} \mu_{1}^{-2} \mu_{2} \mathrm{E}\{X|Y|\}
\end{aligned}
$$

Thus $\mu_{1}^{-1} n_{11}-\mathbf{E}\left\{Y_{N_{0}(t)}\right\}$ is integrable, and

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\mu_{1}^{-1} n_{11}-\mathbf{E}\left\{Y_{N_{0}(t)}\right\}\right) \mathrm{d} t= \\
& \quad=\int_{x=0}^{\infty}\left(\int_{t=-x}^{0} r(t) \mathrm{d} t\right) \mathbf{E}\{Y!X=x\} \mathrm{d} F(x) \\
& \quad=\frac{1}{2} \mu_{1}^{-1} n_{21}-\frac{1}{2} \mu_{1}^{-2} \mu_{2} n_{11}
\end{aligned}
$$

Since r is directly Riemann integrable and

$$
r^{*}=\lambda_{1} r+\mu_{1}^{-1} n_{11}-\mathbf{E}\left\{Y_{N_{0}(t)}\right\},
$$

to show that r^{*} is directly Riemann integrable it suffices to show that $\mu_{1}^{-1} n_{11}-E\left\{Y_{N_{0}(t)}\right\}$ is of bounded variation on [0, ∞). But by (3),

$$
\begin{aligned}
& \sum_{i}\left|\mathrm{E}\left\{Y_{N_{0}\left(t_{i}\right)}\right\}-\mathrm{E}\left\{{ }_{V_{N_{0}\left(t_{i-1}\right)}}\right\}\right| \leqslant \\
& \leqslant \int_{s=0}^{\infty}\left[\mathbb { E } \{ | Y | | X = s \} \left[\sum_{i}\left|r\left(t_{i}-s\right)-r\left(t_{i-1}-s\right)\right|\right.\right. \\
& \left.\left.\left.+\sum_{i} \mid r\left(t_{i}\right)-r\left(t_{i-1}\right)\right]\right]\right] \mathrm{d} F(s) \\
& \leqslant \int_{s=0}^{\infty} \mathbf{E}\{|Y| \mid X=s\}\left[2 V_{r}(0)+\mu_{1}^{-1} s\right] \mathrm{d} F(s) \\
& =2 V_{p}(0) \mathbb{E}\left\{\mid Y_{i}\right\}+\mu_{1}^{-1} \mathbb{E}\{X|Y|\} \text {. }
\end{aligned}
$$

Next we want to show that $\operatorname{tr}^{*}(t) \rightarrow 0$. It suffices (since $\operatorname{tr}(t) \rightarrow 0$) to show that

$$
t\left(\mu_{1}^{-1} n_{11}-\mathrm{E}_{\{ }\left\{Y_{N_{0}(t)}\right\}\right) \rightarrow 0
$$

But by (3),

$$
t\left(\mu_{1}^{-1} n_{11}-\mathbf{E}\left\{Y_{N_{0}(t)}\right\}\right)=\int_{0}^{\infty} \mathrm{E}\{Y \mid X=x\} t(r(t-x)-r(t)) \mathrm{d} F(x) .
$$

Note that $\operatorname{tr}(t) \rightarrow 0$; thus for some T and all $t \geqslant T,|\operatorname{tr}(t)|<1$, and thus

$$
\sup _{t \geqslant 0}\{|t r(t)|\} \leqslant T\left[M_{0}(T)+\mu_{1}^{-1} T+\frac{1}{2} \mu_{1}^{-2} \mu_{2}\right]+1 ;
$$

similarly,

```
\mp@subsup{\operatorname{sup}}{t\geqslant0}{{|r(t)|}<\infty.}
```

Therefore

$$
\begin{aligned}
|t(r(t-x)-r(t))| \leqslant & 2 \sup _{t \geqslant-x}\{|t r(t)|\}+x \sup _{t \geqslant-x}\{|r(t)|\} \\
\leqslant & 2 \sup _{t \geqslant 0}\{|\operatorname{tr}(t)|\}+x \sup _{t \geqslant 0}\{|r(t)|\} \\
& +2\left(\mu_{1}^{-1} x^{2}+\frac{1}{2} \mu_{1}^{-2} \mu_{2} x\right)+\left(\mu_{1}^{-1} x^{2}+\frac{1}{2} \mu_{1}^{-2} \mu_{2} x\right) .
\end{aligned}
$$

Since n_{11} and n_{21} exist, $t(r(t-x)-r(t)) \mathrm{E}\{Y \mid X=x\}$ is dominated by an integrable function, and thus the dominated convergence theorem shows that $t\left(\mu_{1}^{-1} n_{11}-\mathrm{E}\left\{Y_{N_{0}(t)}\right\}\right) \rightarrow 0$. This concludes the proof.

Define

$$
\widetilde{D}_{0}(t)=\mathrm{E}\left\{\sum_{i=1}^{N_{0}(t)-1} Y_{i}^{2}\right\}, \quad D_{0}^{(2)}(t)=\int_{0}^{t} D_{0}(t-s) \mathrm{d} D_{0}(s)
$$

Let $F^{(K)}$ be the $K^{\text {th }}$ convolution of F, and let $f_{K}=\mathrm{d} F^{(K)} / \mathrm{d} M_{0}$. Since $M_{0}=\sum_{K=0}^{\infty} F^{(K)}$, it follows that $M_{0}=0$ implies that all $F^{(K)}=0$; thus $F^{(K)} \ll M_{0}$, and f_{K} is well defined.

Lemma 4. $\operatorname{Var} C_{0}(t)=\widetilde{D}_{0}(t)+2 D_{0}^{(2)}(t)-\left(D_{0}(t)\right)^{2}$.

Proof. Since

$$
\operatorname{Va}: C_{0}(t)+\left(D_{0}(t)\right)^{2}-\tilde{D}_{0}(t)=2 \mathrm{E}\left\{\sum_{i<j \leqslant N_{0}(t)-1} Y_{i} Y_{j}\right\},
$$

our task is to show that

$$
\mathrm{E}\left\{\sum_{i<j \leqslant N_{0}(t)-1} Y_{i} Y_{j}\right\}=D_{0}^{(2)}(t)
$$

Now

$$
\begin{aligned}
D_{0}(t) & =\mathrm{E}\left\{\sum_{i=1}^{\infty} Y_{i} I_{S_{i}<t}\right\}=\sum_{i=1}^{\infty} \int_{0}^{t} \mathrm{E}\left\{Y_{i} \mid S_{i}=s\right\} \mathrm{d} F^{(i)}(s) \\
& =\int_{0}^{t}\left[\sum_{i=1}^{\infty} \mathrm{E}\left\{Y_{i} \mid S_{i}=s\right\} f_{i}(s)\right] \mathrm{d} M_{0}(s)
\end{aligned}
$$

Therefore

$$
\frac{\mathrm{d} D_{0}(s)}{\mathrm{d} M_{0}(s)}=\sum_{i=1}^{\infty} \mathrm{E}\left\{Y_{i} \mid S_{i}=s\right\} f_{i}(s)
$$

Next

$$
\begin{aligned}
& \mathrm{E}\left\{\sum_{i<j<N_{0}(t)-1} Y_{i} Y_{j}\right\}=\mathrm{E}\left\{\sum_{i<j} Y_{i} Y_{j} I_{S_{j}<t}\right\} \\
& \left.=\sum_{i<j} \int_{w=0}^{t} \int_{s=w}^{t} \mathrm{E}_{\{ } Y_{i} \mid S_{i}=w\right\} \mathrm{E}\left\{Y_{j-i} \mid S_{j-t}=s-w\right\} \mathrm{d} F^{(i)}(w) \mathrm{d} F^{(j-i)}(s-w) \\
& =\int_{w=0}^{t} \int_{s=w}^{t}\left(\sum_{i} \mathrm{E}\left\{Y_{i} \mid S_{i}=w\right\} f_{i}(w)\right) \\
& \quad \times\left(\sum_{k=1}^{\infty} \mathrm{E}\left\{Y_{k} \mid S_{k}=s-w\right\} f_{k}(s-w)\right) \mathrm{d} M_{0}(s-w) \mathrm{d} M_{0}(w) \\
& =\int_{w=0}^{t} D_{0}(t \cdots w)\left(\frac{\mathrm{d} D_{0}(w)}{\mathrm{d} M_{0}(w)}\right)\left(\mathrm{d} M_{0}(w)\right) \\
& =\int_{w=0}^{t} D_{0}(t-w) \mathrm{d} D_{0}(w)=D_{0}^{(2)}(t) .
\end{aligned}
$$

Theorem 1. If $F \in G$ and μ_{3}, λ_{2} and n_{12} exist, then

$$
\operatorname{Var} C_{0}(t)=c t+d+o(1)
$$

where

$$
\begin{aligned}
c= & \mu_{1}^{-3} \mu_{2} \lambda_{1}^{2}-2 \mu_{1}^{-2} n_{11} \lambda_{1}+\mu_{1}^{-1} \lambda_{2}=\mu_{1}^{-1} \operatorname{Var}(Y-a X), \\
d= & \frac{5}{4} \mu_{1}^{-4} \mu_{2}^{2} \lambda_{1}^{2}-\frac{2}{3} \mu_{1}^{-3} \mu_{3} \lambda_{1}^{2}+2 \mu_{1}^{-2} n_{21} \lambda_{1} \\
& -3 \mu_{1}^{-3} \mu_{2} \lambda_{1} n_{11}+\mu_{1}^{-2} n_{11}^{2}+\frac{1}{2} \mu_{1}^{-2} \mu_{2} \lambda_{2}-\mu_{1}^{-1} n_{12} .
\end{aligned}
$$

Proof. First note that $\mathrm{E}\{X|Y|\} \leqslant\left[\mathrm{E}\left\{X Y^{2}\right\} \mathrm{E}\{X\}\right]^{\frac{1}{2}}$ and $\mathbf{E}\left\{X^{2}|Y|\right\} \leqslant\left[\mathbf{E}\left\{X Y^{2}\right\} \mathbf{E}\left\{X^{3}\right\}\right]^{\frac{1}{2}}$, so that n_{11} and n_{21} exist.

It follows from Lemma 1 that

$$
\begin{align*}
& \widetilde{D}_{0}(t)=\mu_{1}^{-1} \lambda_{2} t+\frac{1}{2} \mu_{1}^{-2} \mu_{2} \lambda_{2}-\mu_{1}^{-1} n_{12}+o(1) \tag{4}\\
& \left(D_{0}(t)\right)^{2}=a^{2} t^{2}+2 a b t+b^{2}+o(1) \tag{5}
\end{align*}
$$

Now

$$
\begin{aligned}
D_{0}^{(2)}(t) & =\int_{0}^{t} D_{0}(t-s) \mathrm{d} D_{0}(s) \\
& =\int_{0}^{t} r^{*}(t-s) \mathrm{d} D_{0}(s)+\int_{0}^{t}(a(t-s)+b) \mathrm{d} D_{0}(s) .
\end{aligned}
$$

By Lemma 3, r^{*} is directiy Riemann integrable. It thus follows from a generalization of the key renewal theorem to renewal reward processes [1, p. 101] that

$$
\int_{0}^{t} r^{*}(t-s) \mathrm{d} D_{0}(s)=a l^{*}+\mathrm{o}(1)
$$

Thus

$$
D_{0}^{(2)}(t)=a l^{*}+\int_{0}^{t}(a(t-s)+b) \mathrm{d} D_{0}(s)+o(1)
$$

Next

$$
\begin{aligned}
\int_{0}^{t}(a(t-s)+b) \mathrm{d} D_{0}(s) & =b D_{0}(t)+a \int_{0}^{t} D_{0}(s) \mathrm{d} s \\
& =b D_{0}(t)+a \int_{0}^{t} r^{*}(s) \mathrm{d} s+a \int_{0}^{t}(a s+\dot{b}) \mathrm{d} s
\end{aligned}
$$

$$
=\frac{1}{2} a^{2} t^{2}+2 a b t+a l^{*}+b^{2}+o(1)
$$

Combining, we have

$$
\begin{equation*}
2 D_{0}^{(2)}(t)=a^{2} t^{2}+4 a b t+4 a l^{*}+2 b^{2}+o(1) \tag{6}
\end{equation*}
$$

It follows from (4), (5), (6) and Lemma 4 that

$$
\begin{aligned}
\operatorname{Var} C_{0}(t)= & \left(2 a b+\mu_{1}^{-1} \lambda_{2}\right) t \\
& +\left(4 a l^{*}+b^{2}+\frac{1}{2} \mu_{1}^{-2} \mu_{2} \lambda_{2}-\mu_{1}^{-1} n_{12}\right)+o(1)
\end{aligned}
$$

Substituting for a and b (Lemma 1) and l^{*} (Lemma 3), we obtain the result.

$$
\text { Define } \bar{r}(t)=\operatorname{Var} C_{0}(t)-c t-d
$$

Corollary 1. If $F \in \mathcal{G}$, and $\mu_{3}, \lambda_{2}, n_{12}, \mathrm{E}\left\{X_{0}^{2}\right\}$ and $\mathrm{E}\left\{Y_{0}^{2}\right\}$ exist, then

$$
\operatorname{Var} C(t)=c t+d-c \mathrm{E}\left\{X_{0}\right\}+\operatorname{Var}\left(Y_{0}-a X_{0}\right)+o(1)
$$

where c and d are given in Theorem 1 .
Proof. $C(t)=I_{X_{0}<t}\left[Y_{0}+C_{0}\left(t-X_{0}\right)\right]$; thus

$$
(C(t))^{2}=I_{X_{0} \leqslant t}\left[Y_{0}^{2}+2 Y_{0} C_{0}\left(t-X_{0}\right)+C_{0}^{2}\left(t-X_{0}\right)\right]
$$

Now

$$
\mathbf{E}\left\{I_{X_{0} \leqslant t} Y_{0}^{2}\right\}=\int_{0}^{t} \mathrm{E}\left\{Y_{0}^{2} \mid X_{0}=s\right\} \mathrm{d} F_{0}(s)=\mathrm{E}\left\{Y_{0}^{2}\right\}+o(1) .
$$

Next

$$
\begin{aligned}
2 \mathrm{E} & \left\{I_{X_{0} \leqslant t} Y_{0} C_{0}\left(t-X_{0}\right)\right\}= \\
& =2 \mathbb{E}\left[I_{X_{0} \leqslant t} \mathrm{E}\left(Y_{0} \mid X_{0}\right)\left[a\left(t-X_{0}\right)+b+r^{*}\left(t-X_{0}\right)\right]\right] \\
& =2 a t \mathrm{E}\left\{Y_{0}\right\}-2 a \mathrm{E}\left\{X_{0} Y_{0}\right\}+2 b \mathrm{E}\left\{Y_{0}\right\}+o(1)
\end{aligned}
$$

since $\lim _{t \rightarrow \infty}\left\{r^{*}(t)\right\}=0, \sup _{t}\left\{\left|r^{*}(t)\right|\right\}<\infty$ and $E\left\{\left|Y_{0}\right|\right\}<\infty$ in 1 ply

$$
\int_{0}^{t} r^{*}(t-s) E\left\{Y_{0} \mid X_{0}=s\right\} d F_{0}(s) \rightarrow 0
$$

Finally,

$$
\begin{aligned}
& \mathrm{E}\left\{I_{X_{0} \leqslant t} C_{0}^{2}\left(t-X_{0}\right)\right\}= \\
& \begin{aligned}
= & \mathbf{E}\left\{I_{X_{0} \leqslant t}\left[\left(c\left(t-X_{0}\right)+d+\bar{r}\left(t-X_{0}\right)\right)+\left(a\left(t-X_{0}\right)+b+r^{*}\left(t-X_{0}\right)\right)^{2}\right]\right\} \\
= & \mathbf{E}\left\{I _ { X _ { 0 } \leqslant t } \left[a^{2} t^{2}+t\left(c-2 a^{2} X_{0}+2 a b\right)+\left(d-c X_{0}+a^{2} X_{0}^{2}+b^{2}-2 a b X_{0}\right)\right.\right. \\
\quad & \left.\quad+\left(\bar{r}\left(t-X_{0}\right)+\left(r^{*}\left(t-X_{0}\right)\right)^{2}+2\left(a\left(t-X_{0}\right)+b\right) r^{*}\left(t-X_{0}\right)\right]\right\}
\end{aligned}
\end{aligned}
$$

By Lemma 1 and Theorem $1, \bar{r}(t)$ and $r^{*}(t) \rightarrow 0$. Moreover, $\sup _{t}\{|\bar{r}(t)|\}<\infty$ and $\sup _{t}\left\{\left|r^{*}(t)\right|\right\}<\infty$, thus $\int_{0}^{t} \bar{r}(t-x) \mathrm{d} F_{0}(x), \int_{0}^{t}\left(r^{*}(t-x)\right)^{2} \mathrm{~d} F_{0}(x)$ and $\int_{0}^{t} r^{*}(t-x) \mathrm{d} F_{0}(x)$ all converge to 0 . Moreover, by Leinma $3, t r^{*}(t) \rightarrow 0$, and it easily follows that $\sup _{t}\left\{\left|t r^{*}(t)\right|<\infty\right\}$; thus

$$
\mathrm{E}\left\{I_{X_{0} \leqslant t}\left(t-X_{i}\right) r^{*}\left(t-X_{0}\right)\right\}=\int_{0}^{t}(t-x) r^{*}(t-x) \mathrm{d} F_{0}(x) \rightarrow 0
$$

Therefore

$$
\begin{aligned}
\mathrm{E}\left\{I_{X_{0} \leqslant t} C_{0}^{2}\left(t-X_{0}\right)\right\}= & a^{2} t^{2}+t\left(c-2 a^{2} \mathrm{E}\left\{X_{0}\right\}+2 a b\right) \\
& +\left(d-c \mathrm{E}\left\{X_{0}\right\}+a^{2} \mathrm{E}\left\{X_{0}^{2}\right\}+b^{2}-2 a b \mathrm{E}\left\{X_{0}\right\}\right) \\
& +o(1)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathrm{E}\left\{C^{2}(t)\right\}= & a^{2} t^{2}+t\left(c-2 a^{2} \mathrm{E}\left\{X_{0}\right\}+2 a b+2 a \mathrm{E}\left\{Y_{0}\right\}\right) \\
& +\left(d-c \mathrm{E}\left\{X_{0}\right\}+a^{2} \mathrm{E}\left\{X_{0}^{2}\right\}-2 a \mathrm{E}\left\{X_{0} Y_{0}\right\}\right. \\
& \left.+\mathrm{E}\left\{Y_{0}^{2}\right\}+b^{2}-2 a b \mathrm{E}\left\{X_{0}\right\}+2 b \mathrm{E}\left\{Y_{0}\right\}\right)+o(1) .
\end{aligned}
$$

By Lemma 1,

$$
\begin{aligned}
(\mathbf{E}\{C(t)\})^{2}= & a^{2} t^{2}+t\left(2 a b-2 a^{2} \mathrm{E}\left\{X_{0}\right\}+2 a \mathrm{E}\left\{Y_{0}\right\}\right) \\
& +\left(a^{2}\left(\mathbf{E}\left\{X_{0}\right\}\right)^{2}-2 a \mathrm{E}\left\{X_{0}\right\} \mathbf{E}\left\{Y_{0}\right\}\right. \\
& \left.+\left(\mathbb{E}\left\{Y_{0}\right\}\right)^{2}+b^{2}-2 a b \mathbb{E}\left\{X_{0}\right\}+2 b \mathbb{E}\left\{Y_{0}\right\}\right)+o(1)
\end{aligned}
$$

Subtracting $(\mathbb{E}\{C(t)\})^{2}$ from $\mathbb{E}\left\{C^{2}(t)\right\}$ yields the result.

References

[1] M. Brown and S.M. Ross, Asymptotic properties of cumulative processes, SIAM J. Appl. Math. 22 (1972) 93-105.
[2] D.R. Cox, Some statistical methods connected with series of events, J. Roy. Statist. Soc. (B) 17 (1955) 129-164.
[3] D.R. Cox and P.A.W. Lewis, The Statistical Analysis of Series of Events (Methuen, London, 1966).
[4; W. Feller, An Introduction to Probability Theory and its Applications, Vol. II, $2^{\text {nd }}$ ed. (Wiley, New York, 1971).
[5] W. Jewell, Markov renewal programming I and II, Operations Res. 2 (1963) 938-971.
[6] W.S. Jewell, Fluctuations of a renewal-reward process, J. Math. Anal. Appl. 19 (1967) 309-329.
[7] S.M. Ross, Appind Probability Models with Optimızation Applications (Holden-Day, San Franciscc, Calif., 1970).
[8] W.L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. (A) 232 (1955) 6-31.
[9] W.L. Smith, Renewal theory and its ramifications, J. Roy. Statist. Soc. (B) 20 (1958) 243-302.
[10] W.L. Smith, Cumulants of renewal processes, Biometrika 46 (1959) 1-29.

[^0]: * Research partially supported by the Army Research Office, Office of Naval Research, and Air Force Office of Scientific Research by Contract No. N00014-6\%-A-0112-0085 (NR-042-267).

