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Abstract Unraveling of microbial genome data has indicated
that two distantly related truncated hemoglobins (trHbs), HbN
and HbO, might occur in many species of slow-growing patho-
genic mycobacteria. Involvement of HbN in bacterial defense
against NO toxicity and nitrosative stress has been proposed.
A gene, encoding a putative HbN homolog with conserved fea-
tures of typical trHbs, has been identified within the genome
sequence of fast-growing mycobacterium, Mycobacterium
smegmatis. Sequence analysis of M. smegmatis HbN indicated
that it is relatively smaller in size and lacks N-terminal pre-A re-
gion, carrying 12-residue polar sequence motif that is present in
HbN of M. tuberculosis. HbN encoding gene of M. smegmatis
was expressed in E. coli as a 12.8 kD homodimeric heme protein
that binds oxygen reversibly with high affinity (P50 � 0.081 mm
Hg) and autooxidizes faster than M. tuberculosis HbN. The cir-
cular dichroism spectra indicate that HbN of M. smegmatis and
M. tuberculosis are structurally similar. Interestingly, an hmp
mutant of E. coli, unable to metabolize nitric oxide, exhibited
very low NO uptake activity in the presence of M. smegmatis
HbN as compared to HbN of M. tuberculosis. On the basis of
cellular heme content, specific nitric oxide dioxygenase (NOD)
activity of M. smegmatis HbN was nearly one-third of that from
M. tuberculosis. Additionally, the hmp mutant of E. coli, carry-
ing M. smegmatis HbN, exhibited nearly 10-fold lower cell sur-
vival under nitrosative stress and nitrite derived reactive nitrogen
species as compared to the isogenic strain harboring HbN of M.
tuberculosis. Taken together, these results suggest that NO
metabolizing activity and protection provided by M. smegmatis
HbN against toxicity of NO and reactive nitrogen is significantly
lower than HbN of M. tuberculosis. The lower efficiency of M.
smegmatis HbN for NO detoxification as compared to M. tuber-
culosis HbN might be related to different level of NO exposure
and nitrosative stress faced by these mycobacteria during their
cellular metabolism.
� 2006 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Exploration of mycobacterial genome sequences in recent

years has brought many novel insights into the biology of this

fascinating group of organisms, leading to the identification of

several previously unknown genes, including presence of genes

for novel hemoglobins (Hbs) [1,2]. Two genes, glbN and glbO,

encoding truncated hemoglobins (trHbs), HbN and HbO,

respectively, have been first detected in Mycobacterium tuber-

culosis and, subsequent unraveling of mycobacterial genome

data suggested that these Hbs may be ubiquitous in mycobac-

teria. Three distinct types of trHbs (HbN, HbO and HbP) have

been identified within the mycobacterial genome [3]. The ex-

tent of amino acid identity between members of these three

groups is less than 18% suggesting that these hemoglobins

are distinct from each other and may be playing different func-

tion(s) in mycobacterial cellular metabolism. The opportunis-

tic pathogen, M. avium, carries all three types of trHbs

(HbN, HbO and HbP), whereas, intracellular pathogens like,

M. tuberculosis, M. bovis, M. marinum, etc. carry two trHbs,

HbN and HbO. Interestingly, the obligate intracellular patho-

gen, M. leprae, that has extensive reduction of its genome [2]

and carries a minimum set of genes for its survival and patho-

genicity, has retained at least one hemoglobin (HbO), suggest-

ing that Hb-like proteins may be vital for the intracellular

regime of pathogenic mycobacteria. Functions of these myco-

bacterial hemoglobins (Hbs) are not very well understood at

present and may be diverse.

Studies on mycobacterial Hbs have been mainly concen-

trated on HbN and HbO of M. tuberculosis [4–8]. Physiological

studies performed on M. bovis demonstrated that trHbO is ex-

pressed during all growth phases, whereas, HbN expression is

induced only during stationary phase [4,6] indicating that these

oxygen-binding proteins are required at different growth stages

of mycobacteria. Although both HbN and HbO display char-

acteristic 2-over-2 alpha-helical globin fold, there are distinct

structural differences between these two trHbs. The three

dimensional structure of M. tuberculosis HbN is characterized

by the presence of an extra N-terminal pre-A helical region

and extended apolar tunnel/cavity connecting the heme distal

pocket to two distinct protein surface sites [9]. It has been spec-

ulated that these unique cavities present in HbN may provide

an alternative port for the diffusion of ligands towards the distal

site where solvent access through the classical E7 gate path is

completely impaired due to orientation of E-helix and packing

of the pocket by side chains of distal site residues [9,10]. Struc-

tural and biochemical characteristics of HbN of M. tuberculosis

suggest that its oxygen binding stereochemistry, B10 hydrogen
ation of European Biochemical Societies.
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bonding and unstrained heme-iron proximal coordination

[11,12] may favor oxygen and nitric oxide (NO) interactions.

Studies conducted in our laboratory have established that M.

tuberculosis HbN has a potent oxygen dependent NO dioxygen-

ase (NOD) activity and relieves nitrosative stress in heterolo-

gous hosts [7], very similar to flavohemoglobins [13,14]. Being

single domain hemoglobin, how HbN is able to display an effi-

cient NOD activity is not known at present. Integration of both

globin and reductase domains together is essential for the NOD

function of flavohemoglobin [15]. An electron donating partner

protein, involved in modulating the function of M. tuberculosis

HbN, has not been identified so far. However, potent NO-scav-

enging activity displayed by HbN of M. tuberculosis indicates

that its primary function may be to protect the bacilli against

toxic NO produced by the host macrophages during intracellu-

lar infection and latency that may be vital for the pathogenicity

of M. tuberculosis [16].

Computational and sequence analysis of available mycobac-

terial genome data indicated the presence of Hb encoding

genes in the non-pathogenic, fast growing, saprophytic Myco-

bacterium smegmatis as well. M. smegmatis neither enters epi-

thelial cells nor persist in professional phagocytes although it

has been known to cause soft tissue and bone infections in rare

cases [17]. Hemoglobins of any fast-growing mycobacteria

have not been studied so far. New insight into the functionality

of trHbs can be gained if comparative data on functionality of

this interesting group of small hemoglobins of slow- and fast-

growing mycobacteria are available. In the present study, we

have reported spectral and ligand-binding characteristics of

truncated hemoglobin, HbN, of M. smegmatis and demon-

strated that its functional properties are distinct from HbN

of M. tuberculosis.
2. Materials and methods

2.1. Bacterial strains, plasmids and culture conditions
E. coli JM109 and E. coli BL21DE3 strains were utilized for routine

cloning and expression of recombinant genes. E. coli RB9060 (Dhmp)
strain was kindly provided by Prof. Ninfa (University of Michigan).
Cultures of E. coli strains were grown in Luria-Bertani (LB) or Terrific
Broth (containing 24 g of Yeast Extract, 12 g of Bacto-Tryptone,
12.3 g of K2HPO4, 2.3 g of KH2PO4) medium at 37 �C at 180 r.p.m.
unless mentioned otherwise. Mycobacterium smegmatis mc2 155 [18]
was grown in Middlebrook 7H9 (Difco) supplemented with ADC
(10% bovine serum albumin fraction V, dextrose and sodium chloride).
When required, ampicillin and kanamycin (Sigma) were added at a
concentration of 100 lg/ml and 30 lg/ml, respectively. Plasmids,
pBluescript (Stratagene), pET9b (NEB) and pUC8:16 [19] were used
for cloning and expression of recombinant genes as described earlier
[7]. The oligonucleotides were custom synthesized by Integrated
DNA Technologies Inc. Nitric oxide (NO; 98.5%) was obtained from
Aldrich or saturated NO was prepared as described earlier [20] follow-
ing the published procedure [21].

2.2. Cloning and expression of the glbN gene of M. smegmatis
The nucleotide sequence of glbN gene of M. smegmatis was retrieved

after BLAST search from the unfinished genome sequence data of M.
smegmatis available at TIGR site. The HbN encoding gene of M.
smegmatis was expressed under the control of the Vitreoscilla hemoglo-
bin (VHb) gene promoter following the strategy used earlier for the
expression of HbN encoding gene of M. tuberculosis [7]. The forward
(5 0-GATCCTTAAGATGACGAGCATCTAAGAGCAGATCGGC-
GGC-3 0) and reverse (5 0-GAAGGGATCCTCACGACGTGCGGGC-
CGAGGCGATCTC-3 0) primers were designed on the basis of gene
sequence of HbN of M. smegmatis. The forward and reverse primers
contained AflII and BamHI site, respectively. The HbN encoding gene
was retrieved from the genomic DNA of M. smegmatis mc2 155 after
polymerase chain reaction (PCR) amplification and sequenced com-
pletely to verify its authenticity. The vgb gene promoter, carried on
plasmid pUC8:16 [19], was selectively separated by isolating 2.8 kb
AflII–BamHI fragment and ligated with the AflII–BamHI digested
PCR product of glbN gene of M. smegmatis. The resulting HbN express-
ing plasmid was designated as pSGN. The HbN encoding genes were
also overexpressed in mycobacteria under the constitutive promoter
of 19 kD antigen of M. tuberculosis present on E. coli-mycobacteria
shuttle vector, p19Kpro following the strategy described earlier [7].
Briefly, HbN encoding gene of M. tuberculosis and M. smegmatis were
amplified by PCR using gene specific primers carrying BamHI restric-
tion site at the 5 0 end and PstI site at the 3 0 end and cloned at Bam-
HI–PstI site of p19Kpro. The resulting plasmids, carrying HbN gene
of M. tuberculosis and M. smegmatis, were designated as pRPN-2 and
pSGN-2, respectively.

2.3. Isolation, purification and characterization of HbN of M. smegmatis
For protein purification, cell culture of E. coli JM109 overexpressing

glbN gene of M. smegmatis, was harvested by centrifugation at
14000 · g for 10 min at 4 �C and resuspended in 10 mM Tris Æ Cl (pH
8.0) having 10 mM dithiothreitol, 1 mM EDTA, 45 lg/ml phenylmeth-
ylsulphonyl flouride (PMSF), 500 lg/ml RNase and 10 U of DNase I.
Cells were lysed by sonication and subjected to ultracentrifugation at
170000 · g at 4 �C for 2 h. The clear reddish brown cell lysate, thus, ob-
tained was loaded on Ion-Exchange Column (DEAE-Sepharose CL4B,
Pharmacia), equilibrated with 10 mM Tris Æ Cl (pH 8.0) and eluted
using 0.12 M NaCl. It resulted in nearly 80% pure preparation of hemo-
globin exhibiting distinct reddish brown color. This fraction was further
purified by Gel filtration chromatography on to a Superdex 75 column
equilibrated in 10 mM Tris Æ Cl (pH 8.0) and protein was eluted in
0.15 M NaCl in 10 mM Tris Æ Cl (pH 8.0). The protein and hemoglobin
profile was monitored at 280 and 414 nm, respectively.

2.4. Spectral and ligand binding studies
Absorption spectra of whole cells or protein preparation were re-

corded using Shimadzu or Perkin Elmer Lambda 35 spectrophotome-
ter. NO binding spectra were recorded by using anoxic preparation of
HbN. Briefly, 6–8 lM solutions of different species of HbN in 0.1 M
sodium phosphate buffer (pH 7.0) was placed in a rubber sealed cuvette
and bubbled with nitrogen gas (99.9%, Sigma Gas Ltd.) for 10 min
with gentle agitation to remove oxygen. Saturated solution of NO
was then injected anoxically and spectra of NO-bound HbN were re-
corded. The oxygen affinity of HbN was checked using the tonometer
as mentioned earlier [6] or Hemox Analyzer (TCS scientific Corp.).

2.5. Heme assays
Total cellular heme content was determined according to the method

of Appleby [22]. Briefly, approximately 2–3 · 109 cells were washed by
centrifugation with minimal salt medium (60 mM K2HPO4, 33 mM
KH2PO4, 7.6 mM (NH4)2SO4 and 1.7 mM sodium citrate) and were
suspended in 0.6 ml of alkaline pyridine reagent containing 2.2 M pyr-
idine and 0.1 N NaOH and lysed with 30 s sonic burst with a micro-
probe sonicator. The resulting lysate was then clarified by
centrifugation for 10 min at 25000 · g to remove insoluble debris.
Heme concentration was calculated from absorption difference at
556 and 539 nm for the dithionite-reduced and ferricyanide-oxidized
sample.
2.6. Western blotting
For Western blotting, purified protein or cell extracts (10 to 15 lg of

protein/slot) were resolved on 15% SDS–PAGE and transferred onto a
nitrocellulose membrane (0.45 lM) in a mini trans-blot apparatus
(Bio-Rad). Immobilized proteins were probed with primary (Poly-
clonal antisera raised against HbN of M. tuberculosis) and secondary
(horseradish peroxidase-conjugated goat anti-rabbit IgG) antibodies
and developed using diaminobenzidine and hydrogen peroxide.

2.7. NO consumption assay and determination of cell survival against

NO donor and nitrosative stress
NO consumption activity of cells was monitored polarographically

as described previously [20]. NO consumption buffer assay contained
60 mM K2HPO4, 33 mM KH2PO4, 7.6 mM (NH4)2SO4, 1.7 mM so-
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dium citrate, 10 mM glucose and 200 lg/ml chloramphenicol. Sodium
nitroprusside (SNP) and acidified nitrite were used to generate nitrosa-
tive stress to check cell survival against these NO releasing agents. To
check the response of M. smegmatis HbN against reactive nitrogen
species, growth profile of E. coli expressing HbN of M. smegmatis,
was determined at pH 6.0 and 7.5 in buffered LB medium supple-
mented with 10 and 30 mM sodium nitrite and compared with isogenic
strain carrying HbN of M. tuberculosis by observing OD600 periodi-
cally. Survival of recombinant E. coli cells against SNP was determined
as described previously [7]. Briefly, control and recombinant E. coli
RB9060 cells, expressing hemoglobin, were grown aerobically in LB
medium up to an optical density at 600 nm of 0.6. The cells were then
treated with different concentrations of SNP for 60 min, serially diluted
and plated to check the survival of cells. Results were expressed as the
percentage of viable cells present in the control culture without any
treatment.
3. Results

3.1. Structural features of M. smegmatis HbN and its

comparison with other HbN type truncated hemoglobins

Truncated hemoglobin, HbN, homologs are less repre-

sented in bacterial genome sequences compared to its other

molecular relative, HbO, that are present widely in bacterial

and plant species. Exploration of genome data of M. smegma-

tis indicated that it might also carry HbN encoding gene very

similar to the pathogenic strains of mycobacteria. Structure

based sequence alignment of M. smegmatis along with other

mycobacterial HbN (Fig. 1) revealed that it is relatively smal-

ler in size than its counterpart present in M. tuberculosis and

lacks 12-residue long positively charged N-terminal sequence

motif constituting the pre-A region of HbN, although struc-
Fig. 1. Structure-based multiple sequence alignment of HbN of M. smegmatis
positions are shown on the top of the aligned sequences. Important residues
are marked and conserved residues of trHbs family are highlighted on black
boxes and bold letters.
tural features, e.g., Tyr-B10, Phe-CD1, Leu-E7, Phe-E14,

His-F8, three Gly motifs, crucial for attaining the trHb fold,

and residues defining the protein matrix tunnel, are all con-

served in this mycobacterial Hb. Preservation of trHbs signa-

ture sequences in M. smegmatis HbN indicates that it can

attain two-over-two alpha-helical structure and may function

as hemoglobin. The highly polar and charged N-terminal mo-

tif is present in all known mycobacterial HbN except M.

smegmatis, however, its relevance in protein function is cur-

rently unknown. Detailed sequence comparison of HbN type

[7] trHbs revealed that other HbN type trHbs do not carry

such additional secondary structure at the N-terminus sug-

gesting that it may not be crucial for the structural integrity

of trHb fold and may be specific to certain mycobacterial

HbN.

3.2. Expression and purification of recombinant trHbN of

M. smegmatis

Our initial attempt to express M. smegmatis HbN encoding

gene under T7 promoter did not result in good yield of soluble

protein. Therefore, the Vgb gene promoter, which has been uti-

lized earlier to express HbN encoding gene of M. tuberculosis

[7], was used to clone and express HbN encoding gene of M.

smegmatis in E. coli. It resulted in overexpression of M.

smegmatis HbN as a soluble protein, constituting nearly 5–

6% of total cellular protein that imparted a reddish brown

tinge to the recombinant E. coli cells. SDS–PAGE analysis

of these cells confirmed the presence of a 12.8 kD protein cor-

responding to the predicted size of HbN of M. smegmatis

(Fig. 2A, Panel I) which is nearly 1kD shorter than HbN of
with other mycobacterial HbN type trHbs. The globin fold topological
with respect to coordination of the heme and ligand binding properties
box. Conserved and similar residues of HbN are shown in light shaded



Fig. 2A. Expression of M. smegmatis HbN in E. coli. The total cellular
protein content (10–15 lg) of recombinant cells expressing trHbN was
resolved on 15% SDS–PAGE as described under Section 2 and protein
bands were visualized after Coomassie blue staining and after Western
blotting using HbN-specific polyclonal antibodies. Panel I. (1) E. coli
JM109-pUC 18; (2) E. coli JM109 expressing HbN of M. tuberculosis;
(3) E. coli JM109 expressing HbN of M. smegmatis; (4) Molecular
weight marker. Panel II. Western blot analysis of HbN expressing cells
of E. coli. Lanes 1–4 have the same samples as given in panel I.
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M. tuberculosis. Recombinant M. smegmatis HbN was purified

to near homogeneity using Ion Exchange, Phenyl Sepharose

and Gel filtration chromatography (Fig. 2B) that revealed its

molecular mass corresponding to 25 ± 1 kD, which is close

to that expected for the dimeric form of 12.8 kD protein.
Fig. 2B. Size exclusion chromatography of trHbN of M. smegmatis. The
3.3. Spectral and functional properties of M. smegmatis HbN

The absolute absorption spectra of the E. coli cells, carrying

M. smegmatis HbN, exhibited the presence of a Soret peak at

416 nm along with alpha and beta peaks at 580 and 543 nm

(Fig. 3A) which is very similar to oxygenated form of M. tuber-

culosis HbN and other oxyhemoglobins and myoglobins, sug-

gesting that predominant form of M. smegmatis HbN remains

oxygenated in vivo. The deoxygenated ferrous derivative of M.

smegmatis HbN shows a soret absorbance band at 430 nm and

CO difference (reduced CO–reduced) spectra had maxima at

570, 533 and 419 nm, which is typical of hemoglobin exhibiting

reversible ligand binding. Optical spectrum of the ferric species

of M. smegmatis HbN at pH 7.5 exhibited absorption maxima

at 406, 501 and 573 nm that is typical of hexa-coordinate high

spin form of hemoglobin. The calculated oxygen concentration

at 50% saturation of M. smegmatis HbN (Table 1) was found

to be slightly higher (P50 = 0.081 ± 0.015 mm Hg) than that of

HbN of M. tuberculosis (P50 = 0.013 mm Hg) but much lower

than that of sperm whale Mb (P50 = 0.51 mm Hg). Upon

standing at room temperature, oxygenated hemoglobins and

myoglobins autooxidize to the met form. However, oxyform

of M. tuberculosis HbN is highly stable and displays very slow

rate of autooxidation [3]. In comparison, autooxidation rate of

M. smegmatis HbN was nearly one and a half-fold higher (Ta-

ble 1). Exposure of anoxic solution of both species of HbN to

NO resulted in immediate reaction with these hemoproteins.

Optical spectra of NO-bound proteins suggest that both

HbN are able to interact with NO (Fig. 3B). M. smegmatis

HbN exhibited strong cross reactivity (Fig. 2A, Panel II) with

monospecific polyclonal antisera raised against HbN of M.

tuberculosis, indicating serological similarity between these

two HbN type mycobacterial trHbs.

3.4. CD spectra of HbN of M. smegmatis

Since HbN of M. smegmatis lacks pre-A, N-terminal region

that is present in HbN of M. tuberculosis, we compared the CD

spectra of these two HbN type hemoglobins to check if they

have any structural differences. Near-UV CD spectra of both
elution profile of HbN and molecular weight standard are shown.



Fig. 3. Spectral characteristics of HbN of M. smegmatis. (A) Absolute absorption spectra of E. coli cell extract carrying HbN of M. smegmatis. (B)
Absorption spectra of ferrous NO ligated species of HbN of M. smegmatis (dashed line) and M. tuberculosis (continuous line).

Table 1
Functional properties of truncated hemoglobin, HbN, of M. smegmatis

Molecular weight (kDa) Aggregation state O2 affinity (P50 mm/Hg) Autooxidation (t1/2 h)

HbN (M. smegmatis) 12.8 Homodimer 0.18 361
HbNa (M. tuberculosis) 14.4 Homodimer 0.013 537
Sperm whale myoglobinb 14 Monomer 0.51 13.8

aCouture et al. [4].
bSpringer et al. [30] and Barantly et al. [31].
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the trHbs (Fig. 4) displayed more or less similar profile exhib-

iting troughs at 208 and 224 nm. Such a profile has also been

observed in HbN of N. commune [23]. The percentage of alpha

helical content of both the proteins was more or less similar

indicating that the deletion of pre-A region has not affected

the overall folding of M. smegmatis HbN.

3.5. Growth properties and oxygen uptake of recombinant E. coli

carrying HbN of M. smegmatis

To elucidate whether the functional expression of M.

smegmatis HbN had any metabolic effect(s) on its host, we
compared the growth and oxygen consumption properties of

recombinant E. coli, carrying M. smegmatis HbN with the iso-

genic strain carrying HbN of M. tuberculosis along with the

control cells having similar plasmid without any Hb encoding

gene. Expression of HbN of M. smegmatis and M. tuberculosis

under vgb gene promoter resulted in appearance of more or

less similar level of both hemoglobins in recombinant E. coli

and allowed us to compare their effect on physiology of their

host. Under high aeration, there was no distinct difference in

the growth characteristics of E. coli carrying any of these

two mycobacterial HbN and none of these hemoglobins



Fig. 4. The near-UV CD spectra of HbN of M. smegmatis and M.
tuberculosis. M. tuberculosis and M. smegmatis hemoglobin has been
designated as MtbHbN and MsHbN, respectively.
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exerted any growth advantage over the control cells (Fig. 5A).

However, under low oxygen condition, cells carrying M. tuber-

culosis HbN outgrew control and M. smegmatis HbN express-

ing cells at the late exponential stage and resulted in higher cell

mass. In all cases, the correlation between optical density

(OD600), and the wet and dry cell mass was linear as deter-

mined by intermittent cell weight determination, thus, justify-

ing the measure of growth. These results indicated that HbN

of M. smegmatis might not be able to sustain growth and cell

viability during hypoxic growth condition unlike HbN of M.

tuberculosis. To determine the contribution of mycobacterial

HbN to cellular respiration, oxygen uptake rates of recombi-

nant E. coli expressing HbN of M. tuberculosis and M.

smegmatis, were compared. Respiration rates of these strains

remained more or less similar under aerobic condition when

measured in the presence of endogenous substrates present in

the cells or when stimulated by the addition of exogenous suc-

cinate (10 mM; data not shown).

3.6. NO consumption activity of recombinant E. coli carrying

HbN of M. smegmatis

Earlier, we demonstrated that M. tuberculosis HbN pos-

sesses potent NO metabolizing activity and can protect its

host from the toxicity of NO and its analogs [7]. To check

whether HbN of M. smegmatis has similar NO scavenging

activity, we compared the NO uptake activity of recombinant

E. coli carrying these two mycobacterial HbN. For that pur-

pose, we utilized a flavoHb (Hmp) deficient mutant of E. coli

(RB9060) that does not show any measurable NO uptake

activity [7]. In the presence of oxygen, expression of M.

tuberculosis HbN conferred distinct NO consumption ability

to the hmp mutant of E. coli (Table 2) that was significantly

higher than the isogenic strain expressing HbN of M.

smegmatis. On a per heme basis, specific NO uptake activity

of M. smegmatis HbN was nearly one-third of M. tuberculo-

sis HbN suggesting that NO scavenging by HbN of M.

smegmatis is less efficient than HbN of M. tuberculosis. NO

consumption activity of both HbN was sustained in E. coli

with repetitive NO addition indicating the presence of an
electron donating partner in E. coli that is compatible to

carry out reduction of met HbN of M. tuberculosis as well

as M. smegmatis.

3.7. NO dioxygenase activity of HbN in M. smegmatis

NO dioxygenase activity of bacterial hemoglobins requires

presence of a compatible electron donating partner; therefore,

we attempted to check the functional activity of M. smegma-

tis HbN in the cellular environment of its native host. Under

normal growth conditions, M. smegmatis displays very low

NO uptake activity [7]. Therefore, to compare NO metaboliz-

ing activity of M. smegmatis HbN with that of M. tuberculo-

sis, we expressed both species of HbN in M. smegmatis under

the constitutive promoter of 19 kD antigen of M. tuberculo-

sis. Absolute spectra of cell lysate of M. smegmatis, express-

ing these hemoglobins, exhibited specific peak at 412 nm

suggesting the presence of an oxygenated form of hemoglobin

(data not shown). When HbN of M. tuberculosis was ex-

pressed in M. smegmatis, it elevated the level of NO uptake

of these cells nearly 100-fold, whereas, M. smegmatis HbN

expressing cells exhibited only 25- to 30-fold increase in

NO uptake although cellular level of plasmid encoded Hb

in both cases were more or less similar. On a per heme basis,

specific NO consumption activity of M. smegmatis, expressing

its native HbN, was nearly fourfold lower than that of

expressing HbN of M. tuberculosis (Table 3). These results

further substantiated that the NO scavenging abilities of these

two trHbN are different.

3.8. Potentiality of M. smegmatis HbN against nitrosative stress

and reactive nitrogen species

Since HbN of M. smegmatis exhibited lower NO uptake

activity, we tested whether it will be effective in relieving toxic-

ity against NO donors and reactive nitrogen species. No

detectable growth differences between control and HbN carry-

ing hmp strain of E. coli were observed under standard aerobic

growth conditions. To test whether the presence of M.

smegmatis HbN provide any protective effect against NO do-

nor and nitrosative stress, we compared the growth profiles

and survival pattern of hmp mutant of E. coli carrying M.

smegmatis HbN with the isogenic strain having M. tuberculosis

HbN (Fig. 6A and B) in the presence of different concentra-

tions of the NO donor, sodium nitroprusside (SNP). Presence

of M. tuberculosis HbN conferred distinct growth advantage to

the hmp mutant of E. coli in the presence of 1 mM SNP,

whereas, M. smegmatis HbN carrying cells grew slowly and

only marginal growth increase over the control cells, growing

under similar conditions, was observed (Fig. 6A). In the pres-

ence of different concentrations of SNP, survival of M.

smegmatis HbN carrying cells of E. coli was 2 to 3-fold lower

in comparison to the cells expressing M. tuberculosis HbN

(Fig. 6B). These results clearly indicated difference in protec-

tive effect of HbN of M. smegmatis and M. tuberculosis against

NO toxicity.

To further evaluate the potentiality of M. smegmatis HbN

against other reactive nitrogen species, we tested tolerance of

hemoglobin expressing cells towards acidified nitrite. Nitrite

protonates to form HNO2 that quickly dismutates to produce

several species of nitrogen oxides including NO. There was no

distinct difference in survival of control and HbN carrying cells

in the presence of 10 mM sodium nitrite at pH 7.2. Increase in

nitrite concentration to 30 mM resulted in nearly 70–75% drop



Fig. 5. Growth profile of recombinant E. coli expressing HbN of M. smegmatis and M. tuberculosis. (A) E. coli cells carrying pUC18 and
recombinant plasmid expressing HbN of M. tuberculosis (pRPN) and M. smegmatis (pSGN) were grown in 100 ml baffled flask containing 25 ml of
LB supplemented with 100 lg/ml ampicillin and incubated at 37 �C at 180 r.p.m. on a gyratory shaker and OD600 was monitored periodically. (B)
E. coli cells carrying pUC18 and HbN expressing plasmids were grown in 100 ml sealed flasks containing 75 ml of LB supplemented with 100 lg/ml
ampicillin and incubated at 37 �C at 100 r.p.m. and OD600 was monitored at different time intervals.

Table 2
Physiological properties of recombinant E. coli carrying mycobacterial hemoglobin HbN from M. tuberculosis and M. smegmatis

Strain Heme content (pmol/108 cells) NO uptake (nmol/NO/108 cells) Oxygen uptake (lmole O2/min/108 cells)

E. coli RB9060 (pUC18) 2.3 ± 0.02 0.01 ± 0.0 4.1 ± 0.28
E. coli RB9060 (pRPN)a 17.8 ± 0.5 9.8 ±0.4 5.1 ± 0.46
E. coli (pSGN)b 16.6 ± 0.2 2.7 ± 0.7 5.6 ± 0.51

apRPN is an expression plasmid for M. tuberculosis HbN.
bpSGN is an expression plasmid for M. smegmatis HbN.

A. Lama et al. / FEBS Letters 580 (2006) 4031–4041 4037
in cell survival in the case of control and cells expressing M.

smegmatis HbN. Under similar conditions, cells expressing

HbN of M. tuberculosis displayed only 30–35% decrease in cell

survival as compared to the control cells not challenged with

sodium nitrite (Fig. 7A). When the pH of the medium was low-

ered from 7.2 to 6 to promote nitrite protonation, cell survival

dropped (80–85%) drastically in the presence of 10 mM so-

dium nitrite in the case of control and cells expressing M.

smegmatis HbN, whereas, presence of M. tuberculosis HbN
in isogenic E. coli strain allowed it to grow better resulting

in nearly three-fold higher cell survival (Fig. 7B) as compared

to control and M. smegmatis HbN expressing cells. Further in-

crease in the nitrite concentration at pH 6 resulted in drastic

drop in cell survival in all the cases.

Taken together, these results demonstrate that the potential-

ity of M. smegmatis HbN to cope with toxicity of NO and

nitrosative stress is significantly lower than that of the HbN

of M. tuberculosis.



Table 3
NO consumption activity of M. smegmatis, expressing HbN of M.
tuberculosis and M. smegmatis

Strains Heme content
(pmol/108 cells)

NO consumption
activity
(nmole of NO
heme�1 s�1 )

M. smegmatis (p19Kpro) 1.6 ± 0.5 0.09 ± 0.7
M. smegmatis (pRPN-2) 4.8 ± 0.9 18.6 ± 0.5
M. smegmatis (pSGN-2) 6.4 ± 0.1 5.1 ± 0.7

M. smegmatis cultures were grown in Middlebrook 7H9 broth (Difco)
supplemented with ADC (10% bovine serum albumin fraction V,
dextrose and sodium chloride), 2% glycerol, 0.05% Tween 80 and
50 lg/ml Hygromycin (wherever required) at 37 �C with vigorous
shaking (250 r.p.m) for 10 h. Cells were then harvested by centrifu-
gation (at 8000 · g for 30 min at 4 �C), washed with NO consumption
assay buffer (see Section 2) and resuspended in the same buffer at a cell
density of nearly 3 · 107 cells/ll and NO consumption activities of
control M. smegmatis (p19Kpro) and that carrying HbN of M.
tuberculosis (pRPN-2) and M. smegmatis (pSGN-2) were determined.

Fig. 6. Effect of sodium nitroprusside (SNP) on growth and survival of reco
(A) Growth characteristics of E. coli expressing HbN of M. tuberculosis and
expressing E. coli in the presence of different concentrations of SNP. Surviv
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4. Discussion

Slow growing pathogenic mycobacteria, such as M. tubercu-

losis, M. bovis, M. avium, etc. carry genes encoding HbN and

HbO type truncated hemoglobins that may play vital role in

their cellular metabolism. Functional relevance of these trun-

cated hemoglobins in mycobacterial cellular metabolism is

not conclusively known. Biochemical and structural studies

conducted on hemoglobins of M. tuberculosis in our labora-

tory and of others [4,5,7,8] suggest that HbN may be involved

in oxygen-sustained detoxification of NO that may provide a

defense mechanism to the tubercle bacillus against macro-

phage-generated reactive nitrogen species. In the present work,

we have shown that truncated hemoglobin, HbN, of fast-grow-

ing, non-pathogenic mycobacterium, M. smegmatis, has func-

tional characteristics that are distinct from HbN of M.

tuberculosis.
mbinant E. coli expressing HbN of M. tuberculosis and M. smegmatis.
M. smegmatis in the presence of SNP (1 mM). (B) Survival of HbN

al is represented as percentage of the values for the untreated cells.



Fig. 7. Survival of HbN expressing recombinant E. coli in the presence
of acidified nitrite. (A) Survival pattern of control and HbN expressing
E. coli cells in the presence of different concentrations of sodium nitrite
at pH 7.2. (B) Survival pattern of control and HbN expressing E. coli
cells under different levels of sodium nitrite at pH 6.0. Survival is
represented as the percentage value of the untreated cells.
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M. smegmatis HbN is smaller in size than its counterpart

present in other mycobacterial species and lacks N-terminal

pre-A region, however, conservation of structural features

crucial for the stabilization of the truncated globin fold sug-

gests that M. smegmatis HbN may be able to function as

hemoglobin. Near-UV CD spectra of HbN of M. smegmatis

and M. tuberculosis is very similar indicating the presence of

high degree of alpha-helical structure as has been observed in

HbN of N. commune [23]. The spectral and biochemical char-

acteristics show that M. smegmatis HbN is a cooperative

homodimer and contains a five-coordinated ferrous heme

group when the protein has no bound ligand and that CO

and oxygen bind to the heme moiety in a reversible manner,

very similar to other functional Hbs. Oxygen affinity of M.

smegmatis HbN is relatively lower than HbN of M. tubercu-

losis, despite the fact that both display TyrB10 and GlnE7
distal residues and share a comparable distal site sequence

composition. This suggests that other factors may play a role

in modulating the overall ligand affinity of M. smegmatis

HbN. Lack of pre-A region, that makes contact with the

pre-F loop and G-helix in HbN of M. tuberculosis, may

affect access and kinetics of ligand access through pro-

tein motion [9,10] resulting in differences in oxygen binding

of M. smegmatis HbN. Autooxidation properties of HbN

of M. tuberculosis and M. smegmatis further suggest that

interactions of oxygen with these two trHbs may have some

differences.

Although HbN of M. smegmatis and M. tuberculosis share

close structural similarity, their ability to scavenge NO and

provide protection from the toxicity of NO and nitrosative

stress is quite different. M. smegmatis HbN exhibits lower

NO metabolizing activity in heterologous host, E. coli, as

well as in its native host as compared to HbN of M. tuber-

culosis. Molecular basis of this functional difference between

these two mycobacterial HbN is currently unknown. Oxygen

dependent NO consumption by single domain bacterial

hemoglobin,VHb, has been demonstrated [20] and it has

been suggested that structural features of VHb allows it to

associate with a partner flavoreductase in vivo under certain

physiological conditions to create a transient flavoHb like

structure that may participate in NO metabolism. Optical

spectra of NO-bound HbN of M. tuberculosis overlaps with

that of M. smegmatis indicating that both species are able to

bind NO. Thus, the distinct difference in NO metabolizing

activity of these two hemoglobins may be due to their cata-

lytic efficiency for NO dioxygenation. HbN exhibits potent

NO metabolizing activity and protects heterologous hosts

from the toxicity of NO and nitrosative stress, therefore, it

is quite possible that a partner flavoreductase may associate

with it in vivo to attain NOD function. NO dioxygenase

activity of M. smegmatis HbN is significantly lower than

HbN of M. tuberculosis. HbN of M. smegmatis has nearly

70% sequence similarity with HbN of M. tuberculosis and

it does not carry any charged pre-A region, therefore, the

coupling efficiency of these two hemoglobins with its elec-

tron-donating partner may differ resulting in differences in

their ability to interact with NO and reactive nitrogen spe-

cies. Difference in functionality of these two mycobacterial

trHbN can be correlated with their functional relevance with-

in the cellular environment of their native host. M. tubercu-

losis is an intracellular pathogen that resides and replicates

within the hypoxic and NO-enriched environment of macro-

phages, thus, may require a strong NO detoxification system

to cope with the toxic level of its intracellular environment.

In comparison, M. smegmatis is not naturally exposed to

such hazardous conditions and oxygen and NO binding

properties of its HbN may provide sufficient protection from

the level of stress faced by its host. Alternatively, some other

NO-scavenging system may be operative in M. smegmatis. It

is notable that M. tuberculosis genome carries gene encoding

for a putative flavohemoglobin (flavoHb) and similar fla-

voHb homolog has also been identified within the genome

sequence of M. smegmatis (unpublished observation). Role

of flavoHbs in protection from the toxicity of NO and nitro-

sative stress has been well documented in the literature [24–

26]. It is quite possible that M. tuberculosis requires multiple

systems for relieving stress against high level of NO and reac-

tive nitrogen species generated within the macrophages,
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whereas, flavoHb may be sufficient to take care of the phys-

iological stress encountered by M. smegmatis.

The pre-A region, carrying highly polar sequence motif, is

conserved in HbN of other pathogenic mycobacteria; however,

the relevance of this additional secondary structure in protein

function is not known at present. HbN of M. smegmatis does

not carry this polar motif at its N-terminus. It is quite possible

that the presence of this additional secondary structure at the

N-terminus of HbN may have some functional significance for

pathogenic mycobacterium, which possibly may not be re-

quired for the function of HbN of M. smegmatis.

The data reported here provides first report on truncated

hemoglobin, HbN, of a fast-growing mycobacterium, M.

smegmatis, and demonstrates that its functional properties

are significantly different from its counterpart present in path-

ogenic mycobacterium, M. tuberculosis. The major difference

in functionality of these two HbN type truncated hemoglobins

lies in their capability to metabolize NO and provide protec-

tion against NO and nitrosative stress. Physiological func-

tion(s) of M. smegmatis HbN is not very obvious at present.

M. smegmatis HbN binds oxygen with reasonably high affinity,

thus, there is a possibility that it may also participate in other

metabolic reactions involving oxygen as has been envisaged for

the protozoan and cyanobacterial HbN [27–29].

Acknowledgements: We are thankful to Prof. N. Ninfa for making
available E. coli RB9060 strain for our work. Technical assistance pro-
vided by Mr. S. Muthukrishnan is gratefully acknowledged. This work
has been supported by research grants provided by Council of Scien-
tific and Industrial Research (SMM003) and the Department of
Biotechnology, Govt. of India.
References

[1] Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C.,
Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E.,
Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth,
T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S.,
Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A.,
Mclean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail,
M.A., Rajandream, M.A., Rogers, J., Rutters, S., Seeger, K.,
Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K.,
Whitehead, S. and Barrell, B.G. (1998) Deciphering the biology of
Mycobacterium tuberculosis from the complete genome sequence.
Nature 393, 537–544.

[2] Cole, S.T., Eiglmeier, K., Parkhill, J., James, K.D., Thomson,
N.R., Wheeler, P.R., Honore, N., Garnier, T., Churcher, C.,
Harris, D., Mungall, K., Basham, D., Brown, D., Chillingworth,
T., Connor, R., Davies, R.M., Devlin, K., Duthoy, S., Feltwell,
T., Fraser, A., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K.,
Lacroix, C., Maclean, J., Moule, S., Murphy, I., Oliver, K., Quail,
M.A., Rajandream, M.A., Rutherford, K.M., Rutter, S., Seeger,
K., Simon, S., Simmonds, M., Skelton, J., Squares, R., Squares,
S., Stevens, K., Taylor, K., Whitehead, S., Woodward, J.R. and
Barrel, B.G. (2001) Massive gene decay in the leprosy bacillus.
Nature 409, 1007–1011.

[3] Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A. and Guertin,
M. (2001) Truncated hemoglobins: a new family of hemoglobins
widely distributed in bacteria, unicellular eukaryotes, and plants.
J. Biol. Chem. 277, 871–874.

[4] Couture, M., Yeh, S.R., Wittenberg, B.A., Wittenberg, J.B.,
Ouellet, Y., Rousseau, D.L. and Guertin, M. (1999) A cooper-
ative oxygen-binding hemoglobin from Mycobacterium tubercu-
losis. Proc. Natl. Acad. Sci. USA 96, 11223–11228.

[5] Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet,
Y.H., Savard, P.Y., Wittenberg, J.B., Wittenberg, B.A., Fried-
man, J.M. and Guertin, M. (2003) Reaction of Mycobacterium
tuberculosis truncated hemoglobin O with ligand reveal a novel
ligand inclusive hydrogen bond network. Biochemistry 42, 5764–
5774.

[6] Pathania, R., Navani, N.K., Rajamohan, G. and Dikshit, K.L.
(2002) Mycobacterium tuberculosis Hemoglobin HbO associates
with membranes and stimulates cellular respiration of recombi-
nant E. coli. J. Biol. Chem. 277, 15293–15302.

[7] Pathania, R., Navani, N.K., Gardner, A.M., Gardner, P.R. and
Dikshit, K.L. (2002) Nitric oxide scavenging and detoxification by
the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia
coli. Mol. Microbiol. 45, 1303–1314.

[8] Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B.,
Wittenberg, J. and Guertin, M. (2002) Truncated hemoglobin
HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl.
Acad. Sci. USA 99, 5902–5907.

[9] Milani, M., Pesce, A., Ouellet, Y., Ascenzi, P., Guertin, M. and
Bolognesi, M. (2001) Mycobacterium tuberculosis hemoglobin N
displays a protein tunnel suited for O2 diffusion to the heme.
EMBO J. 20, 3902–3909.

[10] Milani, M., Pesce, A., Ouellet, Y., Dewilde, S., Friedman, J.,
Ascenzi, P., Guertin, M. and Bolgnesi, M. (2004) Heme-ligand
tunneling in group I truncated hemoglobins. J. Biol. Chem. 279,
21520–21525.

[11] Yeh, S.R., Couture, M., Ouellet, Y., Guertin, M. and Rousseau,
D.L. (2000) A cooperative oxygen binding hemoglobin from
Mycobacterium tuberculosis. Stabilization of heme ligands by a
distal tyrosine residue. J. Biol. Chem. 275, 1679–1684.

[12] Samuni, U., Ouellet, Y., Guertin, M., Friedman, J.M. and Yeh,
S.R. (2004) The absence of proximal strain in the truncated
hemoglobins from Mycobacterium tuberculosis. J. Am. Chem.
Soc. 126, 2682–2683.

[13] Poole, R.K. and Hughes, M.N. (2000) New functions for the
ancient globin family,bacterial response to nitric oxide and
nitrosative stress. Mol. Microbiol. 36, 775–783.

[14] Gardner, P.R. (2005) Nitric oxide dioxygenase function and
mechanism of flavohemoglobin, hemoglobin, myogloin and their
associated reductases. J. Inorg. Biochem. 99, 247–266.

[15] Hernandez-Urzua, E., Mills, C.E., White, G.P., Contreras-Zen-
tella, M.L., Escamilla, E., Vasudevan, S.G., Membrillo-Hernan-
dez, J. and Poole, R.K. (2003) Flavohemoglobin Hmp, but not its
individual domains, confers protection from respiratory inhibi-
tion by nitric oxide in Escherichia coli. J. Biol. Chem. 278, 34975–
34982.

[16] MacMicking, J.D., North, R.J., LaCourse, R., Mudgett, J.S.,
Shah, S.K. and Nathan, C.F. (1997) Identification of nitric oxide
synthase as a protective locus against tuberculosis. Proc. Natl.
Acad. Sci. USA 94, 5243–5248.

[17] Turenne, C.Y., Suchak, A.A., Wolfe, J.N., Kabani, A. and
Nicolle, L.E. (2003) Soft tissue infection caused by a novel
pigmented, rapidly growing mycobacterium species. J. Clin.
Microbiol. 41, 2779–2782.

[18] Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. and Jacobs
Jr., W.R. (1990) Isolation and characterization of efficient plasmid
transformation mutants of Mycobacterium smegmatis. Mol.
Microbiol. 4, 1911–1919.

[19] Dikshit, K.L. and Webster, D.A. (1988) Cloning, characterization
and expression of the bacterial globin gene from Vitreoscilla in
Escherichia coli. Gene 70, 377–386.

[20] Kaur, R., Pathania, R., Sharma, V., Mande, S.C. and Dikshit,
K.L. (2002) Chimeric Vitreoscilla hemoglobin (VHb) carrying a
flavoreductase domain relieves nitrosative stress in Escherichia
coli: new insight into the functional role of VHb. Appl. Environ.
Microbiol. 68, 152–160.

[21] Poole, R.K., Anjum, M.F., Membrillo-Hernandez, J., Kim, S.O.,
Hughes, M.N. and Stewart, V. (1996) Nitric oxide, nitrite and Fnr
regulation of hmp (flavohemoglobin) gene expression in Esche-
richia coli K-12. J. Bacteriol. 178, 5487–5492.

[22] Appleby, C.A. (1978) Purification of Rhizobium cytochromes P-
450. Methods Enzymol. 52, 157–166.

[23] Thorsteinsson, M.V., Bevan, D.R., Ebel, R.E., Weber, R.E. and
Potts, M. (1996) Spectroscopical and functional characterization
of the hemoglobin of Nostoc commune UTEX 584 (Cyanobacte-
ria). Biochim. Biophys. Acta 1292, 133–139.

[24] Hausladen, A., Gow, A.J. and Stamler, J.S. (1998) Nitrosative
stress: metabolic pathway involving the flavohemoglobin. Proc.
Natl. Acad. Sci. USA 95, 14100–14105.



A. Lama et al. / FEBS Letters 580 (2006) 4031–4041 4041
[25] Liu, J., Zeng, M., Hausladen, A., Heitman, J. and Stamler, J.S.
(2000) Protection from nitrosative stress by yeast flavohemoglo-
bin. Proc. Natl. Acad. Sci. USA 97, 4672–4676.

[26] Stevanin, T.M., Ioannidis, N., Mills, C.E., Kim, S.O., Hughes,
M.N. and Poole, R.K. (2000) Flavohemoglobin Hmp affords
inducible protection for Escherichia coli respiration, catalyzed by
cytochromes bo 0 or bd, from nitric oxide. J. Biol. Chem. 275,
35868–35875.

[27] Yamauchi, K., Tada, H. and Usuki, I. (1995) Structure and
evolution of Paramecium hemoglobin genes. Biochim. Biophys.
Acta 1264, 53–62.

[28] Couture, M., Das, T.K., Lee, H.C., Peisach, J., Rousseau, D.L.,
Wittenberg, B.A., Wittenberg, J.B. and Guertin, M. (1999)
Chlamydomonas chloroplast ferrous hemoglobin: heme pocket
structure and reactions with ligands. J. Biol. Chem. 274, 6898–
6910.

[29] Das, T.K., Weber, R.E., Dewilde, S., Wittenberg, J.B., Witten-
berg, B.A., Yamauchi, K., VanHauwaert, M.L., Moens, L. and
Rousseau, D.L. (2000) Ligand binding in the ferric and ferrous
states of Paramecium hemoglobin. Biochemistry 39, 14330–14340.

[30] Springer, B.A., Egeberg, K.D., Sligar, S.G., Rohlfs, R.J.,
Mathews, A.J. and Olson, J.S. (1989) Discrimination between
oxygen and carbon monoxide and inhibition of autooxidation by
myoglobin. site directed mutagenesis of the distal histidine. J.
Biol. Chem. 264, 3057–3060.

[31] Brantley Jr., R.E., Smerdon, S.J., Wilkinson, A.J., Singleton,
E.W. and Olson, J.S. (1993) The mechanism of autooxidation of
myoglobin. J. Biol. Chem. 268, 6995–7010.


	Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis
	Introduction
	Materials and methods
	Bacterial strains, plasmids and culture conditions
	Cloning and expression of the glbN gene of M. smegmatis
	Isolation, purification and characterization of HbN of M. smegmatis
	Spectral and ligand binding studies
	Heme assays
	Western blotting
	NO consumption assay and determination of cell survival against NO donor and nitrosative stress

	Results
	Structural features of M. smegmatis HbN and its comparison with other HbN type truncated hemoglobins
	Expression and purification of recombinant trHbN of�M. smegmatis
	Spectral and functional properties of M. smegmatis HbN
	CD spectra of HbN of M. smegmatis
	Growth properties and oxygen uptake of recombinant E. blank coli carrying HbN of M. smegmatis
	NO consumption activity of recombinant E. blank coli carrying HbN of M. smegmatis
	NO dioxygenase activity of HbN in M. smegmatis
	Potentiality of M. smegmatis HbN against nitrosative stress and reactive nitrogen species

	Discussion
	Acknowledgements
	References


