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Let {C(t),t >0} be a renewal reward process. We obtain the approximation
Var C(t) = ct +d + o(1), and explicitly identify ¢ and d.

renewal process cumulative process
renewai reward process variance time curve

1. Introduction

Consider a sequence of independent random vectors {(X;, ¥;),i=0, 1,
2, ...}, where (X;, Y;), i > 1, are identically distributed. Assume that
{X;,i=0,1, ...} is a renewal sequence. Define S]- = 2{20 X;forj=0,1,..,
and N(¢) = {minj: Sj > t}. Consider the process

0, t<X,,
C(t) =] Ny -1 t=>0.
i Y,, t=X,,

The process C is called a renewal reward process, and is a generalization
of a renewal process and a special case of a cumulative process.
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Renewal reward processes occur in various stochastic optimization
models ([6], [7, pp.51-54]), particularly in Markov and semi-Markov
decision processes [7, pp.156—161]. Examples are found in inventory
models, queues, counter models, dispatching problems and many others.
In these models, Y; represents the reward or cost associated with a given
policy over the renewal interval (S;_,, S;]. The reward ¢t cost is assumed
to occur at the end of the interval rather than accumulatc gradually.

Many results for renewal processes generalize to renewal reward pro-
cesses. Some of these are the strong law and elementary renewal theorem
[8,pp.27—-28], central limit theorem [8,p.30], and Blackwell and key
renewal theorems [1].

We derive the approximation Var C(¢) = ¢t +d + o(1), where ¢ and d
are explicitly computed (Theorem 1 and Corollary 1). This generalizes
the well-known approximation to Var N(¢) (see [9, p.28]) which has
been useful in inference for renewal processes ([2], [3,p.81]). Smith [8,
p.28] has shown under suitable conditions that Var C(¢) = ¢t + o(¢), so
that the coefficient ¢ is knrown. Our contribution is showing that under
strosiger conditions Var C(¢) = ct +d + o(1), and we evaluate d explicitly.
The sharpened approximation to E{C(¢)} (Lemma 1) and Var C(¢)
(Theorem 1 and Corollary 1) should be useful in sharpening the central
limit {normal) approximation to the distribution of C(¢).

2. Derivation of results

We will prove a few lemmas needed for our main result (Theorem 1,
Corollary 1). We use the notation Cy(#) for a renewal reward process
with X, = Y, = 0, and C(¢) for a general renewal reward process. We
use Ny (?) for an ordinary renewal process (X, =0, ¥;=1,i=0,1,...)
and N(¢) for a general renewal process (Y; =1,i=0, 1, ...). Define

Dy (1) = ElCy(D)}, D(r) = E{C(2)},
My(1) = E{Ny(#)}, M(:)=E{N(D}.

Denote the distribution of X, by Fj, and of X; (and thus of X, for
i 1) by F. F is said to be non-lattice if there does not exist aw > 0
such that £~ F{nw} = 1. F is said to belong to the class Qif some
convelution of F has an absolutely continuous component. Define

w=EX'}, N=E(Y}, n;=E(X'Y},
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whenever these expectations 2xist. By existence of an expectation
E{g(X,Y)} we mean that E{|g(X, Y)i} < . A function % on [0, ) is
said to be of bounded variation on [0, =) if the total variation of %
over [0, ) is finite. We will use the fact that an integrable function of
bounded variation on [0, =) is directly Riemann integrable [4, p.362].

Lemma 1. If F is non-lattice and By s N, and n,, exist, then
Dy(t)=at +b +o(1),

where a =\, /u; and b =} u7? u, Ny — uytng,. If, in addition, E{X,}
and E{Y} exist, then

D(t)=at+b+E{Yy} —aE{X;} +0(1).

Proof. The lemma follows by a standard-type application of the key
renewal theorem, similar to [4, p. 366] or [5]. We condition on X 1
obtaining

t t
Do) = [Dy(t—5) dF(s) + [E{Y | X =5} dF(s) ;
0 0
thus .
Dy (1) —at = [ [Dy(t—s) - a(t~s)] dF(s)
0

+af(l-—F(s))ds—fE{Y|X=s} dF(s) .
t t

Under the above assumptions,
a [(1-F(s) ds— [E{Y | X=5} dF(s)
t ¢
is direcily Riemann integrable. Applying the key renewal theorem,

lim {Dy(t) —at} = u;! [ [af (1-F(s)yds— [E{Y|X=s} dF(s)] dr

t ~> o0
=0 s=t §=t

=k QU Ny -y
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For general C,

t ' %
D(t)~at = f[Do(t——s) —a(t—s)] dFo(s) —at(1 — Fo(t))
0

t t
—a [sdFy) + [E{Yy1Xy=s5} dF,(s).
0 0

Now N, (¢) -- at > b, thus there exists T such that ¢ > 7 implies
IDy(t) — at — by < 1. Therefore
sup{IDgx) —atl} < sup {IDo (NI} +aT +1bi+1.
<

But
N(t)-1 N -
ING] E{ Z Y,.l} <E{Z IY,-I} = E{N(")} E{IY1}

by Wald’s identity (see [7]). Thus

su;;{iDO(t)l} S E{N(N} E{IY(} < e,
<

thus
sup{IDy (1) —at}< .

Thus by the dominated convergence theorem,
t
[ID,y(t—s) —a(t—5)] dFy(s) > b .
0
Also, since 1 — F( () is monotone and f; (1 — Fy(¢)) dt = E{X} <eo,
it follows that #(1 — F(¢)) » 0. Thus

D() —at=b+E{Y,} — aE{X,} +o(1).
This concludes the proof. O

Define
Pty =My(®) —utt - dp?u,

and set/= f: r(t) dt whenever Jy_ 1¥(6)l dt < oo, Define V,(x) to be the
total variation of » over [—x, o<].
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Lemma 2. If F€ G and p; <<, then
P=4up3pd —dui?p.
Proof. Smith [10, p. 2] derived the powerful result that F€ ¢ and
i3 < o implies
(i) ]imt-roo {t r(t)} = O,
(i) J; 1r(e)l dt < o,

(iii) ~(¢) is of bounded variation on [0, o).
First note that for x > 0,

V,(x)< V,(0) + pu7lx.

Consider the function

t
g(t) = f x r(t—x) dF(x) .
x=0

Now

o

f 1g(D) dt < p, f lr(£)1 dt < oo
0 0
(by (ii)), thus g is integrable, and

[ a0y dr=1y, .
0

Moreover, g is of bounded variation on [0, ¢) since

27ig(t) —glt;,_DI < fx (Z_:?lr(t,-—x)—r(t,-_l—x)l) dF(x)
1 0 i

< [ x V,(x) dF(x) < V,(0) y + 7' iy
0

(V,(0) < = by (iii)). Therefore g is directly Riemann integrable.
Now

t
My() =1+ [ My(¢—x) dF(x) .
0
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Subtract u;‘l t+ %u;‘zpz from both sides and then multiply by ¢ to
obtain

t
tr(t) = [(t—x) r(t—x) dF(x) + Z(1) ,
0 |
where

2By =) +uy't [ (1= F00)) dx — buy2p, 11 - F2)) .
t

By the key renewal theorem

lim (£ r(¢)} = p'le(t)dt" prt Uy +iur ey — g2l ],
0

But, by (i), lim,_, ,, {tr()} =0, thusl pf"'ug - %pf2u3. This con-
cludes the proof. O

Define
r¥(£) =D,y (¢) —at - b,
and set /* = j;'” r*(t) dt whenever ,(,‘” [r¥(2)| dt < .

Lemma 3. If FE @, [T 7\1 and n,, exist, then
=N+t ng —duupny

Moreover, r* is directly Riemann integrable and

lim{tr*()} =0

t~>o0

Proof. Note thzat

E(X Y1} < [E{(X*(Y1} EQY)} 2,
so that ny; exists. Also,
No(r)-1 No(®

QW= 2 v;= Z)f Y

) No@) -
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Since N, (¢) is a stopping time [7],
Dy(#) =Ny My(6) — E{ YNo(r)} .
Subtracting at + b from both sides we obtain
r¥(t) = A () + My nll E{YNO(t)}.
Thus if 7 nl ; — E{ No(t)} is integrable, then

M= 1+f(ul ny —E{Yy ,Ddr.

But

uflnu = f E{Y | X=x} u[lx dF(x),
0
and

E{Yy n} = [ E{(Y1X=x} (M) - M(—x)) dF(x) .
0

307

(1)

(2)

(2) follows by letting A4(t) = E{YN o} and setting up the renewal equa-

tion
t oo
mey= [ht—y) dFO) + [ E{Y | X=x} dF(x) .
t
The solution to this renewal equation is
t =)
moy= [ [ E{Y1X=x}dF(x) dM(2)
z=0 x=t-z
L t
=[ [ dM@E(Y|X=x} dF(x)
 x=0 :=t-x

= [ M(t)-M@t—x) E{Y | X=x} dF(x) .
x=0

It follows from (1) and (2) that

uiny, —E{Yy 1= [ E{Y|X=x}((t-x)—r(t) dF(x) .

x=0

(3)
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Thus

f ytngy —E{Yy o Hdr<
0
< [ [ St + o ae | B1| X =) aFx)
x=0"t=0

< f 2 f (o) dr +4p7tx? + %yﬁuzx] E{|Y! | X=x} dF(x)

-
x=0

= 2E{|Y1) ftr(t)i dr +$u E(X2 Y1)+ 2, ECX V)
'I‘h.lsl.c1 ny, —E{Y No m}lsmtegrable, and

f (Ui ny —E{Yy nDdt=

x=0\ 1=-x

=f {f 203 dt} E{Y | X=x} dF(x)

=yt ny —4uPmyny,
Since r is directly Riemann integrable and
r*-k r+u1 nu—E{ O(n}’

to show that r* is directly Riemann integrable it suffices to show that
utng, —E{ Yo} is of bounded variation on [0, =). But by (3),

4:3 |E{YN0(¢,-)} - E{YNo(fi-ll H<

<f rE{lYHX-s}[Z \r(t;—5) — r(t;_y — 5|
=0
+ Dir(ey) - r(ti_l,] |eFe

oD

< [ EQY1[ X=5}2V(0) + i 5] dFGs)
5=0

=2V (B E{IYi}+u7 E{X Y1} .
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-

Next we want to show that ¢r*(¢) -» 0. It suffices (since ¢r(¢) = 0) to

show that

v

—E{Y,_

Ry

Huy!

Ly 2}

~

T

similarly,

sup{Ir(t)|} < oo .
t>0

Therefore

t=-x

t

DP(t) = | Dy(t—5) dDy(s) .

\
[

0

Let F®&) pe the K™ convolution: of F, and let f,, = dF® /dM,,. Since

0; thus

v

(K)

N

, it follows that M, = 0 implies that all F

oo
K

M,=%
FK) <

-~

Dy (1) + 2D (1) — (Dy (D).

~

M, , and f; is well defined.

Lemma 4. Var C0 1)
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Proof. Since

Var Co(0) + (Do (1))? — Dy(1) = 2E

i<j<No@)-1 !

2 Y.Y,.} :
our task is to show that

El T @
{1<ﬁ<No(t) Y Y,} =D (t)

Now
0o t
Dy(t) = E{E Y Is<:}= par fE{Y,- | §;=5} dFQ(s)
0
tr o
f[l}'_z E(Y,| s,.=s}f,.(s)]dM0(s).
6 :
Therefore
dDo(S) -
T EE{Y | 8;=5} £(s) .
Next

E{’ 2 Y,} {EYY]Mt}

i<j<No()-1 ° i<j

l</ f f E{Y l S W} E{Y IS _S w} dF(l)(H}\ dF(] 1)(3 W)
w=0 s=w
t

(,E E(Y, | Si=w}fi(w))

X( ZE(Y, | S,=5-w) f, (s— w))dM (s—w) dMy(w)
S (w)
=f Doet---w)(dMZ(w))(dMO(w)}

w=0

t
= [ Dyte—w) dDy(w) = D).

w=0



M. Brown, i{l. Solomon [ The variance of a renewal reward prrcess 311

Theorem 1. If FE€ § and u3, \, and n, exist, then

VarCG(t)=ct+d+o(l),
where
c= “1 S\ = 2un A+t = pp Var(Y —aX)

d =57 3N —3uP N + 202y N

= 3u Ny + gy e dut Ny -yt ey,

Proof. First note that E{X | ¥} < [E{XY?} E{X}]? and
E{X? Y|} < [E{XY?} E{X?}]}, so that n,, and n,; exist.

T4 €~ .y
It follows from Lemma 1 that

Dy(t) =pi' 0t + 472Ny —py'tng, +o(1), 4

(Dy (D) =a*t +2abt + b +o(1) . (5)
Now

t
DP(t)= [Dy(z—s) dDy(s)
0

t t
= fr*(t—s) dDo(s)+f(a(t—s)_+b) dDy(s) .
0

By Lemma 3, r* is directiy Riemann integrable. It thus follows trom

a generalization of the key renewal theorem to renewal reward processes
[1, p.101] that

t
[ r*(¢—9) dDy(s) =al* +o(1) .
0
Thus

t
DR =al* + [ (a(t-s)+b) dDy(s) + (1) .
0

Next

i t
[ (at—5)+b) dDy(s) = bDo (1) +a [ Dy(s) ds
0 0

t t
=bDy(H)+a [rH(s)ds+a [(as+b)ds
0 0

=1a2¢? + 2abt +al* + b* + o(1}.
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Combining, we have
20@(t) = a® 1 + dabt + 4al* +2b% +o(1). (6)
1t follows from (4), (5), (6) and Lemma 4 that
Var Cy () = (2ab + u; '\t
+(4al* + b +4p72w\, —uilng,) +o(1).

Substituting for a and b (Lemma 1) and /* (Lemma 3), we obtain the
result. O

Define r(¢} = Var Co(#) —ct—d.

Corollary 1. Iy FE @, and p3, \y, ny3, E{X%} and E{Y(z,} exist, then
VarC(t) =ct +d—c E{X,} + Var(Y,—aX;) +o(1),

where ¢ and d are given in Theorem 1.
Proof. C(¢) = "Xo<r [ Y0 + Co(t-Xo)] ; thus

(CO =1y (Y +2YColr - Xp) + CF(e - X))

Now
t
Ely < Y3} = [E{Y] | X,=5} dFg(s) =E{¥]} +o(1).
0
Next
2E{Iy o, Yo Co1—X)} =
=2Elly o, E(Yy 1 Xy) la(z— X)) +b +rH(t-X,)1]
=2at E{Y,} —2a E{X,Y,} +2bE{Y,} + o(1)
since lim,_, ., {r*(£)} =0, sup, {Ir*(£)I} < e and E{|Y |} < e imply

t
[ r*—s)E(Y 1 Xy =5} dFy(s)~ 0.
0
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Finally,
E{ly o, CoUt— X} =
=E{ly  [(c(t-Xy) +d+F(t—Xy)) + @(t—Xg) +b+r*(t—Xy)¥*] }
=E{ly 0?12 + t(c—2a° X+ 2ab) +(d — X +a> X} +b? - 2abX )
+(F(t = Xg) + (r*(t~ X)) + Ua(t —X,) +b) r*(t—X)1}.
By Lemma 1 and Theorem 1, r(¢) and r*(¢) - 0. Moreover, sup, {Ir(¢)|} <o
and sup, {Ir*(1)]} < =, thus £ F(t—x) dFy(x}, [f (r*(t—x))* dF(x) and

f; r*(t—x) dFy(x) all converge to 0. Moreover, by Leinma 3, ¢ r*(¢) - 0,
and it easily follows that sup, {|#7*(¢)| < e} ; thus

t
E{ly o —X) r—Xp} = [(t—x)r*(t—x) dFy(x)~> 0.
0
Therefore

E(ly ,Co(t—Xy)} =a*s® +t(c - 2a® E{X,} +2ab)

+(d- cE{X,} +a? E{X2} +b® - 2abE{X,})

+o(1).
Thus
E{C2()} =a?s® +t(c— 2¢* E{X,} +2ab+2a E{Y})
+(d—cE{X,} +a? E{X3} — 20 E{X, Y}
+E{Y2} +b2 - 2ab E{X} + 2bE{Y}) + o(1) .
By Lemma 1,

(E{C(1)})? =a?1? + t(2ab — 22> E{X)} + 22 E{Y(})
+ (@ (E{X,})2 - 2a E{X,}E{Y}
+(E{Y,})? +b% —2ab E{X,} + 20 E{(Y ;) + o(1) .

Subtracting (E{C()})? from E{C2(2)} yields the result. 1
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