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Let {C(t), t 3 0) be a renewal reward process. We obtain the approximation 
Var C(f) = ct + d + o(l), and explicitly identify c and d. 

renewal process l- renewal reward process 
--_ 

cumulative process 
variance time curve 

* 

1. Introduction 

Consider a sequence of independent random vectors 
2, . . . ), where (Xi, Yi), i > 1, are identically distributed. 

. 

{(Xi, yi>, i =09 19 
Assume that 

{Xi, i=O, 1, *.. ) is a renewal sequence. Define ,Sj = I& Xi for j = 0, I, . . . . 

and N(t) = (min j: +> t}. Consider the process 

a - t*: x0, 
c(t) = N(t)-1 00. 

C Yi, t;,X*, 
i=O 

The process C is called a renewal reward process, and is a generalization 
of a renewal process and a special case of a cumulative process. 

* Research partially supported by the Army Research Office, Office of Naval Research, and 
Air Force Office of Scientific Research by Contract No. NO00 14-67-A-O 112-0085 (NR-0420267). 

301 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82577863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


302 M. Btt~wn, H. Solomon / The variance of a renewal reward process 

Renewal reward processes occur in various stochastic optimization 
models ([6], [ 7, pp. 5 l-541 ), particularly in Markov and semi-nilarkov 
decision processes [ 7, pp. 156-1611. Examples are found in inventory 
models, queues, counter models, dispatching problems arid many others. 
In these models, Yi represents the reward or cost associated with a given 
policy over the renewal interval (Si_1, S 1. The reward cr cost is assumed i 

to occur at the end of the interval rather than accumulat~~a~a~ua~ly. 
Many results for renewal processes generalize to renewalreward pro- 

cesses. Some of these are the strong law and elementary renewal theorem 
[S, pp.27-281, central limit theorem [8,p.30], and Blackwell and key 
renewal theorems [ 11. 

We derive the approximation Var C(t) = ct + d + o(l), where c and d 
are explicitly computed (Theorem I and Corollary 1). This generalizes 
the well-known approximation to Var N(t) (see [9, p. 28 1) which has 
been useful in inference for renewal processes ([ 21, [ 3, p. 8 1 ] ). Smith [ 8, 
p. 281 has shown under suitable conditions that Var C(t) = ct + o(t), so 
that the coefficient c is krown. Our corltribution is showing that under 
stro::ger conditions Var C(t) = ct + d + o(l), and we evaluate d explicitly. 
The sharpened approximation to E(C(t) 1 (Lemma 1) and Var C(t) 
(Theorem 1 and Corollary 1) should be useful in sharpening the central 
limit (normal) approximation to the distribution of C(t), 

2. Derivatioln of results 

We will prove a few lemmas neRded for our main result (Theorem 1, 
Corlollary 1). We use the notation C,(t) for a renewal reward process 
with X0 3 Y0 = 0, and C(t j for a general renewal reward process. We 
use No(f) for an ordinary renewal process (X0 s 0, Yi E 1, i = 0, I, . ..) 
and N(t) for a general renewal process (Yi = 1, i = 0, 1, . ..). Define 

M,&) = E{N@), Ml(:) = E{N(t)). 

Denote the distribution of X0 by F0 and of X, (and thus of Xi for 
i > 1) by F. F is said to be non-lattice if there does not exist a w > 0 

n=O F{izw) = I. F is said to belong to the class 9 
convolution of F has an absolutely continuous component. 

{Yi) fi..= 9 u 
‘vi} ) 
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whenegler these expectations exist. By existence of an expectation 
E(g(X, V,} we mean that E(jg(X, Y)j} < =. A function h on [S, 00) is 
said to be of-bounded variation oar [0, =) if the total variation of li 
over [0, m) is finite. We will use the fact that an integrable function of 
bounded variation on [ 0, =) is directly Riemann integrable [4, p. 3621. 

Lemma 1. If F is non-lattice and p2, A, and n 1 1 exist, then 

D,(t)=at+b+o(l), 

where a = h, /pI and b = )pi2p2XI - pi’ n1 1. I”’ ivt addition, E{Xo) 
and E( Y. ) exist, then 

D(t)=at+b+E{Yo) -aE(Xo}+o(l). 

Proof. The lemma follows by a standard-type application of the key 
renewal theorem, similar to [4, p. 3661 or [ 51. We condition on XI , 

obtaining 

t t 

o,(t) = JD,(t-s) dF(s) + j-E{ Y 1 X=s} dF(s) ; 

0 0 
thus 

t 

D,(f) - at = 1 [Do0 -s) -- a(t -s)] dF(s) 
0 

+aj(LF(s))ds- jE{Y,X=s) d/Q). 

Under the above assumptions, 
t 

a j(l -F(s))ds- ~E{YI X=S) dF(sj 
t t 

is directly Riemann integrable. Applying the key renewal theorem, 

lim {D,(t)-at) =p;lj bj ( 
t-*= 

1 -F(s)> ds - 7 { Y I X = s) dF(sj 1 dt 

t=O s=t S=t 

=p~1(#p$tlp2 -n,$. _1 
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For genefai C, 

D(t) -at = 1 [D,(t-s) - a(t-s)] dF,(s) -at( 1 - F,(t)) 
0 

-alsdFoD)+lEIY,,Xo=~~ dF,(s). 
0 0 

Now O,(t) -- at + b, thus there exists T such that t > T implies 
ID,(t) - at -- bs G 1. Therefore 

But 

sup{lDgi:) - at1 } G su 
t t< F 

{lD,(t)l) + aT + lb1 + 1 . 

by Wald’s identity (see [ 71). Thus 

thus 
sup(lD,(t) -ati}< 00,~ 

t 

Thus by the dominated convergence theorem, 

t 

s [Doit-s) - a(t-s)] dFo(s) + b . 
0 

Also, since 1 - fii (t) is monotone and Jr ( I- F. (t)) dt = E(X,) < =, 
it follows that t( 1 - F,(t)) + 0. Thus 

D(t)-at-b+E{Yo} -aE&}+o(l). 

This concludes the proof. 0 

Define 

r(t) = q](f) - r’t - 411(r2crz ) 

set k = Srr(t) dt whenever s,” I?(t)1 dt < 00. efine 
total variation of P over [ 4, =I. 

I/,(x) to be thz 
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Lemma 2. If F E Q and p3 < 00, then 

l=tE.c;‘Cc,2_’ -2 
64 i$ l 

Proof. Smith [ 10, p. 21 derived the powerful result that FE 8 and 
p3 < 00 implies 

(i) liq,, {t r(t)] = 0, 

(ii) s,” Ir(t)( dt < 08, 
(iii) r(t) is of bounded variation on [ 0, w)* 

First note that for x > 0, 

V,(X) G Vr(0) + jk;‘X. 

Consider the function 

km = j x r(t- x) dF(x) . 
X=0 

Now 

(by (ii)), thus g is integrable, and 

0 

s g(t) dt = 11.11 . 
0 

Moreover, g is of bounded variation on [ 0, =) since 

(Vr(0) C = by (iii)). Therefore g is directly Riemann integrable. 
Now 

t 

MO(t) = 1 + JA4’,(t-x) dF(x) . 
0 
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Subtract cc;“ t + $pi2pz from both sides and then imultiply by t to 

obtain 

t r(t) = icf -x) r(t--x) dF(x) s+ Z(f) , 
0 

where 
00 

By the lkey renewal tlheorem 

But, by (i), lim,,, (t r(t)} = 0, thus 2 = $E.(~~P; - ipi2p3. This con- 
cludes the proof. 0 * 

Defit?e 

r*(t) =L9,(t) -at - b, 

and set I* = .&Y*(t) d,t whenever J,= Ir*(t)l dt < 00. 

Lemma 3. If F E 9, p3, h, and n2 1 exist, then 

Moreover, Y* is directly Riemann integrable and 

lim{t r*(t)) = 0. 
t-*- 

Proof. Note that 

so that nil exists. Also, 

how- 1 No (0 

cO(t)= C yi= ~ ~i-Y~(t,. 
i=l i=l 0 1 
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Since NO(t) is a stopping time [ 71, 

Subtracting at + b from both sides we obtain 

r*(t) = h,r(O f Pc$ll - wool 

Thus if ~7~ nil - E( YN 
0 
ttj } is integrable, then 

I*=h,l+~(p;lnll -E{YNo~t))jdt. 
0 

But 00 
-1 

I-(1 “11 = s E{YIX=.x) pi*x dF(x), (1) 

0 

anti 

WV (t) 0 
) = jE{Y, X=x) (M(t) -M(t-x))dF(x). (21 

0 

(2) follows by letting k(t) = E{ YNottj ) and setting up .the renewal equa- 
tion 

h(t) = jh(t-_y) dF(y) + jE{Y I X=x) dF(x) . 
0 t 

The solution to this renewal equation is 

t = 

h(t) = 1 s E{Y )X=x} dF(x) dM(z) 
z=o X=2-Z 

00 t 

= .s f dM(z) E(Y I X=x) dF(x) d 
X=0 LC=t-X 

00 

= s (tj-M(t-x)) E{Y 1 X=x) dF(x) . 
X=0 

It follows from ( 1) and (2 j that 

-1 
4 nil - {Y =x) @(t--x) -r(t))dF(x) . ( 

x-0 
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t--x)! + ir(t)j) dt 
I 

E(i YI 1 X=x) dF(x) 

Tlx~s pi1 nII - E( YNO(tj) is integrable, and 

Since r is directly Riemann integrable and 

to show that r* is directly Riemann integrable it suffices to show that 
fl;” nil - E(YNO,,) is of bounded variation on [O: =). But by (3), 
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we want show that tr*(t) + 0. It suffices (since 
show that 

U;‘nrl - E1 YN,(t) jE{Y, X=x} t(r(t--x)--r(t))dF(x). 

0 

Note that tr(t) + 0; thus for some 7’ and all t 2 T, itr(t)l < 1, and thus 

supW(t)ll G TWO(T) + pl’ T + fp;*p2 ] + 1 ; 
t20 

similarly, 
sup W(0l) < O” l 
tao 

Therefore 

W(t --xl - m)l G 2 sup (It r(t)1 } + x su.p { p(t)1 ) 
.ta--x t,-x 

G 2 SUP WWI~ +x sup {ir(t)1) 
tao tao 

Since y2rr and n21 exist, t(r(t-x) -r(t))E( Y 1 X-x} is dominated by 
an integrable function, and thus the dominated convergence theorem 
shows that t(p&, -- E( YNottj }) -+ 0. This concludes the proof. CT 

Define 
t 

D;*‘(t) = jb,(t-s) dD,(s) . 
0 

Let FtK) be the A?’ convolutioxn of F, and let & = dF(K$klMo. Since 
A4 

& 
= Z~,,F’K’, it follows that MO = 0 implies that all F(“) = 0; thus 

F ) 4 MO, and fK is well defined. 

mma 4. VarC,(r) = Co(t) + 2Df)(t) - (Do(t))*. 



Var c”,(t) + (Doft))2 - 6&) = 2E ’ c Y.Y. 
i<jav,(t)-t l 1 ’ 

to show that 

= ~ SE(YI I Si=S} dF(~~(S) 
i=l 

0 
t - 

“.. “., 
SP ‘fyi I si =sl fi(S) dM,(S) l 

0 
i=l 1 

z =i&{Yi, Si=s)fi(s). 
0, = 

= ~ j 
i< j j E{Yi I Si=W) E{Yj_i I Sj_,=S-W} dF(‘)(w? dF(‘-i)(S-W) 

w=o FW 

X k.i E{Yk i Sps-w)f&-w))db$(s-w)dMo(w) ( = 

w=o 
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Theorem 1. If FE $’ and p3, A2 and nl 2 mist, then 

VarC,(t)=ct+d+o(l), 
where 

c = j$-3c(2x; - 2p;2n,,h, +p;‘h, =q+‘Var(Y--ax), 

d = $&q4p$i - $p;3p31i~ + 2C(r2n2,X1 

Proof. First note that E(X IYi) < [E{XY”) E{X}]i and 
E(X2 IYI} < [E{XY2) E(X3}]f, so that nil and n2f exist. 

It follows from Lemma 1 that 

Eo(t) =p$,t +$p;2p2A, - p;ln,z + o(l) 9 

(D 0 (t))2 =a2t2 +2abt+b2 +0(l) . 

Now 

Df)(t) = jD,(t -s) dD,(s) 
0 

(4) 

(5) 

t 

= i r*(t - s) dD,(s) + [(a(t - s) + b) dDo(s) . 

0 b 

By Lemma 3, r* is directly Riemann integrable. It thus follows from 
a generalization of the key renewal theorem to renewal reward processes 
[l,p.lOl] that 

Thus 

t 

s r*(t -s) dD&) = al* + o( 1) . 

0 

D(2>(t)=al* + j(a(t-s)+b) dD,(s) + o(l). 
0 

0 

Next 

j(a(t-s)+b) dD,(s) = bD,(t) +a /D,(s) ds 
0 b 

t t 

= b&,(t) +a Jr*(s) ds -t a J(aS +b;j 
0 0 
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Combining, we have 

(6) 

It follows From (4), (S), (6) and Lemmla 4 that 

vNCo(t) = (2ab + pi’X,)t 

+ (4cirP + b2 + iJii2/J2h2 - &n12) + 0( 1). 

Substituting for ~a: and b (Lemma 1) and I* (Lemma 3), we obtain the 
result. III 

Define F(t> = Var CO (5) - cP - sl. 

Corollary 11.1jrF~$J,andp3, AZ,, n12, E@}andE{Yi) edt, then 

VaxC(t)=ct+d-cE&} +Var(Y*-aXo)+o(l), 

where e and cd are g&en in Theorem I. 

Proof. C(t) = IX& [ YO + C&--x,)] ; thus 

KwN2 = ‘x,<t [Y; $‘2Y,C*(t--X,) tc@--x,)1 . 
Now 

% <t 0 *, Y2) =jEIY; IX, =s) dF’&) = E{Y;} + o(l), 
0 

Next 
t Yoco&-xo~:* = 

E(Y, I X0) [a(t --X0) + b +r*(t-X0)] ] 

{XoYo) +2b 

since lim,, Q:, (t)} = 0, sup, { )r*(t)l) < - and E{ I Y, I ) <: 00 icaply 

t 

&f {v, IX, =s) dF,(s)-* 0. 
0 
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Finally, 

E& 
0 
(2 @t -X(J)> = 

= wx o <t EM?--x*1 + d+ r(‘-x())) + (a(?-X0) +b +r*(t-Xo))2] ) 

= EIlx 
0 
J a2 t2 + t(c - 2a2Xo + 2ab) + (d-c& +a2 Xi + b2 - 2abXo) 

+ (fit -X0) + (r*(t --Xo))2 + :!(a(? -X0> + 6) r*(t -X0)1 1. . 

By Lemma 1 and Theorem 1, i(t) and r*(t) -+ 0. Moreover, sup, (Ii(t)1 ) < - 

and sup, (Jr*(t)1 ) < =, t’hiii 2o 

@*(t-x) dt;b( 
ft $t -x) d&(x), Jl (r*(t -x))2 dQ(x) and 

x a ) 11 converge 20 0. Moreover, by Lemma 3#, t r*(t) + 0, 
and it easily follows that sup, (Itr*(t)( < 00); thus 

Et,r, (t c 
0 

[S-X ) r*(t-X0)) = j(t -x)P(t--X)dF’&) + 0. 
0 

Therefore 

E(B, 
0 
ctC@-Xo)} =a2t2 + t(c- 2a2 E(x,) + 2ab) 

+(d-cE{Xo]+a2E{Xt}+b2-2abE{Xo}) , 

*o(l). 
Thus 

E{C2(t)} =a2t2 -t t(c- 2u2 E{X,) +2ab+2a E(Y,}) 

By Lemma 1, 

(E{C(t)))2 = a2 t2 + t(2ab - 2a’ 

(Y,))’ +b2 - 
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