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A main contribution of this paper is the explicit construction of
comparison morphisms between the standard bar resolution and
Bardzell’s minimal resolution for truncated quiver algebras over
arbitrary fields (TQA’s).
As a direct application we describe explicitly the Yoneda product
and derive several results on the structure of the cohomology
ring of TQA’s over a field of characteristic zero. For instance, we
show that the product of odd degree cohomology classes is always
zero. We prove that TQA’s associated with quivers with no cycles
or with neither sinks nor sources have trivial cohomology rings.
On the other side we exhibit a fundamental example of a TQA
with nontrivial cohomology ring. Finally, for truncated polynomial
algebras in one variable, we construct explicit cohomology classes
in the bar resolution and give a full description of their cohomology
ring.
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1. Introduction

To any finite quiver � and any field k one associates a k-algebra k�, the path algebra or quiver
algebra of �, where the set of vertices �0 and the sets of k-paths �k form a k-basis and the product
is given by concatenation of paths (see Section 2).

Quiver algebras and their quotients arise in many contexts and have been extensively studied.
A result of Gabriel [G] establishes that for every finite dimensional k-algebra A such that A/r =
k ×· · ·× k, where r is the Jacobson radical of A, there exists a finite quiver �, the Gabriel quiver of A,
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and an epimorphism ϕ : k� → A such that (�N ) ⊆ kerϕ ⊆ (�2) for some N � 2. Here (�k) is the
two-sided ideal generated by �k .

Monomial algebras are those for which kerϕ is generated by monomials. In the particular case
when kerϕ = (�N ), the algebra A is an N-truncated quiver algebra, denoted N-TQA, or simply TQA,
from now on. This property of A turns out to be intrinsic [Ci2] which makes TQA’s a distinguished
class.

For these classes of algebras Bardzell [Ba] introduced a minimal resolution that plays a key role in
the treatment of homological questions and problems.

A main contribution of this paper is the explicit construction of comparison morphisms between
the standard bar resolution and Bardzell’s minimal resolution for TQA’s. We believe that such mor-
phisms, sought for a long time, should have many applications. Our construction in this case could
inspire others to find comparison morphisms for wider classes of algebras, hopefully for all monomial
algebras.

As a direct application we describe explicitly the Yoneda product and derive several results on the
structure of the cohomology ring of TQA’s over a field k of characteristic zero. In the near future we
will complete a full description of this ring.

1.1. A brief account of known results

Since the early nineties several authors have investigated different homological questions for a
number of classes of monomial algebras A, including TQA’s.

In the context of truncated quiver algebras, Cibils [Ci1] proved that their n-th homology group
Hn(A, A) vanishes for all n > 0 if the quiver has no oriented cycles. A shorter proof of this fact was
later given in [Ci2]. On the other hand, Liu and Zhang [LZ] showed that Hn(A, A) = 0 for all n > 0
if and only if the quiver has no oriented cycles of some specific lengths. More recently, Sköldberg
[Sk] gave a complete description of the homology of TQA’s. His computations are based on the use
of Bardzell’s minimal resolution. In the same paper he treats also the case of quadratic monomial
algebras with an analogous approach.

Bardzell’s resolution was introduced in [Ba] for monomial algebras, and has shown to be an ef-
ficient tool for computations in contrast to the usual bar resolution. Recently, Marconnet in [M]
constructed a comparison morphism for the first nontrivial degree, in the context of cubic Artin–
Schelter regular algebras.

The first cohomology computations for TQA’s appeared in [Ci2] where the second cohomology
group is described to study formal deformations and to characterize rigidity. In the subsequent paper
[Ci3] these results were extended to the class of monomial algebras.

A description of the whole cohomology of TQA’s, over fields of characteristic zero, was given by
Locateli in [Lo]. Her computations also rely on the use of Bardzell’s minimal resolution, and cohomol-
ogy classes are represented by pairs of parallel paths. The particular case of truncated cycle algebras,
those associated to an n-cycle quiver, is treated separately. Recently in [XHJ] the case of arbitrary
characteristic was solved.

The determination of the structure of the full cohomology ring is still a difficult problem that has
been addressed in a number of cases.

For instance, for a radical square zero algebra, a description of the Yoneda product on Hochschild
cohomology is given in [Ci4] and it is shown that this algebra is finitely generated only for the case
when the underlying quiver is a cycle or it has no oriented cycles.

For truncated cycle algebras, the complete structure of the cohomology ring was determined in
[BLM] and independently in [EH], showing in particular that the Yoneda product is nontrivial and
the cohomology ring is finitely generated (see also [Ho] and [FS]). Cycle algebras are examples of
self-injective Nakayama algebras. In [BLM] the authors present in contrast some examples of nonin-
jective Nakayama algebras for which the product is trivial (in nonzero degree) and in particular the
cohomology ring, which is infinite, is not finitely generated.

Since the Hochschild cohomology ring H∗(A, A) is a graded commutative k-algebra, every homo-
geneous element of odd degree squares to zero (char k �= 2) and if N is the ideal generated by the
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homogeneous nilpotent elements, then H∗(A, A)/N is a commutative k-algebra. One expects to gain
information for the full cohomology ring from this simpler one.

In [SS] it was conjectured that H∗(A, A)/N is finitely generated as a k-algebra for any finite di-
mensional algebra A. This was recently proved in [GSS] for monomial algebras and was already known
for some other classes (see [GSS]). In [GS] the quotient H∗(A, A)/N was determined for the subclass
of stacked monomial algebras, a class that contains TQA’s. These results applied to noncycle TQA’s
yield H∗(A, A)/N � k. However, since H∗(A, A) is, in general, infinite dimensional over k, the struc-
ture of the full ring H∗(A, A) remains open.

1.2. An overview of the main results

Given A an associative k-algebra with unit, the Hochschild cohomology groups Hn(A, A) are,
by definition, the groups Extn

Ae (A, A) where Ae = A ⊗k Aop . The natural identification between A-
bimodules and left Ae-modules gives the definition of projective A-bimodule and A-bimodule homo-
morphism.

The standard bar resolution of A is the Ae-projective resolution

· · · → A ⊗ A⊗n ⊗ A
b→ A ⊗ A⊗(n−1) ⊗ A · · · b→ A ⊗ A ⊗ A

b→ A ⊗ A
ε→ A

where all tensors are over k and since HomAe (A ⊗ A⊗n ⊗ A, A) � Homk(A⊗n, A), the associated
Hochschild complex is

A
b→ Homk(A, A)

b→ ·· · b→ Homk
(

A⊗(n−1), A
) b→ Homk

(
A⊗n, A

) b→ ·· · .

The cohomology group H∗(A, A) has a ring structure given by the Yoneda product which coincides
with the cup product defined as follows. Given two cochains,

f ∈ Homk
(

A⊗m, A
)
, g ∈ Homk

(
A⊗n, A

)
the cup product of f and g is the cochain f ∪ g ∈ Homk(A⊗(m+n), A) defined by

f ∪ g(α1 ⊗ · · · ⊗ αm+n) = f (α1 ⊗ · · · ⊗ αm)g(αm+1 ⊗ · · · ⊗ αm+n).

For TQA’s, the bar resolution can be slightly simplified with the A-bimodule

Qn = A ⊗�0 A
⊗n

�0+ ⊗�0 A,

in place of A ⊗ A⊗n ⊗ A, where A+ is the ideal
⊕N−1

n=1 k�n and ⊗�0 means ⊗k�0 . For the definition
of the differential see Section 3.1.

In contrast to this resolution, there is the following minimal resolution (P,d), due to Bardzell [Ba]
(cf. [AG,BK] and [Ha]), where the Ae-projective modules are

Pn =
{

A ⊗�0 k�kN ⊗�0 A, if n = 2k;

A ⊗�0 k�kN+1 ⊗�0 A, if n = 2k + 1.

One has

P∗
n = HomAe (Pn, A) �

{
Hom(k�0)e (k�kN , A), if n = 2k;

Hom e (k� , A), if n = 2k + 1.
(k�0) kN+1
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The definition of the differential is in Section 3.2. For more details see Section 7.
We define the following Ae-morphisms between these two resolutions in both directions. See

Section 4 for complete details.
First, let F : P → Q be the A-bimodule extension of the map defined on p0 = 1⊗ v1 . . . vkN ⊗1 ∈ P2k

and p1 = 1 ⊗ v1 . . . vkN+1 ⊗ 1 ∈ P2k+1, where vi is an arrow for all i, by

F2k(p0) =
∑

1[v1 . . . vx1︸ ︷︷ ︸
x1

| v1+x1︸ ︷︷ ︸
1

| . . . v1+x1+x2︸ ︷︷ ︸
x2

| v2+x1+x2︸ ︷︷ ︸
1

| . . . . . . | vk+∑
x j︸ ︷︷ ︸

1

] . . . . . . vkN︸ ︷︷ ︸
kN−k−∑

x j

,

F2k+1(p1) =
∑

1[ v1︸︷︷︸
1

| v2 . . . v1+x1︸ ︷︷ ︸
x1

| v2+x1︸ ︷︷ ︸
1

| . . . v2+x1+x2︸ ︷︷ ︸
x2

| . . . . . . | vk+1+∑
x j︸ ︷︷ ︸

1

] . . . . . . vkN+1︸ ︷︷ ︸
kN−k−1−∑

x j

,

where the sum is taken over all k-tuples (x1, . . . , xk) ∈ Z
k such that 1 � xi < N .

Second, let G : Q → P be the A-bimodule extension of the map defined on q = 1[α1| . . . |αn]1 =
a1

1 . . .a1|α1|a2
1 . . .a2|α2| . . . . . .an

1 . . .an|αn| = v1 . . . v |q| ∈ Qn , by

G2k(q) =
{

1 ⊗ v1 . . . vkN ⊗ vkN+1 . . . v |q|, if α2i−1α2i = 0 for i = 1, . . . ,k;
0, otherwise;

G2k+1(q) =
{∑|α1|

j=1 v1 . . . v j−1 ⊗ v j . . . vkN+ j ⊗ vkN+ j+1 . . . v |q|, if α2iα2i+1 = 0 for i = 1, . . . ,k;
0, otherwise.

Our first result is the following theorem (see Theorem 4.1).

Theorem. The morphisms F and G between the resolutions P and Q are both comparison morphisms.

The proofs are long, Sections 6 and 5 are exclusively devoted to them. They are subtle and give an
insight on the nontrivial combinatorics underlying this problem.

When the field k is of characteristic zero, we use the comparison morphisms and the description
of the cohomology given in [Lo] to describe the Yoneda product at the level of the minimal resolution
and to determine the product in cohomology. The minimal resolution is naturally bigraded, but the
product in this resolution is not compatible with this bigrading. However, the product at the coho-
mology level, which is essentially given by concatenation of paths, is compatible with the bigrading
making H∗(A, A) a bigraded ring.

More precisely, let ∨ be the product in P∗ defined in the following way. For (α,π) ∈ P∗
n1

and
(β, τ ) ∈ P∗

n2
,

(α,π) ∨ (β, τ ) =
{

(αβ,πτ), if n1 or n2 is even

0, otherwise.

We then have the following result.

Theorem. Let A be a noncycle N-TQA over a field of characteristic zero. Then the ∨ product in P∗ induces the
Yoneda product in Hn(A, A) and in particular:

(i) The product of two odd degree cohomology classes is zero.
(ii) If f1, . . . , f N are cohomology classes of positive degree, then f1 . . . f N = 0.

(iii) H∗(A, A)/N = k, where N is the ideal generated by homogeneous nilpotent elements.
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This result extends the analogous result in [BLM] for truncated cycle algebras. Part (iii) can be
deduced from the results in [GS].

This theorem allow us to derive a number of results on the structure of the full cohomology ring
of TQA’s. In this paper we investigate under which conditions is the cohomology ring trivial, meaning
that the subalgebra

⊕
n�1 Hn(A, A) has trivial product. It was believed that, generically, this was the

case. Nevertheless examples of algebras with nontrivial product in cohomology appeared in [GMS].
Recently in [GS,GSS] examples within the class of monomial algebras are given. On the other hand,
Bustamante and Gatica [BG] proved that the product is zero for monomial algebras with no oriented
cycles.

For the class of TQA’s we prove in Section 8 the following theorem.

Theorem. Let � be a quiver satisfying one of the following conditions.

(i) � has no oriented cycles.
(ii) � is not an oriented cycle and has neither sinks nor sources.

Then the subalgebra
⊕

n�1 Hn(A, A) with the Yoneda product is trivial.

On the other direction, we consider the cohomology ring of TQA’a associated with the quiver

and prove in Section 8.3 the following result.

Theorem. Let A be an N-TQA associated with the above quiver �. Then, for all n ∈ N, there exist nonzero
cohomology classes ωn, j ∈ Hn(A, A), j = 1, . . . , N − 1, such that

ωn1, j1 ∪ ωn2, j2 =
{

ωn1+n2, j1+ j2 , if n1 or n2 is even and j1 + j2 < N;
0, otherwise.

This theorem gives many examples of TQA’s containing loops (and thus oriented cycles) whose
cohomology ring contain nilpotent elements that are factorized as a product of two other nilpotent
elements. On a full description of the cohomology ring of arbitrary TQA’s this example should play a
fundamental role.

At the end of the paper we use the comparison morphisms to construct explicit cohomology
classes in the bar resolution. In particular, the truncated polynomial algebra in one variable is consid-
ered. This algebra has been widely studied, however, as far as we know, the comparison morphism
has not been written down and a basis consisting of cohomology classes in the bar resolution can not
be found in the literature. We give a full description of the cohomology ring in this case.

2. Preliminaries

2.1. Quiver algebras

Let � be a finite quiver, that is, a finite directed graph in which multiple arrows and loops are
allowed. In this paper all quivers shall be assumed to be finite and connected.

The set of vertices and arrows of � are denoted by �0 and �1, respectively. To each arrow a ∈ �1
we associate its source vertex o(a), and its end vertex t(a). A path α is a single vertex or a sequence
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of arrows α = a1 . . .an such that t(ai) = o(ai+1). The length |α| of a path α is the number of arrows
of it and the set of paths of length n is denoted by �n . We find it convenient to consider the vertices
as paths of length zero. For a path α = a1 . . .an ∈ �n , we set o(α) = o(a1) and t(α) = t(an).

Let k be any field of characteristic 0. Let k�n be the k-vector space with basis �n and let
k� = ⊕

n�0 k�n . The quiver algebra associated to � is k� with multiplication given by concate-
nation of paths. If α = a1 . . .am ∈ �m and β = b1 . . .bn ∈ �n , then αβ = a1 . . .amb1 . . .bn ∈ �m+n , if
t(α) = o(β), or zero otherwise. It is clear that k� is a graded algebra with unit 1 = ∑

p∈�0
p and

degree n component k�n .
A truncated quiver algebra A is a quotient A = k�/I N , where I is the ideal generated by �1 and

N � 2. Since I N is an homogeneous ideal, truncated quiver algebras are graded.
Given a truncated quiver algebra A, we shall make no distinction between an element α ∈⊕N−1

n=0 k�n ⊂ k� and its quotient projection in A. In particular, the set

B =
N−1⋃
n=0

�n

is a k-basis of A.
We finally point out that elements α,β ∈ A will frequently be assumed to be in B and, in these

cases, α = a1 . . .a|α| or β = b1 . . .b|β| will be their arrow decomposition.

2.2. Hochschild cohomology

Given an associative k-algebra with unit A, the Hochschild cohomology groups of A with coeffi-
cients in the A-bimodule A, Hn(A, A) for n � 0, are by definition, Extn

Ae (A, A) where Ae = A ⊗k Aop .
The natural identification between A-bimodules and left Ae-modules gives the definition of projective
A-bimodule and A-bimodule homomorphism.

We recall that the standard bar resolution of a k-algebra A with unit is the Ae-projective resolution
of A,

· · · → A ⊗ A⊗n ⊗ A
b→ A ⊗ A⊗(n−1) ⊗ A · · · b→ A ⊗ A ⊗ A

b→ A ⊗ A
ε→ A

where ε(α ⊗ β) = αβ and the differential b in degree n is given by

bn(α0 ⊗ α1 . . . αn ⊗ αn+1)

= α0α1 ⊗ α2 . . . αn ⊗ αn+1 +
n−1∑
i=1

(−1)iα0 ⊗ α1 . . . (αiαi+1) . . . αn ⊗ αn+1

+ (−1)nα0 ⊗ α1 . . . αn−1 ⊗ αnαn+1.

Since HomAe (A ⊗ A⊗n ⊗ A, A) � Homk(A⊗n, A), the associated Hochschild complex is

A
b→ Homk(A, A)

b→ ·· · b→ Homk
(

A⊗(n−1), A
) b→ Homk

(
A⊗n, A

) b→ ·· · .

The cohomology group H∗(A, A) has a ring structure given by the Yoneda product which coincides
with the cup product defined as follows. The cup product is graded commutative. Given two cochains,

f ∈ Homk
(

A⊗m, A
)
, g ∈ Homk

(
A⊗n, A

)
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the cup product of f and g is the cochain f ∪ g ∈ Homk(A⊗(m+n), A) defined by

f ∪ g(α1 ⊗ · · · ⊗ αm+n) = f (α1 ⊗ · · · ⊗ αm)g(αm+1 ⊗ · · · ⊗ αm+n).

We finally recall that the Hochschild cohomology of the direct sum of two k-algebras is the direct
sum of their Hochschild cohomologies. Thus we shall restrict ourselves to finite connected quivers.

3. Two projective resolutions

3.1. The (reduced) bar resolution (Q,b)

When A is a truncated quiver algebra the bar resolution given above can be slightly simplified by
tensoring over k�0, as done in [Ci2]. More precisely, let us denote by A+ the ideal

⊕N−1
n=1 k�n of A

and let

Qn = A ⊗�0 A
⊗n

�0+ ⊗�0 A,

ε(α ⊗ β) = αβ and for n > 0 let

bn
(
α0[α1| . . . |αn]αn+1

) = α0α1[α2| . . . |αn]αn+1

+
n−1∑
i=1

(−1)iα0[α1| . . . |αiαi+1| . . . |αn]αn+1

+ (−1)nα0[α1| . . . |αn−1]αnαn+1.

Here we use the bar notation

α0[α1| . . . |αn]αn+1 = α0 ⊗�0 α1 ⊗�0 . . . ⊗�0 αn ⊗�0 αn+1 ∈ Qn.

It is not difficult to see that Qn is Ae-projective, that b is well defined and b2 = 0 (see [Ci2]).
A k-basis of Qn is

BQn =
{
α0[α1| . . . |αn]αn+1

∣∣∣ (i) α j ∈ B, for all j; |α j| � 1, for j = 1, . . . ,n;
(ii) t(α j) = o(α j+1), for j = 0, . . . ,n

}
.

Let

B′
Qn

=
{

1[α1| . . . |αn]1
∣∣∣ (i) α j ∈ B and |α j| � 1, for j = 1, . . . ,n;

(ii) t(α j) = o(α j+1), for j = 1, . . . ,n − 1

}
.

Since

1[α1| . . . |αn]1 = o(α1)[α1| . . . |αn]t(αn)

for every element of B′
Qn

, it follows that B′
Qn

⊂ BQn and that the set B′
Qn

generates Qn as an A-bi-
module.
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As in the case of the bar resolution, it is straightforward to check that the map s : Qn → Qn+1
defined by

sn
(
α0[α1| . . . |αn]αn+1

) =
{

1[α0| . . . |αn]αn+1, if |α0| > 0;
0, if |α0| = 0;

is a k-linear chain contraction of the identity, that is, sb + bs = 1. This shows that the complex (Q,b)

is exact.

3.2. The minimal resolution (P,d)

The Hochschild homology of truncated quiver algebras A was computed by Sköldberg in [Sk] and
the Hochschild cohomology was computed by Locateli in [Lo]. In both papers, the authors used the
minimal Ae-projective resolution P of A that we describe below. This minimal resolution was intro-
duced in several earlier papers (see for instance [AG,Ba,BK] and [Ha]).

Let

Pn =
{

A ⊗�0 k�kN ⊗�0 A, if n = 2k;

A ⊗�0 k�kN+1 ⊗�0 A, if n = 2k + 1.

In order to simplify the notation, the symbol ⊗ will always mean ⊗�0 for elements in P. Let
ε(α ⊗ β) = αβ and, for n > 0, let dn : Pn → Pn−1 be defined by

d2k(α ⊗ v1 . . . vkN ⊗ β) =
N−1∑
j=0

αv1 . . . v j ⊗ v j+1 . . . vt︸ ︷︷ ︸
(k−1)N+1

⊗vt+1 . . . vkNβ

= α ⊗ v1 . . . v(k−1)N+1 ⊗ v(k−1)N+2 . . . vkNβ

+ · · · + αv1 . . . v N−1 ⊗ v N . . . vkN ⊗ β,

d2k+1(α ⊗ v1 . . . vkN+1 ⊗ β) = αv1 ⊗ v2 . . . vkN+1 ⊗ β − α ⊗ v1 . . . vkN ⊗ vkN+1β.

In particular

d1(α ⊗ v ⊗ β) = αv ⊗ β − α ⊗ vβ,

d2(α ⊗ v1 . . . v N ⊗ β) =
N−1∑
j=0

αv1 . . . v j ⊗ v j+1 ⊗ v j+2 . . . v Nβ.

Again, it is easy to see that Pn is Ae-projective, d is well defined, d2 = 0 and the set

B′
Pn

=
{

1 ⊗ v1 . . . vs ⊗ 1
∣∣∣ (i) s = kN, if n = 2k; or s = kN + 1, if n = 2k + 1;

(ii) vi ∈ �1 for i = 1, . . . , s

}

generates Pn as A-bimodule.
The exactness of (P,d) is not obvious and a proof using a spectral sequence argument can be

found in [Sk]. Alternatively, we give a chain contraction of the identity rn : Pn → Pn+1 in the following
proposition.



1474 G. Ames et al. / Journal of Algebra 322 (2009) 1466–1497
Proposition 3.1. Let rn : Pn → Pn+1 be the k-linear map defined on basis elements as follows

r2k(α ⊗ v1 . . . vkN ⊗ β) =
|α|∑
j=1

a1 . . .a j−1 ⊗ a j . . .a|α|v1 . . . vt︸ ︷︷ ︸
kN+1

⊗vt+1 . . . vkNβ

= 1 ⊗ αv1 . . . vkN−|α|+1 ⊗ vkN−|α|+2 . . . vkNβ

+ · · · + a1 . . .a|α|−1 ⊗ a|α|v1 . . . vkN ⊗ β;

r2k+1(α ⊗ v1 . . . vkN+1 ⊗ β) =
{

1 ⊗ αv1 . . . vkN+1 ⊗ β, if |α| = N − 1;

0, if |α| < N − 1.

Then rd + dr = 1 and therefore (P,d) is exact.

Remark 3.2. Notice that

r0(α ⊗ β) =
|α|∑
j=1

a1 . . .a j−1 ⊗ a j ⊗ a j+1 . . .a|α|β

= 1 ⊗ a1 ⊗ a2 . . .a|α|β + · · · + a1 . . .a|α|−1 ⊗ a|α| ⊗ β,

r1(α ⊗ v ⊗ β) =
{

1 ⊗ αv ⊗ β, if |α| = N − 1;

0, if |α| < N − 1.

Proof. For n = 2k we have

d2k+1r2k(α ⊗ v1 . . . vkN ⊗ β) =
|α|∑
j=1

d2k+1(a1 . . .a j−1 ⊗ a j . . .a|α|v1 . . . vt︸ ︷︷ ︸
kN+1

⊗vt+1 . . . vkNβ)

=
|α|∑
j=1

a1 . . .a j ⊗ a j+1 . . .a|α|v1 . . . vt︸ ︷︷ ︸
kN

⊗vt+1 . . . vkNβ

−
|α|∑
j=1

a1 . . .a j−1 ⊗ a j . . .a|α|v1 . . . vt−1︸ ︷︷ ︸
kN

⊗vt . . . vkNβ

= α ⊗ v1 . . . vkN ⊗ β − 1 ⊗ αv1 . . . vkN−|α| ⊗ vkN−|α|+1 . . . vkNβ;

and

r2k−1d2k(α ⊗ v1 . . . vkN ⊗ β) =
N−1∑
j=0

r2k−1(αv1 . . . v j ⊗ v j+1 . . . vt︸ ︷︷ ︸
(k−1)N+1

⊗vt+1 . . . vkNβ)

= r2k−1(αv1 . . . v N−1−|α| ⊗ v N−|α| . . . vkN−|α| ⊗ vkN−|α|+1 . . . vkNβ)

= 1 ⊗ αv1 . . . vkN−|α| ⊗ vkN−|α|+1 . . . vkNβ.

Hence d2k+1r2k + r2k−1d2k(α ⊗ v1 . . . vkN ⊗ β) = α ⊗ v1 . . . vkN ⊗ β .
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Similarly, for n = 2k + 1 we have d2k+2r2k+1(α ⊗ v1 . . . vkN+1 ⊗ β) = 0 if |α| < N − 1 and

d2k+2r2k+1(α ⊗ v1 . . . vkN+1 ⊗ β) = d2k+2(1 ⊗ αv1 . . . vkN+1 ⊗ β)

=
N−1∑
j=0

a1 . . .a j ⊗ a j+1 . . .aN−1 v1 . . . vt︸ ︷︷ ︸
kN+1

⊗vt+1 . . . vkN+1β,

if |α| = N − 1. On the other hand

r2kd2k+1(α ⊗ v1 . . . vkN+1 ⊗ β)

= r2k(αv1 ⊗ v2 . . . vkN+1 ⊗ β − α ⊗ v1 . . . vkN ⊗ vkN+1β).

If |α| < N − 1 then r2k(αv1 ⊗ v2 . . . vkN+1 ⊗β −α ⊗ v1 . . . vkN ⊗ vkN+1β) is a telescopic sum that adds
up to α ⊗ v1 . . . vkN+1 ⊗ β .

If |α| = N − 1 then αv1 ⊗ v2 . . . vkN+1 ⊗ β = 0 and

r2kd2k+1(α ⊗ v1 . . . vkN+1 ⊗ β) = −r2k(α ⊗ v1 . . . vkN ⊗ vkN+1β)

= −
N−1∑
j=1

a1 . . .a j−1 ⊗ a j . . .aN−1 v1 . . . vt︸ ︷︷ ︸
kN+1

⊗vt+1 . . . vkN+1β.

Hence d2k+2r2k+1 + r2kd2k+1(α ⊗ v1 . . . vkN+1 ⊗ β) = α ⊗ v1 . . . vkN+1 ⊗ β . �
4. The comparison morphisms

A comparison morphism between two projective resolutions of an algebra A is a morphism of
chain complexes that lifts the identity map on A. Such a morphism induces a quasi-isomorphism
between the derived complexes HomAe (·, A).

In this section we define maps

F : P → Q and G : Q → P

between these A-bimodule resolutions of A and we state in Theorem 4.1 that they are in fact com-
parison morphisms. This is one of the main results of the paper. The proofs, which we find nontrivial
and subtle, are in Sections 5 and 6. The reader interested only in the main results in the paper may
safely skip these two sections.

We define F and G as the A-bimodule extensions of maps defined on elements of B′
Pn

and B′
Qn

,
respectively. As in the case of the differentials b and d one should check that these A-bimodule
extensions are well defined, but this is straightforward since the tensor products in Q and P are both
over k�0.

4.1. The comparison morphism F : P → Q

Let F0 = id and, for n � 1, let Fn : P → Q be the A-bimodule extension of the following map defined
on elements of B′

Pn
. If n = 2k and p = 1 ⊗ v1 . . . vkN ⊗ 1 ∈ B′

P2k
, with vi an arrow for all i, let

F2k(p) =
∑

1[v1 . . . vx1︸ ︷︷ ︸
x1

| v1+x1︸ ︷︷ ︸
1

| . . . v1+x1+x2︸ ︷︷ ︸
x2

| v2+x1+x2︸ ︷︷ ︸
1

| . . . . . . | vk+∑
x j︸ ︷︷ ︸] . . . . . . vkN︸ ︷︷ ︸

kN−k−∑
x j

,

1
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where the sum is taken over all k-tuples (x1, . . . , xk) ∈ Z
k such that 1 � xi < N . If n = 2k + 1 and

p = 1 ⊗ v1 . . . vkN+1 ⊗ 1 ∈ B′
P2k+1

, with vi an arrow for all i, let

F2k+1(p) =
∑

1[ v1︸︷︷︸
1

| v2 . . . v1+x1︸ ︷︷ ︸
x1

| v2+x1︸ ︷︷ ︸
1

| . . . v2+x1+x2︸ ︷︷ ︸
x2

| . . . . . . | vk+1+∑
x j︸ ︷︷ ︸

1

] . . . . . . vkN+1︸ ︷︷ ︸
kN−k−1−∑

x j

,

where the sum is taken over all k-tuples (x1, . . . , xk) ∈ Z
k such that 1 � xi < N .

In order to prove that F is a comparison morphism, one should first check that the diagram

A ⊗�0 A+ ⊗�0 A
b1

A ⊗ A

id

ε
A

A ⊗�0 k�1 ⊗�0 A

F1

d1
A ⊗ A

ε
A

is commutative. This is immediate since F1(1 ⊗ v ⊗ 1) = 1[v]1.

4.2. The comparison morphism G : Q → P

Let G0 = id and, for n � 1, let Gn : Q → P be the A-bimodule extension of the following map
defined on elements of B′

Qn
. For q = 1[α1| . . . |αn]1 ∈ B′

Qn
, let v(q) be the arrow decomposition of the

path α1α2 . . . αn in k� (not in A). Thus, if αi = ai
1 . . .ai|αi | , then

v(q) = v1 . . . v |q| = a1
1 . . .a1|α1|a2

1 . . .a2|α2| . . . . . .an
1 . . .an|αn| ∈ �|q|,

where |q| = ∑n
i=1 |αi |. Note that v(q) �= 0 for all q ∈ B′

Qn
.

If n = 2k and v(q) = v1 . . . v |q| , let

G2k(q) =
{

1 ⊗ v1 . . . vkN ⊗ vkN+1 . . . v |q|, if α2i−1α2i = 0 for i = 1, . . . ,k;
0, otherwise.

Note that the condition α2i−1α2i = 0 for all i = 1, . . . ,k implies that |q| � kN .
Similarly, if n = 2k + 1 and v(q) = v1 . . . v |q| , let

G2k+1(q) =
{∑|α1|

j=1 v1 . . . v j−1 ⊗ v j . . . vkN+ j ⊗ vkN+ j+1 . . . v |q|, if α2iα2i+1 = 0 for i = 1, . . . ,k;
0, otherwise.

Since |α1| � 1, then |q| � kN + 1 provided that α2iα2i+1 = 0 for all i = 1, . . . ,k. Note also that only α1
is involved in the sum.

In this case, the commutativity of the first diagram

A ⊗�0 A+ ⊗�0 A

G1

b1
A ⊗ A

id

ε
A

A ⊗�0 k�1 ⊗�0 A
d1

A ⊗ A
ε

A

follows immediately by evaluating the telescopic sum d1 ◦ G1.
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Theorem 4.1. The following diagram is commutative for all k � 1 and therefore F and G are comparison
morphisms between the Ae-projective resolutions P and Q.

A⊗
�0

A
⊗2k+1

�0+ ⊗
�0

A A⊗
�0

A
⊗2k

�0+ ⊗
�0

A A⊗
�0

A
⊗2k−1

�0+ ⊗
�0

A

Q2k+1

‖
b2k+1

G2k+1

Q2k

‖
b2k

G2k

Q2k−1

‖

G2k−1

P2k+1
d2k+1

F2k+1

P2k
d2k

F2k

P2k−1

F2k−1

A⊗
�0

k�kN+1⊗
�0

A

‖

A⊗
�0

k�kN ⊗
�0

A

‖

A⊗
�0

k�(k−1)N+1⊗
�0

A

‖

5. G : Q → P is a comparison morphism

The proof is divided into two parts, (A) and (B), corresponding to the cases n even and n odd,
respectively.

(A) Assume n = 2k. Let q = 1[α1| . . . |α2k]1 ∈ B′
Q2k

and let v(q) = v1 . . . v |q| . Let

M = {
i ∈ {1, . . . ,k}: α2i−1α2i �= 0

}
.

(A1) Case M = ∅. We have

G2k(q) = 1 ⊗ v1 . . . vkN ⊗ vkN+1 . . . v |q|

and

d2k
(
G2k(q)

) =
N−1∑
j=0

v1 . . . v j ⊗ v j+1 . . . vt︸ ︷︷ ︸
(k−1)N+1

⊗vt+1 . . . v |q|.

On the other hand, M = ∅ implies

b2k(q) = α1[α2| . . . |α2k]1 +
k−1∑
i=1

1[α1| . . . |α2iα2i+1| . . . |α2k]1 + 1[α1| . . . |α2k−1]α2k

and, since N � |α1| + |α2|,

G2k−1
(
b2k(q)

) =
N∑

j=|α1|+1

v1 . . . v j−1 ⊗ v j . . . v(k−1)N+ j ⊗ v(k−1)N+1+ j . . . v |q|

+
k−1∑

G2k−1
(
1[α1| . . . |α2iα2i+1| . . . |α2k]1

) + G2k−1
(
1[α1| . . . |α2k−1]α2k

)
.

i=1
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In the second line, all terms but one are zero, depending on which is the first j, 1 � j � k − 1, for
which α2 jα2 j+1 = 0. The nonzero term is

|α1|∑
j=1

v1 . . . v j−1 ⊗ v j . . . v(k−1)N+ j ⊗ v(k−1)N+1+ j . . . v |q|

and therefore G2k−1(b2k(q)) = d2k(G2k(q)).
(A2) Case M �= ∅. We have now d2k(G2k(q)) = 0. Let

M ′ = {
i ∈ {1, . . . ,k}: G2k−1

(
1[α1| . . . |α2i−1α2i| . . . |α2k]1

) �= 0
} ⊂ M.

(A2a) Assume M ′ �= ∅ and let i0 be the smallest element in M ′ . We assume that i0 > 1 since the
case i0 = 1 is easier. By the definition of G2k−1, it follows that

α2iα2i+1 = 0, for i = 1, . . . , i0 − 2, and

α2i−1α2i = 0, for i = i0 + 1, . . . ,k.

In particular i0 is the largest element of M and

G2k−1
(
b2k(q)

) = G2k−1
(
α1[α2| . . . |α2k]1

) − G2k−1
(
1[α1|α2| . . . |α2i0−1α2i0 | . . . |α2k]1

)
+

k−1∑
i=i0−1

G2k−1
(
1[α1| . . . |α2iα2i+1| . . . |α2k]1

) + G2k−1
(
1[α1| . . . |α2k−1]α2k

)
.

As in the case (A1), all terms but one are zero in the second line, and this term cancels out with the
first line.

(A2b) Assume M ′ = ∅. Thus G2k−1(b2k(q)) contains only positive terms and we must prove that all
of them are zero. Let i0 be any element of M . Since α2i0−1α2i0 �= 0 the definition of G2k−1 implies
that

G2k−1
(
1[α1| . . . |α2iα2i+1| . . . |α2k]1

) = 0 for all i = 1, . . . , i0 − 1.

We now take i0 = max(M). Since i0 /∈ M ′ , the maximality of i0 implies that either α2(i0−1)α2i0−1α2i0 �=
0 or there exists j0 < i0 − 1 such that α2 j0α2 j0+1 �= 0. In any case, there exists j0 < i0 such
that α2 j0α2 j0+1 �= 0 (in particular i0 > 1). Therefore G2k−1(1[α1| . . . |α2iα2i+1| . . . |α2k]1) = 0 for all
i = j0 + 1, . . . ,k − 1. Since the extreme cases G2k−1(α1[α2| . . . |α2k]1) and G2k−1(1[α1| . . . |α2k−1]α2k)

are clearly zero too, this completes the proof in case (A).
(B) Assume n = 2k + 1. Let q = 1[α1| . . . |α2k+1]1 ∈ B′

Q2k
and let v(q) = v1 . . . v |q| . Let

M = {
i ∈ {1, . . . ,k}: α2iα2i+1 �= 0

}
.

(B1) Case M = ∅. Then

G2k+1(q) =
|α1|∑
j=1

v1 . . . v j−1 ⊗ v j . . . vkN+ j ⊗ vkN+1+ j . . . v |q|

and
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d2k+1
(
G2k+1(q)

) = v1 . . . v |α1| ⊗ v |α1|+1 . . . v |α1|+kN ⊗ v |α1|+kN+1 . . . v |q|

− 1 ⊗ v1 . . . vkN ⊗ vkN+1 . . . v |q|.

On the other hand, M = ∅ implies

b2k+1(q) = α1[α2| . . . |α2k+1]1

−
k∑

i=1

1[α1| . . . |α2i−1α2i| . . . |α2k+1]1 − 1[α1| . . . |α2k]α2k+1

and

G2k
(
b2k+1(q)

) = v1 . . . v |α1| ⊗ v |α1|+1 . . . v |α1|+kN ⊗ v |α1|+kN+1 . . . v |q|

−
k∑

i=1

G2k
(
1[α1| . . . |α2i−1α2i| . . . |α2k+1]1

) − G2k
(
1[α1| . . . |α2k]α2k+1

)
.

As in case (A), all terms but one are zero in the second line, and the nonzero term is 1 ⊗ v1 . . . vkN ⊗
vkN+1 . . . v |q| . This yields G2k(b2k+1(q)) = d2k+1(G2k+1(q)).

(B2) Case M �= ∅. We have d2k(G2k(q)) = 0. Let

M ′ = {
i ∈ {1, . . . ,k}: G2k

(
1[α1| . . . |α2iα2i+1| . . . |α2k+1]1

) �= 0
} ⊂ M.

(B2a) Assume M ′ �= ∅ and let i0 be the largest element in M ′ . By the definition of G2k , it follows
that

α2i−1α2i = 0, for i = 1, . . . , i0 − 1, and

α2iα2i+1 = 0, for i = i0 + 1, . . . ,k.

In particular i0 is the smallest element of M and

G2k+1
(
b2k(q)

) = G2k
(
1[α1|α2| . . . |α2i0α2i0+1| . . . |α2k+1]1

)
−

k−1∑
i=i1

G2k
(
1[α1| . . . |α2i−1α2i| . . . |α2k+1]1

) − G2k
(
1[α1| . . . |α2k]α2k+1

);
where i1 = i0 − 1, if i0 > 1; and i1 = 1, if i0 = 1. All terms but one are zero in the second line, and
this term cancels out with the first line.

(B2b) Assume M ′ = ∅. Thus G2k(b2k+1(q)) contains only negative terms and we must prove that all
of them are zero. Let i0 be any element of M . Then

G2k
(
1[α1| . . . |α2i−1α2i| . . . |α2k+1]1

) = 0 for all i = 1, . . . , i0 − 1.

We now take i0 = max(M). Since i0 /∈ M ′ , the maximality of i0 implies that either α2i0−1α2i0α2i0+1 �=
0 or there exist j0 < i0 such that α2 j0−1α2 j0 �= 0. In any case, there exist j0 � i0 such that
α2 j0−1α2 j0 �= 0. Therefore G2k(1[α1| . . . |α2i−1α2i | . . . |α2k+1]1) = 0 for all i = j0, . . . ,k. Since the ex-
treme case G2k(1[α1| . . . |α2k]α2k) is clearly zero too, this completes the case (B) and the proof.
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6. F : P → Q is a comparison morphism

We need some preliminary results.

6.1. A complex of compositions

Let Cn(m) be the set of all the compositions (ordered partitions) of m in n parts in which only the
first and last parts are allowed to be zero. That is,

Cn(m) =
{

[c1, . . . , cn]: c j ∈ N0, c j > 0 for j = 2, . . . ,n − 1 and
n∑

j=1

c j = m

}
.

Let Cn(m) = kCn(m) be the vector space with basis Cn(m).
If α = [x1, . . . , xn] ∈ Cn(m) and β = [y1, . . . , yn′ ] ∈ Cn′ (m′) then we shall denote by [α,β] the jux-

taposition of α and β , that is

[α,β] = [x1, . . . , xn, y1, . . . , yn′ ] ∈ Cn+n′(m + m′).

Analogously, if α ∈ Cn(m) and β ∈ Cn′ (m′), with β = ∑
β j , βi ∈ Cn′ (m′), then [α,β] = ∑[α,β j].

Let D : Cn(m) → Cn−1(m) be the usual differential of compositions,

D
([x1, . . . , xn]) =

n−1∑
j=1

(−1) j+1[x1, . . . , x j + x j+1, . . . , xn].

It is straightforward to see that D2 = 0. Moreover, if Wn(m, N) ⊂ Cn(m) is the subspace spanned by
the compositions containing some part larger than or equal to N , then D(Wn(m, N)) ⊂ Wn(m, N) and
thus D factors through the quotient

Cn(m, N) = Cn(m)/Wn(m, N).

For α ∈ Cn(m), let cN ∈ Cn(m, N) be its projection and define DN by DN (cN ) = D(c)N . Thus
(Cn(m, N), DN ) is again a complex.

Let IN = {1,2, . . . , N − 1} and for k � 1 and M � k(N − 1) let

αk
M : Ik

N → C2k+1(M + k, N), αk
M(x) = [x1,1, x2,1, . . . , xk,1, M − Σxi]N ,

βk
M : Ik

N → C2k+2(M + k + 1, N), βk
M(x) = [1, x1,1, x2,1, . . . , xk,1, M − Σxi]N .

The assumption M � k(N − 1) is necessary in order to ensure a nonnegative last part for any x ∈ Ik
N .

For k � 1 let

Ak
M =

∑
x∈Ik

N

αk
M(x) ∈ C2k+1(M + k, N),

Bk
M =

∑
x∈Ik

N

βk
M(x) ∈ C2k+2(M + k + 1, N).

We define B0
M = [1, M]N and we need not define Ak

M for k = 0.
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Lemma 6.1. For all k � 1 and M � k(N − 1) we have

Bk
M = [

1, Ak
M

]
N and Ak

M =
N−1∑
j=1

[
j, Bk−1

M− j

]
N .

Moreover, Ak
M �= 0 (resp. Bk

M �= 0) if and only if M � (k + 1)(N − 1).

Proof. The first part of the lemma is straightforward from the definition of αk
M(x) and βk

M(x). The
second part follows from the fact that the last part of the composition αk

M(x) (resp. βk
M(x)) is greater

than or equal to N for all x ∈ Ik
N , if and only if M > (k + 1)(N − 1). �

Lemma 6.2. For all k � 1 and M � k(N − 1) we have

DN
(

Ak
M

) = −Bk−1
M and DN

(
Bk

M

) = Ak
M+1.

Remark. The following picture shows the values of M for which A and B are different from zero. In
particular it shows that the lemma is consistent with the fact that D2

N = 0.

Proof. We assume that M is fixed. We shall now prove simultaneously both equalities by induction
on k for 1 � k � M

N−1 .
If k = 1 then

DN
(

A1
M

) =
N−1∑
x1=1

[x1 + 1, M − x1]N −
N−1∑
x1=1

[x1, M − x1 + 1]N

= −[1, M]N

= −B0
M .

This completes the case k = 1 for the first equation. The case k = 1 for the second equation is analo-
gous:

B1
M =

N−1∑
x1=1

[1, x1,1, M − x1]N

and

DN
(

B1
M

) =
N−1∑
x =1

[x1 + 1,1, M − x1]N −
N−1∑
x =1

[1, x1 + 1, M − x1]N +
N−1∑
x =1

[1, x1, M − x1 + 1]N .
1 1 1
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The last two terms add up as a telescopic sum and the result is

[1,1, M]N − [1, N, M − N + 1]N = [1,1, M]N .

Therefore

DN
(

B1
M

) =
N−1∑
x1=1

[x1 + 1,1, M − x1]N + [1,1, M]N

=
∑
x∈I1

N

α1
M+1(x)

= A1
M+1.

Now we assume that the lemma is true for k − 1. From Lemma 6.1 we have

Ak
M =

N−1∑
j=1

[
j, Bk−1

M− j

]
N =

N−1∑
j=1

[
j,1, Ak−1

M− j

]
N .

Hence

DN
(

Ak
M

) =
N−1∑
j=1

[
1 + j, Ak−1

M− j

]
N −

N−1∑
j=1

[
j, DN

(
Bk−1

M− j

)]
N

=
N−1∑
j=2

[
j, Ak−1

M+1− j

]
N −

N−1∑
j=1

[
j, Ak−1

M+1− j

]
N

= −[
1, Ak−1

M

]
N

= −Bk−1
M .

Similarly,

Bk
M = [

1, Ak
M

]
N =

N−1∑
j=1

[
1, j,1, Ak−1

M− j

]
N .

Hence

DN
(

Bk
M

) =
N−1∑
j=1

[
1 + j,1, Ak−1

M− j

]
N − [

1, DN
(

Ak
M

)]
N

=
N−2∑
j=1

[
1 + j,1, Ak−1

M− j

]
N − [

1,−Bk−1
M

]
N

=
N−1∑
j=1

[
j, Bk−1

M+1− j

]
N

= Ak
M+1.

This completes the inductive argument. �
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Now we define

Ãk
M = [

0, Ak
M

]
N ∈ C2k+2(M + k, N), for k � 1 and M � k(N − 1),

B̃k
M = [

0, Bk
M

]
N ∈ C2k+3(M + k + 1, N), for k � 0 and M � k(N − 1).

Proposition 6.3. Let k � 1 and M � k(N − 1) we have

DN
(

B̃k
M

) = [
1, Ak

M

]
N − [

0, Ak
M

]
N and

DN
(

Ãk
M

) =
N−1∑
j=0

[
j, Bk−1

M− j

]
N .

Proof. Since B̃k
M = [0, Bk

M ]N = [0,1, Ak
M ]N , then Lemma 6.2 implies

DN
(

B̃k
M

) = [
1, Ak

M

]
N − [

0, DN
(

Bk
M

)]
N

= [
1, Ak

M

]
N − [

0, Ak
M

]
N .

Similarly, since Ãk
M = [0, Ak

M ]N = ∑N−1
j=1 [0, j, Bk−1

M− j]N , then

DN
(

Ãk
M

) =
N−1∑
j=1

[
j, Bk−1

M− j

]
N − [

0, DN
(

Ak
M

)]
N

=
N−1∑
j=0

[
j, Bk−1

M− j

]
N . �

6.2. The final step

Each composition α = [x1, . . . , xn] ∈ Cn(m) defines an A-bimodule morphism

φα : A ⊗k�0 k�m ⊗k�0 A → A ⊗k�0 A
⊗n−2

k�0+ ⊗k�0 A

which is the A-bimodule extension of

φα(1 ⊗ v1 . . . vm ⊗ 1) =
⎧⎨
⎩

v1 . . . vs1︸ ︷︷ ︸
x1

[. . . vs2︸ ︷︷ ︸
x2

| . . . | . . . vsn−1︸ ︷︷ ︸
xn−1

] . . . vm︸ ︷︷ ︸
xn

, if c j < N ∀ j;

0, otherwise.

where si = x1 + · · · + xi , i = 1, . . . ,n. Thus we obtain for all m a map

φ : Cn(m, N) → HomAe (A ⊗�0 k�m ⊗�0 A,Qn−2).

In this context, the comparison morphism F : P → Q (see Section 4.1) is

Fn =
{

φ Ãk
k(N−1)

: P2k = A ⊗�0 k�kN ⊗�0 A → Qn, if n = 2k,

φB̃k : P2k+1 = A ⊗�0 k�kN+1 ⊗�0 A → Qn, if n = 2k + 1.

k(N−1)
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Now the proof of Theorem 4.1 will be complete if we show that

b2k+1 ◦ φB̃k
k(N−1)

= φ Ãk
k(N−1)

◦ d2k+1 = φ[0,Ak
k(N−1)

]N−[1,Ak
k(N−1)

]N

and

b2k ◦ φ Ãk
k(N−1)

= φ
B̃(k−1)

(k−1)(N−1)

◦ d2k = φ∑N−1
j=0 [ j,Bk−1

k(N−1)− j ]N
,

which is the commutativity of the diagrams

A⊗
�0

A
⊗2k+1

�0+ ⊗
�0

A A⊗
�0

A
⊗2k

�0+ ⊗
�0

A A⊗
�0

A
⊗2k−1

�0+ ⊗
�0

A

Q2k+1

‖
b2k+1

Q2k

‖
b2k

Q2k−1

‖

P2k+1
d2k+1

F2k+1

P2k
d2k

F2k

P2k−1

F2k−1

A⊗
�0

k�kN+1⊗
�0

A

‖

A⊗
�0

k�kN ⊗
�0

A

‖

A⊗
�0

k�(k−1)N+1⊗
�0

A

‖

This identities are proved in general in the following proposition (see also Proposition 6.3).

Proposition 6.4. For all n � 2 and m � 0 the following diagram is commutative.

Cn+1(m, N)
φ

D N

HomAe (A ⊗�0 k�m ⊗�0 A,Qn−1)

b◦_

Cn(m, N)
φ

HomAe (A ⊗�0 k�m ⊗�0 A,Qn−2)

In other words, b ◦ φα = φDN (α) for all α ∈ Cn+1(m, N).

Proof. It is sufficient to prove that b(φα(T )) = φDN (α)(T ) for all the monomials T of the form T =
1 ⊗ v1 . . . vm ⊗ 1 ∈ A ⊗�0 k�m ⊗�0 A and for all the compositions α = [x0, x1, . . . , xn] ∈ (Cm

N )n+1 with
x j < N for all j = 0, . . . ,n. If we denote by si = x0 + · · · + xi , i = 0, . . . ,n, then both sides of the above
equality are

v1 . . . vs1︸ ︷︷ ︸
x0+x1

[vs1+1 . . . vs2︸ ︷︷ ︸
x2

| . . . | vsn−2+1 . . . vsn−1︸ ︷︷ ︸
xn−1

] vsn−1+1 . . . vm︸ ︷︷ ︸
xn

+
n−1∑
i=1

(−1)i v1 . . . vs0︸ ︷︷ ︸
x0

[. . . vs1︸ ︷︷ ︸
x1

| . . . | vsi−1+1 . . . vsi+1︸ ︷︷ ︸
x +x

| . . . | . . . vsn−1︸ ︷︷ ︸
x

] vsn−1+1 . . . vm︸ ︷︷ ︸
xn
i i+1 n−1
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+ (−1)n v1 . . . vs0︸ ︷︷ ︸
x0

[vs0+1 . . . vs1︸ ︷︷ ︸
x1

| . . . | vsn−3+1 . . . vsn−2︸ ︷︷ ︸
xn−2

] vsn−2+1 . . . vm︸ ︷︷ ︸
xn−1+xn

,

as it follows from the definition of φ, DN and b. �
7. The Hochschild cohomology ring

In this section we will assume that the field k is of characteristic zero. We begin by recalling some
definitions and notation following [Ci2]. As we said before, all quivers are assumed to be finite and
connected.

A path γ of length |γ | � 1 in a quiver is said to be an oriented cycle if o(γ ) = t(γ ).
Two paths α and β are parallel, if o(α) = o(β) and t(α) = t(β). Let for i, j � 0

�i//� j = {
(α,β): α ∈ �i, β ∈ � j and α is parallel to β

}
.

A pair (α,β) of parallel paths is said to start together if they have the first arrow in common, and
they are said to end together if they have the last arrow in common.

A vertex is called a sink (resp. a source) if it is not the source (resp. end) vertex of any arrow.
Parallel paths that start together and do not end at a sink can be pushed forward. More precisely,

let (α,β) be a pair of parallel paths that start together. Then α = vγ , β = vδ with v ∈ �1 and
t(α) = t(β). Then any pair (α̃, β̃) satisfying α̃ = γ w , β̃ = δw , with w ∈ �1 and o(w) = t(α) = t(β) is
called a +movement of (α,β). In an analogous way we define −movements.

A pair of parallel paths (α,β) is said to be a +extreme (−extreme) if it does not admit any
+movement (−movement). Therefore, a pair of parallel paths (α,β) is a +extreme if and only if
they end at a sink or do not start together (clearly both might occur simultaneously). An analogous
characterization holds for −extremes. We shall call a pair of parallel paths (α,β) just an extreme if it
is either a +extreme or a −extreme.

Finally, two pairs (α,β) and (γ , δ) in �i//� j are said to be equivalent, and denoted by (α,β) ∼
(γ , δ), if there exists a finite sequence of +movements and −movements carrying (α,β) to (γ , δ).

Definition 7.1. An equivalence class in �i//� j is called a medal if all its +extremes end at a sink and
all its −extremes start at a source. In particular, a class without extremes is a medal.

Examples. In the first example, let α = v1 v2 and β = v1 v2 v3 v4 v1 v2. The class of (α,β) is a medal
since it does not contain any extreme. In fact, any pair of parallel paths (α,β) in an oriented cycle
can be pushed forward and pulled backwards and therefore there are no extremes. In particular, every
class is a medal.

In the second example, let α = v1 v2 and β = v1 v2 v3 v4 v1 v2. Although (α,β) could be pushed
forward indefinitely, it is not a medal since

(α,β) ∼ (v2 v3, v2 v3 v4 v1 v2 v3) ∼ (v3 v2, v3 v4 v1 v2 v3 v2) ∼ (v2 v3, v4 v1 v2 v3 v2 v3)

and the last pair is a +extreme that does not end at a sink.
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7.1. The Hochschild cohomology groups

The zero cohomology group H0(A, A) is the center of A as for any algebra. We now describe the
cohomology groups Hn(A, A), for n > 0, following [Lo]. Being

Pn =
{

A ⊗�0 k�kN ⊗�0 A, if n = 2k;

A ⊗�0 k�kN+1 ⊗�0 A, if n = 2k + 1;

we have

HomAe (Pn, A) �
{

Hom(k�0)e (k�kN , A), if n = 2k;

Hom(k�0)e (k�kN+1, A), if n = 2k + 1.
(7.1)

Let P∗ be the bigraded vector space

P∗ =
⊕
n�0

N−1⊕
i=0

P∗
n,i

where

P∗
2k,i = k�i//�kN and P∗

2k+1,i = k�i//�kN+1.

Since it is clear that Hom(k�0)e (k�m, A) � ⊕N−1
j=0 k� j//�m for all m � 0, it follows that

HomAe (Pn, A) �
N−1⊕
i=0

P∗
n,i . (7.2)

The following theorem is proved in [Lo, §3] and it describes the cohomology of truncated quiver
algebras. We note the word j-extreme is used instead of medal in Locateli’s paper.

Theorem 7.2. (See [Lo].) Let � be a quiver. Then the complex HomAe (Pn, A) has the following decomposition
into subcomplexes
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where

D2k
j (α,π) =

∑
a∈�1

(aα,aπ) −
∑

b∈�1

(αb,πb), k � 0 and j = 0, . . . , N − 2,

D2k+1
0 (v,π) =

∑
ab∈�N−1

(avb,aπb), k � 0.

The following holds for the differentials.

(1) D2k+1
0 is injective for all k � 0,

(2) D2k
0 is injective for all k > 0 unless � is a cycle,

(3) dim ker D2k
j is equal to the number of medals in � j//�kN for all j = 1, . . . , N − 2 and for all k > 0. More

precisely, if for each medal M one considers

M̄ =
∑

(α,π)∈M

(α,π) ∈ k� j//�kN ,

then the set {M̄: M is a medal in � j//�kN } is a basis of ker D2k
j .

Definition 7.3. The cohomology class M̄ corresponding to the medal M will be called the medal coho-
mology class associated to M .

Remark 7.4. The cohomology ring H∗(A, A) inherits the bigrading of the subcomplex decomposition
of P∗ in Theorem 7.2. We now have

(1) Hn(A, A)0 = 0, for all n � 1.
(2) H2k(A, A)i is formed entirely of medals for all 1 � i � N − 2.
(3) H2k(A, A)N−1 is a cokernel.
(4) H2k+1(A, A)i is a cokernel for all 1 � i � N − 1.

7.2. The Yoneda product

The Hochschild cohomology groups of A, Hn(A, A) for n � 0, are by definition, Extn
Ae (A, A) and

therefore H∗(A, A) = ⊕
n�0 Hn(A, A) have a ring structure given by the multiplication induced by

the Yoneda product.
It is well known that the Yoneda product of H∗(A, A) coincides with the cup product defined on

the cohomology of HomAe (Q, A). More precisely, the cup product is originally defined in terms of the
standard Ae-projective bar resolution A ⊗ A⊗∗ ⊗ A of A as follows. Given two cochains,

f ∈ HomAe
(

A ⊗ A⊗m ⊗ A, A
) � Homk

(
A⊗m, A

)
,

g ∈ HomAe
(

A ⊗ A⊗n ⊗ A, A
) � Homk

(
A⊗n, A

)
the cup product of f and g is the cochain f ∪ g ∈ Homk(A⊗(m+n), A) defined by

f ∪ g(α1 ⊗ · · · ⊗ αm+n) = f (α1 ⊗ · · · ⊗ αm)g(αm+1 ⊗ · · · ⊗ αm+n).

The analogous definition works for the resolution Q. For any k�0-bimodule M , let Hom�e
0
(M, A)

be the group of homomorphisms of k�0-bimodules. Given two cochains,
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f ∈ HomAe (Qm, A) � Hom�e
0

(
A

⊗m
�0+ , A

)
,

g ∈ HomAe (Qn, A) � Hom�e
0

(
A

⊗n
�0+ , A

)
the cup product of f and g is the cochain f ∪ g ∈ Hom�e

0
(A

⊗m+n
�0+ , A) defined by

f ∪ g
([α1| . . . |αm+n]

) = f
([α1| . . . |αm])g

([αm+1| . . . |αm+n]
)
. (7.3)

We shall now use the comparison morphisms to describe the Yoneda product in the minimal
resolution P of A.

Proposition 7.5. Let f ∈ HomAe (Pm, A) and g ∈ HomAe (Pn, A). Then, in terms of the identification (7.1), we
have

• if m = 2h and n = 2k then

f ∪ g(v1 . . . vhN w1 . . . wkN) = f (v1 . . . vhN)g(w1 . . . wkN),

• if m = 2h and n = 2k + 1 then

f ∪ g(v1 . . . vhN w1 . . . wkN) = f (v1 . . . vhN)g(w1 . . . wkN+1),

• if m = 2h + 1 and n = 2k + 1 then

f ∪ g(u1 . . . u(h+k+1)N)

=
∑

0<i< j<N

u1 . . . f (ui . . . ui+hN)ui+hN+1 . . . g(u j+hN . . . u j+(h+k)N) . . . u(h+k+1)N .

Proof. By definition f ∪ g = (( f ◦ G) ∪ (g ◦ G)) ◦ F.
Assume that m = 2h and n = 2k and let u1 . . . ulN = v1 . . . vhN w1 . . . wkN , l = h + k. Then

F(u1 . . . ulN) = F(1 ⊗ u1 . . . ulN ⊗ 1)

=
∑

1[u1 . . . ux1︸ ︷︷ ︸
x1

| u1+x1︸ ︷︷ ︸
1

| . . . u1+x1+x2︸ ︷︷ ︸
x2

| u2+x1+x2︸ ︷︷ ︸
1

| . . . . . . | ul+∑
x j︸ ︷︷ ︸

1

] . . . ulN︸ ︷︷ ︸
lN−l−∑

x j

,

where the sum is over all l-tuples (x1, . . . , xl) ∈ Z
l with 1 � xi < N . Being f ◦ G ∈ Hom�e

0
(A

⊗2h
�0+ , A)

and g ◦ G ∈ Hom�e
0
(A

⊗2k
�0+ , A), and identifying [α1| . . . |αm] with 1[α1| . . . |αm]1, we have (see (7.3))

(
( f ◦ G) ∪ (g ◦ G)

) ◦ F(u1 . . . ulN)

=
∑

( f ◦ G)
(
1[u1 . . . ux1︸ ︷︷ ︸

x1

| u1+x1︸ ︷︷ ︸
1

| . . . . . . | . . . uh−1+∑h
j=1 x j︸ ︷︷ ︸

xh

| uh+∑h
j=1 x j︸ ︷︷ ︸

1

]1)

× (g ◦ G)
(
1[. . . uh+∑h+1

j=1 x j︸ ︷︷ ︸
x

| uh+1+∑h+1
j=1 x j︸ ︷︷ ︸

1

| . . . . . . | ul+∑
x j︸ ︷︷ ︸

1

]1)
. . . ulN︸ ︷︷ ︸

lN−l−∑
x j

.

h+1
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By the definition of G, the only nonzero term of this sum is that one corresponding to (x1, . . . , xl) =
(N − 1, N − 1, . . . , N − 1). This yields

f ∪ g(u1 . . . ulN) = f (u1 . . . uhN)g(uhN+1 . . . ulN)

= f (v1 . . . vhN)g(w1 . . . wkN).

The proof is analogous if m = 2h and n = 2k + 1. Finally assume that m = 2h + 1 and n = 2k + 1. Let
l = h + k + 1. Then

(
( f ◦ G) ∪ (g ◦ G)

) ◦ F(u1 . . . ulN)

=
∑

( f ◦ G)
(
1[u1 . . . ux1︸ ︷︷ ︸

x1

| u1+x1︸ ︷︷ ︸
1

| . . . . . . | uh+∑h
j=1 x j︸ ︷︷ ︸

1

| . . . uh+∑h+1
j=1 x j︸ ︷︷ ︸

xh+1

]1)

× (g ◦ G)
(
1[uh+1+∑h+1

j=1 x j︸ ︷︷ ︸
1

| . . . uh+1+∑h+2
j=1 x j︸ ︷︷ ︸

xh+2

| . . . . . . | ul+∑
x j︸ ︷︷ ︸

1

]1)
. . . ulN︸ ︷︷ ︸

lN−l−∑
x j

.

Again, by the definition of G, the only nonzero terms of this sum are those corresponding to
(x1, . . . , xl) = (x1, N − 1, N − 1, . . . , N − 1) for all x1 = 1, . . . , N − 1. Therefore

f ∪ g(u1 . . . ulN) =
N−1∑
x1=1

x1∑
j=1

u1 . . . f (u j . . .︸ ︷︷ ︸
hN+1

)u j+hN+1 . . . g(ux1+1+hN . . .︸ ︷︷ ︸
kN+1

) . . . u(h+k+1)N

as claimed. �
Recall that

P∗
2k,i = k�i//�kN and P∗

2k+1,i = k�i//�kN+1

and that we have an isomorphism HomAe (Pn, A) � ⊕N−1
i=0 P∗

n,i (see (7.2)).

Theorem 7.6. Let A be a truncated quiver algebra. Then, in terms of the above isomorphism we have that

• if (α,π) ∈ P∗
2h,i and (β, τ ) ∈ P∗

2k, j , then

(α,π) ∪ (β, τ ) = (αβ,πτ) ∈ P∗
2(h+k),i+ j,

• if (α,π) ∈ P∗
2h,i and (β, τ ) ∈ P∗

2k+1, j , then

(α,π) ∪ (β, τ ) = (αβ,πτ) ∈ P∗
2(h+k)+1,i+ j,

• if (α,π) ∈ P∗
2h+1,i and (β, τ ) ∈ P∗

2k+1, j , then

(α,π) ∪ (β, τ ) =
∑
μ

(γμ,μ) ∈ P∗
2(h+k)+2,N−2+i+ j,

where the sum is over all paths μ containing π and τ as a subpath, and γμ is the result of substituting π
and τ by α and β respectively in μ. In particular, (α,π) ∪ (β, τ ) = 0, if i + j > 1.
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Remark 7.7. The third line of the previous theorem shows that the Yoneda product on the complex
P∗ is not compatible with the bigrading.

Let us define the following product in P∗ . If (α,π) ∈ P∗
n1

and (β, τ ) ∈ P∗
n2

let

(α,π) ∨ (β, τ ) =
{

(αβ,πτ), if n1 or n2 are even;

0, otherwise.

The following theorem extends the results of Sections 3 and 4 of [BLM], proved for truncated cycle
algebras, to any truncated quiver algebra.

Theorem 7.8. Let A be a truncated quiver algebra. Then the product ∨ in P∗ induces the Yoneda product in
the Hochschild cohomology group H∗(A, A), and thus it is a bigraded commutative ring (see Remark 7.4). In
particular the Yoneda product of two odd degree cohomology classes is zero.

Proof. If n1 or n2 are even, then the result is straightforward from the previous theorem. If n1 =
hN + 1 and n2 = kN + 1 are odd numbers then (α,π) ∈ k�i//�hN+1 and (β, τ ) ∈ k� j//�kN+1 with
1 � i, j � N − 1 (see Theorem 7.2). Thus i + j � 2 and, according to the previous theorem, we obtain
(α,π) ∪ (β, τ ) = 0. �
Corollary 7.9. Let A be a noncycle truncated quiver algebra. If the Yoneda product of two cohomology classes
of positive degree is not zero, then at least one of them is a medal cohomology class.

Proof. Let f ∈ k�i//�m1 and g ∈ k� j//�m2 be representatives of cohomology classes f̄ and ḡ of coho-
mological degrees n1 > 0 and n2 > 0 respectively and assume that f̄ ∪ ḡ �= 0. Combining Theorems 7.2
and 7.8 we obtain that either n1 or n2 is even and that i + j � N − 1, i > 0, j > 0. Thus i, j � N − 2
and assuming that n1 is even it follows that f̄ is a medal cohomology class. �
Corollary 7.10. Let A be a noncycle truncated quiver algebra. If f1, . . . , f N are cohomology classes of positive
degree, then f1 . . . f N = 0. In particular H∗(A, A)/N � k, where N is the ideal generated by homogeneous
nilpotent elements.

Proof. The result follows directly from Theorems 7.2 and 7.8. �
8. Applications

Even though it does not appear in the literature as a conjecture, many people believed that for
TQA’s A the cohomology ring should be trivial, except for cycle algebras, meaning more precisely that
the product in the subring

⊕
n�1 Hn(A, A) should be trivial.

After Corollary 7.9, the understanding of medals in � is highly relevant to determine whether the
product in cohomology is trivial or not.

A full classification of TQA’s with trivial cohomology ring requires a deeper understanding of the
spaces of paths, parallel paths and medals of quivers. We intend to carry out this classification in a
future work.

We present here two large classes of quivers whose associated TQA’s have trivial cohomology
rings. Namely the class of quivers with no oriented cycles and the class of quiver with neither sinks
nor sources. On the other hand we present an interesting example of a small quiver yielding TQA’s
with a nontrivial cohomology ring.

8.1. Quivers with no oriented cycles

We recall that if � has no oriented cycles, then A has finite global dimension, that is Hi(A, A) = 0
for all i > i0 for a sufficiently large i0. This follows, for example, directly from Bardzell’s resolution.
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Theorem 8.1. Let � be a quiver without any cycle. Then the Yoneda product in
⊕

n�1 Hn(A, A) is zero.

Proof. The set of vertices �0 of a quiver without any cycle is a partial ordered set: v1 � v2 if and
only if there exists a path α such that o(α) = v1 and t(α) = v2.

We first prove that for any nonzero medal cohomology class M of positive cohomological degree,
there exist vertices v1 ≺ v2 such that o(β) � v1 and v2 � t(β) for any pair (β, τ ) ∈ M . Let (α,π) be
any pair in M . We know that 1 � |α| � N − 2 < N � |π | (cf. Theorem 7.2). Assume that α = a1 . . .a|α|
and π = p1 . . . p|π | . Let l � 0 be the largest integer for which ai = pi for i = 1, . . . , l. If l = |α| then
pl+1 . . . p|π | would be an oriented cycle, which is impossible, and thus l < |α|. Similarly, if r � 0 is
the smallest integer for which ai = p|π |−|α|+i for i = r, . . . , |α| then r > 1. Clearly l < r and in fact
l < r − 1 for if l = r − 1 then pl+1 . . . p|π |−|α|+r−1 would be an oriented cycle. Therefore, if v1 = t(al)

and v2 = o(ar), then v1 ≺ v2. Since al+1 �= pl+1 and ar−1 �= p|π |−|α|+r−1 it follows that for any pair
(β, τ ) ∈ M , β must contain the path al+1 . . .ar−1. Therefore o(β) � v1 and v2 � t(β).

We now prove that the Yoneda product in
⊕

n�1 Hn(A, A) is zero. Assume, on the contrary,
that there are two cohomology classes of positive cohomological degree M1 and M2 such that
M1 ∪ M2 �= 0. By Corollary 7.9 we may assume that M1 is a medal cohomology class. Let v1 ≺ v2
as above. We now must consider two possibilities:

(1) M2 is also a medal cohomology class. Let w1 ≺ w2 as above. Since M1 ∪ M2 �= 0 there exist
(α,π) ∈ M1 and (β, τ ) ∈ M2 such that v2 � t(α) = o(β) � w1. Additionally, since the cup product
is commutative, there exist (α′,π ′) ∈ M1 and (β ′, τ ′) ∈ M2 such that w2 � t(β ′) = o(α′) � v1.
This is a contradiction since v1 ≺ v2 and w1 ≺ w2.

(2) M2 is a cohomology class of odd degree. Since M2 ∪M1 = M1 ∪M2 �= 0 there exist a representative
(β, τ ) of M2 and pairs (α,π), (α′,π ′) ∈ M1 such that v2 � t(α) = o(β) � t(β) � o(α) ≺ v1, which
is a contradiction.

This completes the proof. �
Remark 8.2. Quivers in this class might have lots of medals.

8.2. Quivers with neither sinks nor sources

Truncated tensor algebras are particular cases of truncated quiver algebras associated to quiv-
ers without sinks and sources. Indeed, let V be a finite dimensional k-vector space and let AN =
T (V )/(V ⊗N ) the N-truncated tensor algebra. Then AN is a truncated quiver algebra corresponding to
the quiver

with dimk V loops. If dimk V � 2 then it is not difficult to see that this quiver has no medals in
� j//�kN for k > 0. According to Corollary 7.9 the Yoneda product in positive cohomology degrees is
zero. In Theorem 8.6 below we extend this result to all quivers without sinks and sources that are
not an oriented cycle. We point out that if dimk V = 1 then the N-truncated tensor algebra AN is a
truncated polynomial algebra and its ring structure is described in Section 8.4.

Lemma 8.3. Let � be a quiver. If (α,β) is a pair of parallel paths such that |α| < |β| and its class contains
no +extremes, then there exists an oriented cycle γ such that β = αγ . Similarly, if (α,β) is a pair of parallel
paths such that |α| < |β| and its class contains no −extremes, then there exists an oriented cycle γ such that
β = γα.
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Proof. Let (α,β) be a pair of parallel paths such that |α| < |β|. Then α = a1 . . .a|α| and β =
b1 . . .b|α| . . .b|β| . If the class of (α,β) contains no +extremes then, in particular, (α,β) can be
pushed forward |α| times. Therefore b j = a j for all j = 1, . . . , |α|. Let γ = b|α|+1 . . .b|β| . Then
o(γ ) = t(α) = t(β) = t(γ ) and thus γ is an oriented cycle.

The proof of the second statement is analogous. �
Lemma 8.4. Let � be a quiver. Then � is an oriented cycle if and only if there exists an oriented cycle γ and a
pair of parallel paths (α,β), with α and β subpaths of γ and |α| < |β|, such that the class of (α,β) does not
have any extreme.

Proof. If � is an oriented cycle then it is clear that there are no extremes at all.
Conversely, assume that � is not an oriented cycle. We shall prove that given an oriented cycle γ

and a pair of parallel paths (α,β), with α and β subpaths of γ and |α| < |β|, the class of (α,β) has
an extreme.

Let γ be the oriented cycle. Since � is not an oriented cycle there must exist a vertex p in
γ and two different arrows u, v ∈ �1 (not necessarily in γ ) such that either t(u) = t(v) = p or
o(u) = o(v) = p.

Now let (α,β) be a pair of parallel paths such that α and β are subpaths of γ and |α| < |β|.
In the case o(u) = o(v) = p we shall see that (α,β) can be pushed forward until we obtain a

+extreme. We first push (α,β) forward in order to reach a pair (α′, β ′) with t(α′) = t(β ′) = p. Since
γ is an oriented cycle this is possible, unless we reach a +extreme before. If (α′, β ′) is a +extreme
we are done. Otherwise α′ and β ′ must start together and hence α′ = a′

1 . . .a′|α| and β ′ = b′
1 . . .b′|β|

with a′
1 = b′

1. Since |α| + 1 � |β| and t(α′) = p we can assume that u �= b′|α|+1. Next, we push (α′, β ′)
forward obtaining

(α′, β ′) ∼ (
a′

2 . . .a′|α|u,b′
2 . . .b′|α|b′|α|+1 . . .b′|β|u

)
.

Now, if we keep pushing forward, since u �= b′|α|+1 it is clear that in at most |α| − 1 times we shall
reach a +extreme.

In the case t(u) = t(v) = p an analogous argument shows how to pull (α,β) backwards until a
−extreme is reached. �
Theorem 8.5. Let � be a finite connected quiver that is not an oriented cycle, and let (α,β) be a pair of parallel
paths such that |α| < |β|. Then the class of (α,β) has an extreme. In particular, if in addition � has neither
sinks nor sources then �i//� j does not have any medal for all i �= j.

Proof. Let (α,β) be a pair of parallel paths such that |α| < |β| and assume its class of (α,β) contains
no +extremes. Then, by Lemma 8.3 there exists an oriented cycle γ = v1 . . . vk , k � 1, such that
β = αγ . Let vk+ j = v j for all j > 0. Thus, by pushing forward,

(α,β) = (α,αv1 . . . vk) ∼ (vk+1 . . . vk+|α|, v1 . . . vk vk+1 . . . vk+|α|) = (α̃, β̃).

Now (α̃, β̃) is a pair of parallel paths contained in the oriented cycle γ . Since |α̃| = |α| < |β| = |β̃| and
� is not an oriented cycle, Lemma 8.4 implies that there exist an extreme pair in the class of (α̃, β̃).

In particular, if � has no sinks and no sources and (α,β) ∈ �i//� j with i �= j then (α,β) is
equivalent to either a +extreme not ending at a sink or a −extreme not starting at a source. Thus the
class of (α,β) is not a medal. �
Theorem 8.6. Let � be a quiver that is not an oriented cycle and with neither sinks nor sources. Then the
Yoneda product in

⊕
n�1 Hn(A, A) is zero.
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Proof. From Theorem 8.5 we know that �i//� j contains no medals when i �= j and therefore Corol-
lary 7.9 implies that the Yoneda product in

⊕
n�1 Hn(A, A) is zero. �

8.3. A distinguished example

We exhibit a noncycle TQA with nontrivial cohomology ring. It turns out that this example is a
fundamental piece to understand and describe the full structure of the cohomology ring of any TQA.
This will be done in a forthcoming paper.

Let � be the following quiver

and let A = k�/(�N ) be a TQA with N � 3. It is clear that �0//�0 = {(v1, v1), (v2, v2), (v3, v3)} and
it is not difficult to see that for j > 0 or M > 0

� j//�M = {(
ax j−1,axM−1), (x j, xM)

,
(
x j−1b, xM−1b

)
,
(
ax j−2b,axM−2b

)}
with the conventions that x0 = v2 and a pair containing xm with m < 0 does not appear. Observe that
for this quiver we have that for any (α,π) ∈ � j//�M the path π is determined by α. Thus, in order
to have a clearer notation we shall denote the pair (α,π) by α. Now, using this notation, we have

�0//�0 = {v1, v2, v3}, and

� j//�M = {
ax j−1, x j, x j−1b,ax j−2b

}
, for j > 0 or M > 0.

The associated matrices of the differentials of the complex of Theorem 7.2 are described below:

for k = 0,

we have
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[
D0

0

] =
⎡
⎣ −1 1 0

0 0 0
0 −1 1

⎤
⎦ ; [

D0
j

] =
⎡
⎣ 1

0
−1

⎤
⎦ , 2 � j � N − 2; [

D1
0

] =

⎡
⎢⎢⎣

N − 1
N

N − 1
N − 2

⎤
⎥⎥⎦ ,

and for k � 1,

we have

[
D2k

0

] =
⎡
⎣ 1

0
−1

⎤
⎦ ,

[
D2k+1

0

] =

⎡
⎢⎢⎣

N − 1
N

N − 1
N − 2

⎤
⎥⎥⎦ ,

[
D2k

1

] =

⎡
⎢⎢⎣

−1 1 0
0 0 0
0 −1 1

−1 0 1

⎤
⎥⎥⎦ ,

[
D2k

j

] =

⎡
⎢⎢⎣

−1 1 0 0
0 0 0 0
0 −1 1 0

−1 0 1 0

⎤
⎥⎥⎦ , 2 � j � N − 2.

Therefore a basis of the cohomology is described by Table 1.
The elements of this basis have been chosen so that the product becomes more transparent. For

n � 1 and 1 � j � N − 1 let ωn, j be the basis element of k� j//�M ⊂ Hn(A, A) placed at the top of
each row in Table 1, that is

ωn, j =
{

x j + ax j−1, if n is odd;
ax j−1 + x j + x j−1b + ax j−2b, if n is even.

Note that ω2k, j is a sum of two different medal cohomology classes (see Definition 7.3) M̄1 + M̄2

where M1 = {ax j−1, x j, x j−1b} and M2 = {ax j−2b}. From Theorem 7.8 it follows that

ωn1, j1 ∪ ωn2, j2 =
{

ωn1+n2, j1+ j2 , if n1 or n2 is even and j1 + j2 < N;
0, otherwise.
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Table 1

k�0//�M k�1//�M k�2//�M , . . . ,k�N−2 k�N−1//�M

H0(A, A) 1 ∅ ∅ xn−1

dim = 2

H1(A, A) ∅ x + a x j + ax j−1

ax j−1

xN−1 + axN−2

axN−2

dim = 2N − 3
coboundaries a, b ax j−1 − x j−1b axN−2 − xN−2b

H2k(A, A)

k � 1
∅

a + x + b ax j−1 + x j + x j−1b + ax j−2b

ax j−2b

axN−2 + xN + xN−2b + axN−3b

axN−3b

xN−1

dim = 2N − 2

coboundaries ∅ ∅ (N − 1)axN−2 + NxN−1

+ (N − 1)xN−2b + (N − 2)axN−3b

H2k+1(A, A)

k � 1
∅ x + a

a

x j + ax j−1

ax j−1

xN−1 + axN−2

axN−2

dim = 2N − 2

coboundaries a − b
ax j−1 + ax j−2b,

x j−1b + ax j−2b

axN−2 + axN−3b,

xN−2b + axN−3b

8.4. Nonzero cohomology classes in the bar complex

In this subsection we use the comparison morphisms to construct explicit nonzero cohomology
classes in the bar complex. In the first example we consider the group H2k(A, A)N−1 of any N-TQA
and in the last one we give a full description of the cohomology ring of truncated polynomial algebras
in one variable.

8.4.1. Nonzero cohomology classes in H2k(A, A)N−1
Recall that H2k(A, A)N−1 is the cokernel of the injective map

D2k−1
0 : �0//�(k−1)N+1 → �N−1//�kN ,

(v,π) �→
∑

ab∈�N−1

(avb,aπb)

(see Theorem 7.2 and Remark 7.4). In particular, a pair of parallel paths (β, τ ) ∈ �N−1//�kN with the
property that they neither start together nor end together is not in the image of D2k−1

0 and hence
corresponds to a nonzero cohomology class.

Assume that there exists such a pair (β, τ ) ∈ �N−1//�kN . According to the identification (7.1) it
corresponds to the element g(β,τ ) ∈ Hom(k�0)e (k�kN , A) given by

g(β,τ )(π) =
{

β, if π = τ ;
0 otherwise.

It is straightforward to see that

f(β,τ ) = g(β,τ ) ◦ G ∈ HomAe
(

A ⊗ A⊗2k ⊗ A, A
) � Homk

(
A⊗2k, A

)
is given by
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f(β,τ )

(
1[α1| . . . |α2k]1

) =
⎧⎨
⎩

β, if α2i−1α2i = 0 in A for i = 1, . . . ,k,

and α1 . . . α2k = τ in k�;
0 otherwise.

8.4.2. Truncated polynomial algebra in one variable
This case has been deeply studied. However, as far as we know, even in this case the compari-

son morphism has not been written down and a basis consisting of cohomology classes in the bar
resolution can not be found in the literature. We present such a basis in this subsection.

If A = k[x]/(xN) we have

P∗
2k,i = k

(
xi, xkN)

and P∗
2k+1,i = k

(
xi, xkN+1)

and the only nonzero differentials are D2k+1
0 for all k. Thus

H2k(A, A) = k
{(

x0, xkN)
,
(
x1, xkN)

, . . . ,
(
xN−2, xkN)}

and

H2k+1(A, A) = k
{(

x1, xkN+1), (x2, xkN+1), . . . , (xN−1, xkN+1)}.
Using the comparison morphism G it is not difficult to give a basis of the cohomology in the (reduced)
bar resolution. Indeed, let

q = 1
[
xr1 | . . . |xrn

]
1 ∈ Qn = A ⊗�0 A

⊗n
�0+ ⊗�0 A, ri > 0;

and let

f2k,i
(
1
[
xr1 | . . . |xr2k

]
1
) =

{
xi+∑

r j−kN , if r2 j−1 + r2 j � N for j = 1, . . . ,k;
0, otherwise;

f2k+1,i
(
1
[
xr1 | . . . |xr2k+1

]
1
) =

{
xi+∑

r j−kN−1, if r2 j + r2 j+1 � N for j = 1, . . . ,k;
0, otherwise.

Then

H2k(A, A) = k{ f2k,0, f2k,1, . . . , f2k,N−2}

and

H2k+1(A, A) = k{ f2k+1,1, f2k+1,2, . . . , f2k+1,N−1}.

The cup product is given by

fm,i ∪ fn, j =
{

fm+n,i+ j if either m or n is even and i + j < N;
0, otherwise;

and { f0,1, f1,1, f2,0} is a set of generators of H∗(A, A) as an algebra.
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