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Abstract

We discuss wavelet frames constructed via multiresolution analysis (MRA), with emphasghbwavelet
frames. In particular, we establish general principles and specific algorithms for constructing framelets and tight
framelets, and we show how they can be used for systematic constructions of spline, pseudo-spline tight frames, and
symmetric bi-frames with short supports and high approximation orders. Several explicit examples are discussed.
The connection of these frames with multiresolution analysis guarantees the existence of fast implementation
algorithms, which we discuss briefly as well.
0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Although many compression applications of wavelets use wavelet bases, other types of applications
work better with redundant wavelet families, of which wavelet frames are the easiest to use. The
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redundant representation offered by wavelet frames has already been put to good use for signal denoising,
and is currently explored forimage compression. Motivated by these and other applications, we explore in
this article the theory of wavelet frames. We are interested here in wavelet frames and their construction,
via multiresolution analysis (MRA); of particular interest to us tight wavelet frames. We restrict

our attention to wavelet frames constructed via MRA, because this guarantees the existence of fast
implementation algorithms. We shall explore the ‘power of redundancy’ to establish general principles
and specific algorithms for constructing framelets and tight framelets. In particular, we shall give several
systematic constructions of spline; and pseudo-spline tight frames and symmetric bi-frames with short
supports and high approximation orders. Before we state our main results, we start by reviewing some
concepts concerning wavelet frames and their structure.

1.1. Wavelet frames
Our discussions here concatpadicsystems; more general wavelet frames are discussed in Section 5.
Basic notations. (-, -) denotes the standard inner producLis(R?), i.e.,

(f.g) = / F5FOdy,
Rd

which can be extended to othgrandg, e.g., whenfg € L;(R?). We normalize the Fourier transform as
follows: f(w) := [o f(y)e7 dy. Given a functiony e Lo(R?), we sety; @ y > 2742y (21 y — k). If
the functiony; already carries an enumerative index, we wiitg . instead.

Let ¥ be a finite subset af»(R?). The dyadic wavelet system generated by the mother wavelists
the family

XW)y:={y;x vew, jeZ kelZ'}.

Such a wavelet systefi(¥) can be used in order to represent other functions,R?). Useful in this
context is thedecomposition operatgknown also as the ‘analysis operator’)

T*: f ((f,é’))gexw/)‘

The systemX (¥) is aBessel systetifithe analysis operator is bounded, i.e., for sofie> 0, and for
every f € Lo(RY),

S8 < CUll 12, g

geX(¥)

For wavelet system¥ (¥), it is easy to satisfy this basic and natural requirement: if each of the mother
wavelets has at least one vanishing moment,:€0) = 0, for all € ¥, thenX (¥) is a Bessel system
if the functions in satisfy some mild smoothness conditions (see, e.g., [12,39]).
A Bessel systenX (¥) is aframeif the analysis operator is bounded below, i.e., if there exists 0
such that, for everyf e L,(RY),

38 = Call 112, g

geX(¥)



I. Daubechies et al. / Appl. Comput. Harmon. Anal. 14 (2003) 1-46 3

This imposes more stringent conditions &r¥). A special case is provided kight frames this is
the case whelX (¥) is a frame with equal frame bounds, i.€; = C; after a renormalization of the
g € X(¥), one then has

S L =112 g, Torall £ e Ly(R).

geX(¥)

This tight frame condition is equivalent to tperfect reconstruction property

f= Y (f.g)g forall feLy(R).
geX(¥)

We are interested in the study of wavelet frames that are derived framli@resolution analysis
(MRA). Although some of our results and observations cover the case of vector MRA, we shall restrict
our attention to the scalar case. We expect that a full description of the vector case will have additional
features linked to the more complex analysis of approximation order (see, e.g., [36,37]). Our scalar MRA
setup follows [40] and represents an extension of the original MRA setup [16,32,33].

Let ¢ € Lo(RY) be given and let/y := Vo(¢) be the closed linear span of its shifts, i.&, is the
smallest closed subspace of(R¢Y) that containsE (¢) := {¢ (- — k): k € Z¢}. Let D be the operator of
dyadic dilation:(D f)(y) := /27 f(2y), and setV; := D' Vy, j € Z. The functiong is said to generate
the (stationary) MRA(V;); if the sequenceV;); is nested,

.cVoicVgCcViC-e, (1.1)

and, if, in addition, the unimhjj V; is dense inLy(R?). (The MRA condition (1.1) is equivalent to the
inclusion Vo C V1.) The generatop of the MRA is known as &caling functionor arefinable function
Finally, the MRA islocal if it is generated by aompactly supportedefinable function. (The MRA
condition in [15,32,33] also required thatand its shifts constitute a Riesz basisVf which is not
required in [40] or here.)

Definition 1.2 (MRA constructions of wavelet systej#@]). A wavelet systenX (¥) is said to be MRA-
based if there exists an MRAV;); such that the conditio C V; holds. If, in addition, the system
X (V) is a frame, we refer to its elementsfeamelets The notions omother framelets, tight framelets
etc., have then their obvious meaning.

Some historical pointers: The concept of frames was first introduced by Duffin and Schaeffer in [20].
Examples of univariate wavelet frames can already be found in the work of Daubechies et al. [18]; nec-
essary and sufficient conditions for mother wavelets to generate frames are implicit in, e.g., [15,33].
Characterizations of univariate tight wavelet frames are implicit in the works of Wang and Weiss [21,26].
An explicit characterization of tight wavelet frames (in the multivariate case) was obtained by Han [25].
Independently of these, Ron and Shen [40] gave a general characterization of all wavelet frames, and spe-
cialized this to the case of tight wavelet frames. Furthermore, applying its general theory, [40] also pro-
vided a complete characterization of all framelets. Note that [40] included a mild decay condition on
in one of its basic theorems (Theorem 5.5 of [40]); it was then shown by [13] that this theorem could also
be proved without this decay assumption, effectively removing the decay constraint for all consequent re-
sults derived from Theorem 5.5 in [40], including the characterization of tight frames and framelets. More
recently, several articles proved again some of those results without the decay constraint; see, e.g., [8,10,
34]. Finally, band limited tight framelets are also constructed by Benedetto and Li in [2] (also see [3]).
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Several questions arise naturally:

(I) Under what conditions (on the MRAV;); and the mother wavelet) does one obtaiframelets
or, bettertight framelet®

(I) Can one construct (tight) framelets from any MRA? In particular, can one construct framelets from
the MRA induced by a univariate B-spline or a multivariate box spfiffe

As to (I), we first briefly review the characterization of framelets given in [40]. For this, we start
with recalling some basic facts from the theorysbift-invariant spacesSuppose thatV;); is an MRA
induced by a refinable functiop. Let W = (v4, ..., ¥,) be a finite subset oV, (thesey, will be our
mother wavelets in the MRA-based construction). Then (see [6,7]), there exjse2odic measurable
functionst;,i =1, ..., r (referred to hereafter as theavelet masRkssuch that, for every,

Vi = (ti9) <§)
Moreover, sincep € V; (by assumption), there also existsa-@eriodic o (referred to as theefinement
mash such thay = (z9¢) (-/2); this 1o completely determineg and therefore the underlying MRA. For

notational convenience, we will occasionally list the refinable function together with the mother wavelets
in the parent wavelet vector

F = (WO’ Wl’ ceey wr) = (¢’ Wl, “"Wr)-

Similarly, we introduce the notatiom := (1o, ..., t,) for the combined MRA masthat completely
determinesF.

In all examples considered in this article, the veataonsists otrigonometric polynomialsin that
case the parent vectdt is necessarily of compact support. For the development of the theory, though,
we assume only the following milder conditions.

Assumption 1.3. All MRA-based constructions that are considered in this article are assumed to satisfy
the following:

(@) Each mask; in the combined MRA mask is measurable and (essentially) bounded.
(b) The refinablejupctio@ satisfiesA liM_o¢(w)=1.
(c) The function[@, ¢]:= 3", .,z |#(- + k)|? is essentially bounded.

Note that the MRA does not determigseandzo uniquely. For example, i is a 27 -periodic function
which is non-zero a.e., and if the functigndefined by (w) = a(w)p(w) lies in Ly(RY), theng is
refinable with maskq(w) = a(2w)1o(w)/a(w), and generates the same MRA@sloes. Incidentally,

this remark shows that Assumption 1.3 depend on the refinable function representing the MRA.: for
example, this little manipulation could transform an unbounggdto a bounded.

The characterization in [40] of tight framelets involves a speciap2riodic function®.

Definition 1.4. Let t = (1o, ..., 7,) be as above. Set

T =(11,..., T), |r+(a))|2 = Z|ti(a))|2.
i=1
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Given a combined MRA mask and the corresponding wavelet systéhw ), define thefundamental
function® of the parent wavelet vectday

%) j-1
O = |t (o) * [0 »)” (1.5)
j=0 m=0

The definition of® implies the following important identity (which is valid a.e.):

O (@) = |t (@)]* + [ro(@) |6 (2w). (1.6)

(Note that this identity was not featured in [40], it will be crucial in this paper.)
In our statements below, we use the following weighted semi-inner product (hexeO and
u,veC+

,
(i v = w37

i=1
We also need to single out the following set (which is determined only up to a null set):
o (Vo) :={w e [-7, 7]*: ¢p(w+ 2k) # 0, for somek € Z¢}.

The seto (Vp) is the spectrumof the shift-invariant spacéy; it is independent of the choice of the
generatorg of Vp, and plays an important role in the theory of shift-invariant spaces (cf. [5,7]).
The values assumed by outside the setr (V) affect neither the MRA nor the resulting wavelet
systemX (¥). In almost every example of interest, the spectra(Vy) coincides (up to a null set)
with the cube[—m, 7]¢. In particular, whenever is compactly supported, we automatically have
o (Vo) = [—m, w]".

The following characterization of [40] answers question (I) for the tight frames.

Proposition 1.7 [40]. Assume that the combined MRA mask (o, ..., 7,) is bounded. Assume that
¢ is continuous at the origin ang(0) = 1. Define® as in (1.5). Then the following conditions are
equivalent

(&) The corresponding wavelet systehi) is a tight frame.
(b) For almost allw € o (Vy), the function® satisfies

(b1) lim; O Rw)=1

(02) If v e {0, 7}"\Oandw + v € o (Vp), then

(r(a)), T(w+ v))@(zw) =0. (1.8)
This leads to several solutions to question (ll) as described below.
1.2. Extension principles
Proposition 1.7 states mathematically how all the masks “work together” to make the whole family a

tight frame. We have one single family of Egs. (1.5) and (1.8) that the masks have to satisfy jointly.
In practical constructions, this leads to a “shared responsibility” which allows more flexibility. In the
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original construction of compactly supported orthonormal wavelets [16], the refinement mashddr
to satisfy a conjugate quadrature filter (CQF) conditions as well as stability properties. This excluded
symmetric or antisymmetric wavelets, as well as spline wavelets (except for Haar wavelet, see [16,30]).
Many subsequent constructions sought to remedy this by relaxing some restrictions: in [9], symmetry
was obtained at the cost of dropping orthogonality; in their construction two compactly supported dual
refinable functions were needed, only one of which could be spline; in [14] similar non-orthogonal dual
symmetric, spline wavelet bases were given, but only one of them could be compactly supported; in [22],
symmetry, orthonormality and compact support were combined at the price of having multiwavelets, or
vector MRA,; in [19], it was shown that this could be done with spline vector MRA. In this paper, we are
relaxing the non-redundancy condition, which makes it possible to start from refipabé satisfy no
other conditions than those in Assumption 1.3.

At first sight, it is not clear how to use Proposition 1.7 for the practical construction of tight framelets;
one needs to select simultaneously the combined MRA maaskd the fundamental MRA functio®,
making sure that they satisfy the requirements (1.5) and (1.8); and this is non-trivial to solve. The problem
simplifies drastically when one restricts to the cése- 1 ono (Vp), the choice made in [40].

Proposition 1.9 (The unitary extension principle (UEP) [40Det ¢ be the combined MRA that satisfies
Assumptiori.3. Suppose that, for almost all € o (Vp), and allv € {0, 7}?,

. _ 1, v=0,
D n@T@+v) = { 0 ;therwise (1.10)
i=0 ’ '

Then the resulting wavelet systeniy) is a tight frame, and the fundamental functiGnequalsl a.e.
ono (Vy).

The proof of the UEP in [40] is based on Proposition 1.7. A ‘stand-alone’ proof of the UEP can be
obtained by following the arguments we use in the proof of Lemma 2.4 of the current article. The UEP
was then used in [40] as follows: Givep, identify 4, ..., . such that the “unitarity condition” (1.10)
holds, thus obtaining a tight wavelet frame. Note that when (1.10) h@jqjgfo,n}d |70(w + v)|? < 1 for
almost everyo. Therefore,Y",_, .1« [To(@ + v)|? < 1is a necessary condition to use the UEP.

The UEP proved to be a very useful tool to construct tight framelets, including univariate compactly
supported spline tight frames [40,43], multivariate compactly supported boxlets [42], and various other
tight framelets and bi-framelets in [43]. On a more theoretical level, this extension principle was used in
[24] in order to construct, for any dilation matrix and any spatial dimension, compactly supported tight
frames of arbitrarily high smoothness. Recently, the UEP was used in [10,34,35,44] in the context of
univariate strongly local constructions of framelets. We revisit these latter constructions at the end of this
section.

However, these constructions have limitations. In all the constructions of spline framelets listed above,
at least one of the wavelets has only 1 vanishing moment, and none of these frames has approximation
order higher than 2. In this paper, we show how to overcome or circumvent these shortcomings. One
option is to change the underlying MRA. In [40-43], spline MRAs were used; by leaving the spline
framework, considering “pseudo-splines” as in Section 3.1, the same approach as in [40—43] leads to tight
wavelet frames (bi-framelets) with higher approximation order, and with very short support. This was also
discovered, simultaneously and independently, in [44] (see Section 4 of that paper). Another approach is
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to revisit Proposition 1.7 and extract more flexible construction rules. To replace the UEP, we formulate
the more general oblique extension principle or OEP, as another consequence of Proposition 1.7.

Proposition 1.11 (Oblique extension principle (OEP)).et ¢ be the combined mask of an MRA that
satisfies Assumptioh3. Suppose that there exista-periodic function® that satisfies the following

() © is non-negative, essentially bounded, continuous at the origin&xl = 1.
(i) If w e o (Vo) andv € {0, 7}? is such thatw + v € o (Vy), then

O(w), fv=0,

(@), 1@+ Vg, = { 0, otherwise. (1.12)

Then the wavelet systek(¥) defined byt is a tight wavelet frame.

There are several ways in which Proposition 1.11 can be proved. One approach is to build, like for
Proposition 1.9, a stand-alone proof by copying the arguments for Lemma 2.4. Another approach is
to follow the proof of Corollary 5.3: to show that th@ here is the fundamental function associated
with 7, and then to invoke Proposition 1.7. This also shows, incidentally, that the existen®e of
satisfying (i) and (ii) is also a necessary condition $6f¥) to be a tight frame. It is more surprising
that Proposition 1.11 can also be derived from Proposition 1.9.

Proof. Setting? := ®/2, we define a function via ¢ := 9. Since® is boundedy lies in Lo(R?).
Consider the combined maskvith

= 19(2')1'0, t; = E i>0.

4 4

From (1.12), we obtain thdt(w)|? = 1, a.e. onw (Vp), hencer is well-defined and bounded, anglis

the refinement mask @f. Moreover, since® (0) = 1, we obtain thap is continuous at 0 an@(0) = 1.
Apply now Proposition 1.9 te, and observe that the tight wavelet frame obtained from the combined
vectorz is the same as the wavelet system induced by the combined wectar

fo:

We thus see that Proposition 1.9 and Proposition 1.11 are equivalent. It follows that every OEP
construction can be obtained also from the UEP, and vice versa, by replacing the generator of the MRA
by another (carefully chosen) generator of the same MRA. Although the UEP construction suffices, in
principle, to construct all MRA-based tight wavelet frames, the OEP greatly facilitates the search for
new constructions in practice. Indeed, by choogithgndr to be trigonometric polynomials that satisfy
the OEP conditions we naturally obtainceal tight wavelet frame. If we attempt to construct the same
system by the UEP, then the refinable function is generally not compactly supported, the corresponding
masks are not trigonometric polynomials, and it is impossible to predict when we nevertheless will still
obtain compactly supported mother wavelets.

Moreover, as we shall see in Section 3, constructingrtlseand ® simultaneously is less daunting
than it looks. Givenry, one needs to choose andr; such that (1.12) holds. More explicitly, given a
(trigonometric polynomial)ry with 75(0) = 1, we shall identify (trigonometric polynomials) and ®
such that the identity (1.12) holds for evenye [—m, 7] and everyv € {0, 7}¢. ThenX (¥) will be a
local MRA-based tight wavelet frame (provided tltatis non-negative ané (0) = 1). We refer to such
constructions astrongly local
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The remainder of this paper is organized as follows.

We first elaborate (in Section 2) on three basic properties of MRA-based wavelet systems: the
approximation order of the underlying MRA, the approximation order of the wavelet system, and the
vanishing moments of the mother wavelets. This analysis allows us to understand better the relative merit
of various possible constructions.

We then turn our attention (in Section 3) to several systematic univariate constructions. One effort is
directed at constructing refinable functions whose derived frame system has a high approximation order.
A different effort yields spline frames with high approximation orders. We also discuss briefly general
techniques for constructing frames from any given MRA.

In Section 4, we give the analysis of the implementation algorithefast framelet transfornThough
essentially identical to the widely used fast wavelet transform, the interpretation of the results of the
framelet transform turns out to be somewhat different.

We conclude this article (Section 5) with the analysis of wavelet frames that are not necessarily tight, or
dilations that are not necessarily dyadic, and correspondingly more flexible characterizations. A highlight
in this section is the (systematic) construction of univariate (symmetric) spline framelets with optimal
approximation order, and very short support; the systems in that construction are always generated by
two mother wavelets, and a specific construction in this class is detailed in Section 6.

Several authors used the results of [40] and obtained UEP-based constructions that are related to some
of ours. Particularly, univariate UEP-based framelet systems that are generated by 2 or 3 mother wavelets
were studied in [10,34,35,44]. More recently, Chui, He, and Stéckler completed an independent article
[11] in which several results overlap ours. Neither group of authors was aware of the other’'s work before
it was completed; the two papers were to be published in the same issue. The Publisher regrets that owing
to an unfortunate oversight, [11] has appeared in the previous issue.

2. Approximation ordersand vanishing momentsfor wavelet frames

“Good” wavelet systems are characterized by several desirable properties, which may compete with
each other. Generally speaking, these properties can be grouped into four categories:

() The invertibility and redundancy of the representatidhe system is required to be orthonormal,
or bi-orthogonal, or a tight frame, or a frame. And, there must be a fast algorithm that implements
the decomposition and the reconstruction.

(I The space-frequency localization of the systé€ms is usually measured by the smoothness of the
mother wavelet and the smoothness of its Fourier transformlfis compactly supported (or
band-limited), one would measure the size of surp@, respectively).

(1) Approximation properties o (¥). The three pertinent notions here are the approximation order
of the underlying MRA, the number of vanishing moments of the mother wavelets, and the
approximation order of the system itself. These properties are investigated in the current section
(for tight framelets), and in Section 5.2 (for the more general bi-framelets).

(IV) Miscellaneous propertiesMost of these properties are motivated by the actual applications;
they include the symmetry of the mother wavelets, the ‘translation-invariance’ of the system, or
optimality with respect to certain cost functions.

In this section we concentrate on tapproximationproperties of the system.



I. Daubechies et al. / Appl. Comput. Harmon. Anal. 14 (2003) 1-46 9

Definition 2.1 (Approximation orders and vanishing moméntset ¢ be a refinable function that
generates a multiresolution analysig;);. Let ¥ be a finite collection ofmother waveletsn Vi, and
let X (¥) be the induced wavelet system. We say that:

(a) The refinable functiog (or, more correctly, the MRAprovides approximation order, if, for every
f inthe Sobolev spac#;" (RY),

dist(f, Vi) :==min{|| f — gll,ze): g € Vu} =0(27"").

(b) The wavelet system has vanishing moments of orgeif, for each mother waveley € ¥, the
Fourier transform/s of ¢ has a zero of orderg at the origin.
(c) Assuming thafX (¥) is a tight frame, we define thteuncated representatio®,, by

On:fr> Z ([ V0V jk-

Yew, keZd, j<n

We say thathe tight frameX (¥) provides approximation ordew:; if, for every f in the Sobolev
spaceW,"* (R%),

If = OnfllLyrey = 0(27").

It is customary to label the largest possible number for which these statements can be made as “the”
approximation order op or of the MRA, etc.

Remarks 2.2. (1) Note that the approximation orders provideddware completely determined by the
MRA (V;);. Thus, two refinable functions that generate the same MRA provide the same approximation
order. The study of the approximation order provided by the refinable fungtiera special case of the
well-understood topic of thapproximation order of shift-invariant spacgg.

(2) Since the operato@, maps intoV,, it is obvious that the approximation order of the wavelet
system cannot exceed the order provided by the MRA. If the sy&té#n) is orthonormal, the two orders
coincide, since them®, is theorthogonal projectoronto V,,, hence| f — Q, f |l .,®a) = dist(f, V,,) for
every f € L»(RY). The same is not true for tight frames. In particular we shall see that, in contrast with
the approximation order provided lpy(that depends only on the choice of the MRA), the approximation
order of the wavelet system depends on the choice of the mother wavelets.

In the analysis below, we use the followibgacket produc{6,29]:

[fgli= D fC+Kkg(+k).
ke2rn7d
We quote briefly some basic results concerning the approximation orders provided by shift-invariant
spaces. Given any functiap e L,(R?), it is known [6], thatg provides approximation ordex if and
only if the function

212 0\ 1/2

Agim (1_ o1 ) (2.3)
(¢, &1

has a zero of order: at the origin. Under certain conditions gn(e.g., if ¢ is compactly supported and

#(0) # 0) this requirement is equivalent to the Strang—Fix (SF) conditions, meaningijhlas a zero
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of orderm atw = 0 if and only if ‘¢ has a zero of order at eachk € 27 Z\0’ (see [6] for more results
and analysis). 1§ (0) = 1 and¢ is refinable with refinement mask, then the SF conditions are implied
(but not vice versa) by the requirement that has a zero of orden at each of the points if0, 7}7\0.

In this section we explore the connections between the well-understood approximation order provided
by the refinable function on the one hand, and the vanishing moments of the mother wavelets, as well as
the approximation order of the frame system itself on the other hand. We start by the following lemma,
which rewritesQ,, f in MRA terms.

Lemma 2.4. Let X (¥) be an MRA tight frame system aatithe corresponding fundamental function.
Then the truncated operata®,, satisfies

0.1 =([/(2").9160)(5). /€ La(®).
In particular, o f = [ f, $1$®, for every f € Lo(R?).

Proof. We start the proof by observing that

(Q1— Qo) f = Z Z (fs Yiox)Viok-

i=1 pezd
As shown in [38], this is equivalent to

01f — Qof = waz Ui Z@ f Uil —0[f. 6]é, (2.5)

i=1

whereyg := ¢, Oy := @, and®, = 1, i=1,...,r.Using the relation

Ui = (ud)(-/2), (2.6)
we further obtain that

[fol= Y @5(5+v).
ve{0,7}4

where

£:=[12).¢]= Y F2C+K)(+h.

ke2rnzd

Substituting this into (2.5), invoking again (2.6), and changing the order of the summation, we obtain

01f = Qof =9(/2) Y &(/2+)Y O (/2T(/2+v) - [f. )66
ve(0,m}d i=0
= ([f@).9]¢0)(5) - /. d]d0.
The last equality follows from (1.12) ifv/2 € o (Vp); if w/2 ¢ o(Vp) it follows from the fact that

$(w/2) = 0. (The MRA tight frame must satisfy (1.12) by Proposition 1.7 and (1.6).)
SinceQ, =D"QyD™", we easily conclude that, for eveny

07 = 0 st = ([/(2).8180)(5 ) - ([/(27).6160) (5)-
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implying, for j < n,

0.1 = 0;7 — ([/(2).9160)(57) + ([/(2). 8]80)(5; ).

It remains to show that the sequen@ /) defined by
Pt =01 - ([F(2).810)(5;)

converges to 0 whem — —oo. This is a simple consequence of the weak compactness of the unit ball
of Lo(RY). (See, e.g., [5] for this argument, which u$fq§ V; = {0}. Every MRA automatically satisfies
this latter condition, as proved in [5] as well.)O

The bracket produdip, #] and the difference % [¢, ¢] are known to play a role in MRA analysis.
For instance, the orthogonal projecti@® of f onto Vy satisfies (with the convention thaf®:= 0)
[6], Pof = (Lf,$l/[d, p1)¢. Clearly, when® =1 and o (Vp) = [—7, 714, Qo = P if and only if
1— [¢, ¢] = O; the latter is a well-known characterization of the orthonormalit¢p). Lemma 2.4
(as well as Theorem 2.8 below) shows that even wies 1, the difference - ©[4, #] continues to
play a central role in the characterization of the approximation order provided by more general wavelet
systems. Even more to the point, the lemma and theorem connect MRA-based wavelet systems with
guasi-interpolation[4]: quasi-interpolation is the art of assigning suitable dual functionals to a given
set of ‘approximating’ functions. The fundamental functi®ncan be recognized to be a specific quasi-
interpolation rule. Indeed, our proof of Theorem 2.8 below invokes the following result of Jetter and
Zhou concerning gquasi-interpolation.

Result 2.7 [27,28].Let¢, ¢ € Lo(RY) and¢(0) + 0. Consider the approximation operatof®,,), where
Q,=D"QoD™", and

Oof =[f.2]é.
Assume thatd, #] is bounded. ThenQ,), provides approximation order if and only if the following
two conditions hold

(@) [6. 91— 1617 =0( - [
(b) 1-2¢=0(-I".

Theorem 2.8. Let X(¥) be an MRA tight frame system ar@ be the corresponding fundamental
function. Assume that Assumptidn3 is satisfiegd and the underlying refinable function provides
approximation ordem < oo. Then the approximation order provided by the framelet system coincides
with each of the followingequa) numbers

(i) min{m, m1}, with m, the order of the zero of — ®[¢, $] at the origin.
(i) min{m, m,}, with m, the order of the zero a® — @gz-)|r0|2 at the origin.
(i) min{m, m3}, with m5 the order of the zero df — @|¢|? at the origin.

Here, ¢ is the refinable function, ant} is its mask.
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Proof. We first prove that the approximation order provided by the frame system ignmnirg}, and
invoke to this end Result 2.7. In view of Lemma 2.4, our case here corresponds to thie-e#2¢ in
Result 2.7, hence we need to check the zero ordgpap] — |$|? and of 1— @|$|2. The latter order
is m3. As to the former, sincé is bounded above as well as away of zero in a neighborhood of the
origin, the characterization of the approximation orders provided bf. [6], or derive it directly from
the characterization mentioned in the discussion around (2.3)) is given as half the order of the zero of
(¢, ¢] — |$|2 at the origin. Thus, Result 2.7 implies indeed that the frame system provides approximation
order mir{m, ma}.

Assuminge to provide approximation ordet, we obtain (again from either [6] or directly from the
discussion around (2.3)) that, sing€0) = 1, then, near the origin,

BN m

[6.6] - |o]"=0(-*").
In particular, m; = mz whenever one of these numbers is2m. Consequently, mimw,m,} =
min{m, mz}.

Finally, since
~12 ~12

wl?6|” =8|, (2.9)
we obtain that

[0 —0@) P4’ =064 - o@)|b)|".
Since 1- ©|¢|? has a zero of exactly orders at the origin, 1— @|¢|2 = g + o(| - |2) near the origin
whereg is some homogeneous polynomial of total degrgeHence, near the origin,

~ 12 A 2 m

O¢]" - 02)]¢2)|"=q@2) —q() +o(l- ™).
Sinceq(2:) — q(-) is a non-zero homogeneous polynomial of total degrgewheneverns > 0 (which
is the case, becaug®|¢|2(0) = 1), we see tha® || — @ (2.)|¢(2:)|? has a zero of exactly ordets

at the origin. Thg conclusion that, = m3 now follows from the fact that the order of the zero of
[® — ©(2)|10]?]|¢|? at the origin is exactlyn,. O

For a given refinable functiop, Theorem 2.8 (iii) suggests that in order to construct tight framelets
that provide high approximation order, we should cho®sas a suitable approximation, at the origin, to
1/|4|%. For example, ifp is a B-spline of ordem, then

sin(w/2)
w/2
Thus, we should choose as a Z -periodic function which approximates the function
w/2
sin(w/2)
at the origin. We shall revisit this issue in Section 3.3.

m

|p(w)| =

2m

Discussion 2.10 (Approximation orders vs. vanishing moméntkthe behaviors of9 and|¢|? are not
“matched” near the origin, then Theorem 2.8 shows that the approximation order of the framelet system
can lag significantly behind the approximation order provided by the refinable function. On the other
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hand, the approximation order of the framelet system turns out to be strongly connected, perhaps in a
somewhat surprising way, to the number of vanishing moments of the wavelets.

Sincey; = (t:$)(-/2) and¢(0) = 1, the vanishing moments gf; are determined completely by the
order of the zero (at the origin) ef. This means that the MRA-based wavelet syste@# ) has vanishing
moments of orden if and only if |7, |> = O(] - |?™), near the origin. On the other hand, if our system
is a tight framelet, it must satisfy the OEP conditions, and thug = ® — ®(2.)|1|?. It follows that
the indexm, of Theorem 2.8 (ii) is exactly equal taid. This proves part of the following theorem.

Theorem 2.11. Let X (¥) be an MRA tight frame system. Assume that the system has vanishing moments
of ordermyg, and that the refinable functiop provides approximation order.. Then

(a) ¢ satisfies the SF conditions of ordep, i.e.,$ vanishes at each € 27 Z7\0 to order my.
(b) The approximation order of the tight frame systermig{m, 2mg}.

Proof. Because of the remarks above, we need prove only (a).
Let v € {0, 7}9\{0}. If X(¥) has vanishing moments of order, then|z,|?> = O(| - |*"°) (near the
origin), hence, for every > 1,

5 =0(]- ™). (2.12)

Let j € 27Z¢. Since, thanks to the OEP conditiorts, 7 (- + u))@(z.)é(- + v+ j)=0 (ono (Vp)), hence
in a neighborhood of the origin), we obtain from (2.12) tBa2-)toto(- + v)<13(- +v+4+j)=0(-|™).
Since® (0) = 19(0) = 1, we conclude that

$2-+2v +2)) = 10(- + VG + v+ j) = O(I - "),
ve{0.7}\0, j €2z’

A routine argument can then be used to prove that the last relation holdsfOras well (provided then
thatj #20). O

Remark 2.13. Part (a) of the above result states, essentially, that the approximation order proviged by
is > mgo. For an MRA-based framelet with exactlyy vanishing moments, the approximation order of
the framelet is therefore always betweegand 2n.

In the theory of MRA-based orthonormal wavelets, the approximation order of the MRA, the
approximation order of the wavelet system and the number of vanishing moments of the wavelets are
always equal. (Note that this is no longer true for bi-orthogonal bases.) It is therefore customary to inspect
only one of those quantities; most of the wavelet literature picks the number of vanishing moments as the
focal property.

In contrast, these three parameters need not coincide in the context of framelets. A natural question
then arises: which parameter should we attempt to maximize in actual constructions? The answer usually
depends on the following application.

The approximation order of the MRA is clearly important since it provides an upper bound for the
approximation order afiny framelet system derived from that MRA. Similarly, the approximation order
of the framelet system is very important since the wavelet expansion must be truncated in any practical
implementation. MRAs or framelet expansions of low approximation orders transfer to their high
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frequency scales information about the function/image/signal that could have been faithfully represented
in the (sparser) low frequency scales of more appropriate framelet expansions.

A further evaluation of the difference between the approximation order of the MRA and that of the
framelet system is as follows. The redundancy of the tight framelet system entails that # giver(R¢)
can be represented in many different ways as a convergent sum

r= Y ews. @14
fexw)
The tight framelet representation
f= 2 (fes (2.19)
geX(¥)

is one of many. One of its major advantages (over other representatighaofinear combinations of

X (¥))isthat it is implemented by a fast transform, the fast frame transform. Now, assunyeishaty,

a very smooth function. Then, a high approximation order of the MRA guaranteesothadf the (2.14)
representations of are sparse and compact. Some other (2.14) representatighmaf be dense and
inefficient. A high approximation order of the framelet system ensures that the specific representation
(2.15) is a good one, i.e., it is (asymptotically) as compact and as effective as the best possible (2.14)
representation of .

It might be worthwhile to mention that not every application requires high approximation orders
of the framelet system. For example, in novel image compression algorithms that are currently under
development, one uses the representation (2.15) as a springboard for finding the sparsest (2.14)
representation of . In this and similar applications the properties of the representation (2.15) are less
crucial, since this representation is only an intermediate one. More important then is the ability to find a
compact representation among all of those of the type (2.14), and this latter property is more connected
to the approximation order of the MRA itself.

And, what about the impact of vanishing moments? A high number of vanishing moments is
important for algorithms that involve the manipulation of the wavelet coefficients. For instance, wavelet
representations of one-dimensional piecewise-smooth functions become sparser when the number of
vanishing moments increases. On the other hand, in some applications, mother wavelgtsyiritp
vanishing moments may be preferred, since they can serve, e.g., as ‘multiple detectors.” In other
applications, the coefficients associated with the mother wavelet that has the highest vanishing moments
can be used to capture the essential information about the object, while the other coefficients simply aid
in the reconstruction process.

Let us illustrate this discussion by comparing several framelets. The first two examples, constructed
by an application of the UEP, are borrowed from [40].

Example 2.16 (Fig. 1). Takery(w) = (14 €77°)2/4. Theng is the B-spline function of order 2, i.e., the
hat function. Let

V2

l [ .
T1(w) = —Z(l — e‘“")z and (w):= _T(l _ e—tZw).

The correspondingv1, ¥} generates a tight framelet. The framelet has= 1 vanishing moments
(though one of the wavelets has 2 vanishing moments); the approximation order of the MRA is 2. The
approximation order of the framelet system equaisrin(m, 2m).
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08

Fig. 1. The graphs of the wavelet functiopig andvy» derived from the B-spline function of order 2 in Example 2.{u6;, ¥}
generates a tight wavelet frame/in(R) and has vanishing moments of order 1. The framelet system provides approximation

order 2, which is optimal for a piecewise-linear system.

(@)

04

02

o
oy

2
(©

0.5

(b)

2
(d)

Fig. 2. The graphs of the wavelet functiotig, o, V3, ¥4 derived from theB-spline function of order 4 in Example 2.17;

together, the four wavelets generate a tight framelet. Wavelet (d) has only one vanishing moment, hence the approximation

order is 2, which is suboptimal since the corresponding MRA provides approximation order 4.

Example 2.17 (Fig. 2). Takerg(w) = (14 €7)4/16. Theng is the B-spline function of order 4 which

is a piecewise cubic polynomial. Let

1 .
T (w) = Z(l — e”“’)4,

1 . .
To(w) := _Z(l - e’“")s(l +e7?),
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Fig. 3. The graphs of the symmetric wavelet functignsandy,» derived from the B-spline function of order 2 in Example 2.18.

{v¥1, ¥} generates a tight framelet, and each of the wavelets has two vanishing moments, and hence the approximation order of
the system is mif#, 2} = 2; the higher number of vanishing moments than in Example 2.16 leads to sparser wavelet coefficients
but does not improve the decay of the erft@,, f — f|| for the truncated reconstruction.

6 ) . 1 ' '
Ta() = —%(l —e ) (1+e™)’ m@i=-(l-e ) (1re).
The correspondindvry, ¥, ¥3, ¥4} generates a tight framelet that has vanishing moments of order

mo = 1. For this¢ we havem = 4. The approximation order of the framelet system is @in(m, 2my).

The next two examples are linear, respectively, cubic spline framelets constructed by using the OEP,
as described below. We list hetg, ®, andt;, and revisit these examples later.

Example 2.18 (Fig. 3). Takery(w) = (14 €7°)2/4 and® (w) = (4 — cosw)/3. Let

1(1 - e*"“’)2 and

T1(w) = ~2
6 ) ) . .
(W) = —g—;(l — e*"”)z(e*"“ +4e7% @),

The set{yr1, ¥»} generates a tight framelet and has vanishing moments of order 2yBahd, are
symmetric and their graphs are given in Fig. 3. Even though 2 4, we still havem = 2, so that
min(m, 2mg) equals 2; this system has thus the same approximation order as in Example 2.16.
Example 2.19 (Fig. 4). Takery(w) = (1 + €7/)*/16 and
O (w) = 2452/945— 1657/840 cosw) + 44/105 cog2w) — 311/7560 co%$3w).
Let
n(w)=n(l—e) [1+8e7 + 2],
() =1p(1— e‘”")“[l + 8¢/ 4 (77754396 — 538541099 %
+ 8e—i3w + e—i4w]’
13(w) =t3(1 - e*"‘“)4[1 + 867 + (21+1/8) (e - €71%) 4 1&g
+8e7% 7%,
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Fig. 4. (b), (c), and (d) are the graphs of the symmetric mother wavelets derived from the cubic B-spline function (a)
in Example 2.19. All the mother wavelets have four vanishing moments, hence the approximation order of the system is
min{4, 8} = 4.

wherers = /3265520160,r = 3177847775+ 56+ 163236998912418025, and

= +/11113747578360- 245493856965
62697600 '
t, = +/1543080- 32655 /40320
The above masks satisfy the OEP conditions, hence lead to a tight framelet. All the wavelets here have
four vanishing moments henegy, = 4. The mother waveletg, v», ¥z are symmetric. Note that for
this ¢ the approximation order of the MRA ig8 = 4. The approximation order of the framelet system is
4 =min(m, 2mg). The three fiters are of size 7, 9, 11.

A fifth example is constructed by using the UEP, now starting from a different, non-spline MRA; this
construction will also be revisited in more detail in Section 3.1.

Example 2.20 (Fig. 5). In this case we have one scaling function and three wavelets. The filtensi

7;, j = 1,2, 3 are obtained by spectral factorization, i.e., by “taking a square root.” In particular, we have
ITo(w) |2 = cof(w/2) (1 + 4sirf(w/2), T1(w) = €°1p(w + 1), T2(w) = (v/5/2) sirf(w), and tz(w) =
€°1(w). The wavelets in this system have 2 vanishing moments, soithat 2. The approximation
order of the MRA isn = 4; the approximation order of the framelet is thus (in2mq) = 4.

For these five examples, as well as for the bi-framelet of Section 6, and for three benchmark wavelet
bases (not frames—we used here the Haar basis and the two bi-orthogonal wavelet bases known as
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Fig. 5. (b), (c), and (d) are the graphs of the mother wavelets in Example 2.20 of the type | pseudo-spline tight framelets derived
from the scaling function, pseudo-spline (4,1), shown in (a) (see Section 3.1 for details).

Table 1
The errorg| 0, f — f| for nine different systems, for increasing= level); the last row gives the slope eflog, || 0 f — f |
as a function of:, computed by linear regression

HAAR (5,3) 9,7) Example 2.16 Example 2.17 Example 2.18 Example 2.19 Example 2.20  Bi-frame
Level (1,1,1) 2,2,2) (4,4,4) 1,2,2) (1,2,4) (2,2,2) (4,4,4) (2,4,4) (4/12,4,4)
2 6.36e-01 1.57e-01 9.15e-02.26=-01 5%2e-01 167e-01 HA4e-02 193e-01 120e-01
3 3.72e-01 4.83e-02 8.15e-03.14e-01 186e-01 L4e-02 D0e-04 164e-02 411e-03
4 1.92e-01 1.27e-02 5.54e-04 .13=-02 le-02 123e-02 R0e-05 111e-03 P6e-05
5 9.63e-02 3.20e-03 3.53e-05.97e-03 128e-02 317e-03 208e-06 712e-05 208e-06
6 4.75e-02 8.02e-04 2.20e-06 .0@=-03 30e-03 80e-04 131e-07 447e—06 132e-07
7 2.30e-02 2.00e-04 1.35e-07.0B=-04 800e-04 200e-04 838e-09 280e-07 809e-09
8 1.07e-02 4.94e-05 8.07e—09 .23e-04 198e—-04 494e-05 Ble-10 175e—-08 577e-10
9 4.60e-03 1.18e-05 4.49e-10.0Ge-05 471e-05 118e-05 498e-11 109e-09 498e-11
10 1.53e-03 2.35e-06 2.47e-11.06e-06 HAle-06 235e-06 FHle-12 678e-11 H6e-12
1.07 2.00 3.99 b6 199 200 408 395 413

(5,3) and (9,7)), we provide, for a very smooth functipnthe error||Q,, f — f|l, for increasing:. The

results are listed in Table 1 (courtesy of Steven Parker of UW-Madison). For each system we also list
three indices in the header of the column: the first is the number of vanishing moments of the system,
the second is the approximation order of the system, and the third is the approximation order of the
underlying MRA (the last system is a bi-frame, meaning that the decomposition masks are different from
the reconstruction masks: the former has four vanishing moments while the latter only two vanishing
moments). At the bottom of Table 1 we give the numerical estimate of the decay fiabe 6f f| in n;
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this clearly is (approximately) equal, in all cases, to the approximation order of the system, and depends
only marginally on the other two indices. Let us look at some particular comparisons. For the linear
splines in Examples 2.16 and 2.18, the increase in the number of vanishing moments from Examples 2.16
to 2.18 does not improve the approximation order of the framelet. What this means is that the estimates of
the sizes of the wavelet coefficients, as given by, e.g., max v, ;«)|, will decay faster ag increases
for Example 2.18 than for Example 2.16, but that the truncated wavelet expansions, using coefficients
up to level j only, will exhibit comparable errors. For the cubic splines in Examples 2.17 and 2.19,
the number of vanishing moments increases from 1 (for Example 2.17) to 4 (for Example 2.19); this
is reflected by an increase in the approximation order of the corresponding framelets, from 2 to 4. In
Example 2.20 we have only 2 vanishing moments, but the framelet approximation order is 4, and the
decay of||Q, f — f| is comparable to that for Example 2.19, even though the decay of the wavelet
coefficients will be less fast.

Let us proceed now with a more systematic tour.

3. A tour through univariate constructions of tight framelets

We restrict our attention here sirongly local MRA-based constructiorSonstructions are typically
guided by a desire for some of the following properties for the mother wavelets:

(i) Short filter/support.
(i) High smoothness.
(iii) High approximation orders of the refinable function.
(iv) High approximation orders for the framelet system.
(v) High order of vanishing moments.
(vi) Small number of mother wavelets (equivalently: low order of oversampling).
(vii) Symmetry (or antisymmetry) of the wavelets.

The constructions of [40-43] are optimal with respect to properties (i)—(iii) and (vii): they involve tight
and other spline framelets with very small support. However, the approximation order of these framelet
systems is 2 (which is optimal only in the case of the piecewise-linear tight framelet), because the number
of vanishing moments is always 1. Moreover, the number of mother wavelets increases together with the
underlying smoothness.

In order to improve the approximation order of the framelet system or the number of vanishing
moments without changing the underlying MRA, one has to increase the support of the mother wavelets.
Let us examine, as a major example, the case of the spline MRAS. In this case the refinable #iitction
the B-spline of ordem (with m some fixed positive integer) whose mask is

(l-i—ei‘“)’"
‘L'0= 2 )

for which [40,42,43] use the UEP to construct a tight framelet. Sinee|%|?> = O(] - | around the
origin, Theorems 2.8 and 2.11 show why the approximation order of the resulting wavelet system cannot
exceed 2 (regardless of the valuenof. We attain better framelet approximation order via the OEP (see
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below), by choosing &rigonometric polynomial; since|z, |2 = ® — @ (2)|10|?, we necessarily obtain
mother wavelets with longer support.

Let us examine another property of the framelet system, viz., the number of mother wavelets. Using
any of the extension principles, we have two requirements to fulfill

O@)|wl’+) lul*=6 and ©@)wwn(+7)+) uu(+)=0.
i=0 i=1

So far we have not specified Without imposing special conditions on the refinable function, we will
need at leastwo mother wavelets in order to satisfy the above. A rigorous statement to that extent is
found at the end of this section. (One needs great care when stating such results: after all, an orthonormal
wavelet system can be derived fraany local MRA, without any further conditions on the compactly
supported refinable function [5]. The single mother wavelet, however, may decay then at a very low
rate, in stark contrast with the compact support of the refinable function.) Moreover, if we impose also
the symmetry requirements (vii), then it may reasonably be expected that we need, at least for generic
refinable functionsthree mother wavelets. We shall therefore consider cases wheen be as large
as 3. For simplicity, we restrict ourselvesrte= 3, and provide a method to reduce the number of mother
wavelets from 3 to 2, if desired. (This reduction usually comes at a price: the filters may be longer and/or
have less symmetry.) There may, of course, be situations where one wishes to consider largere
shall not do so here.

We advocate the use of systems in which the approximation order of the framelet systems matches, or
at least does not lag significantly behind, the approximation order of the MRA itself, and this principle
guides us throughout this section.

Discussion 3.1 (MRAs of approximation ordet). As an illustration for the above, let’s consider several
MRAs whose approximation order is 4. The orthonormal system of that order involves 8-tap filters
[16], and the mother wavelets have relatively low smoothness. Symmetry of the mother wavelets can
be obtained by switching to a bi-orthogonal system, such as@diforthogonal wavelets. In all these
cases, the system provides approximation order 4, and the vanishing moments are of order 4, as well.

In [40,42] two different tight cubic spline framelets are constructed. One of them involves four mother
wavelets each associated with a 5-tap filter. The approximation order of the system is 2 and the vanishing
moment order is 1; the corresponding t; were given in Example 2.17 above. The smoothness is
maximal (for 5-tap filters). In order to increase the approximation order of the system from 2 to 4 we
must use longer filters, regardless of whether we stay with a spline MRA or not.

In our first stop on the tour in this section, we will change the MRA (to a pseudo-spline MRA of
type (4,1), see below) and obtain three mother wavelets with associated filters of length 6,5,5. We also
construct from the same MRA a system with two mother wavelets with filters of length 6 and 14. The
approximation order of the tight framelet is 4 in both cases, but the vanishing moments are only of order 2.
In our second stop, we construct spline framelets of any order with any number of vanishing moments.
In that construction, the number of wavelets is either 3 (with short filters) or 2 (with longer filters). In the
former case, we achieve approximation order 4 (and vanishing moments 2) with three 7-tap filters, and
in the latter case the two filters are of sizes 7 and 17.

It turns out that one can find (by hand) tight spline framelets that have even shorter filters; examples
of the results of sucha@-hoq constructions within the cubic spline MRA, yielding two mother wavelets
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with 9- and 11-tap filters, with 4 vanishing moments, are given in Appendix A. Note that other framelet
constructions with short support and few wavelets are given in [10,34,35,44].

It is clear that one has to consider trade-offs when deciding which of these framelets, all of which
have approximation order 4, one should use. Since gain in vanishing moments carries a price (in filter
size), one should consider it only if the corresponding faster decay of wavelet coefficients is sought;
if the most important feature is the order of approximation, then there is no need to look for higher
numbers of vanishing moments than half the desired approximation order. The same applies to the gain
in smoothness; the switch from pseudo-splines of (4,1) to splines of order 4 yields smoother mother
wavelets, with longer associated filters, for the same approximation order. Which one is preferred is
dictated by whether short filters or smooth wavelets are most desirable for the application at hand.

Wavelet mask construction.All the constructions in this section use the following approach. Suppose
that we are given a refinable function with magk and that we have chosen the fundamental MRA
function to be somes-periodic®, such that the OEP condition is satisfied

© — O(2)|10|* = 0.
Let's assume, in addition, that
A=6 - 02)|nl = O2)|w( + )| >0.

This extra condition will make it easy to find wavelet masks. Chagse; to be two 2r-periodic
trigonometric polynomials such that

2+ 16°=1,  tata(- + 1) +tat3(- + 1) =0.

A standard choice for suadh, 13 is

2 V2
f(w) = TR f3(w) 1= >
Define® anda to be square roots @ and A, respectively. The three wavelet masks are then

ge.

71 1= e1?(2)70(- + 7), Ti=fa, =23,

where e (w) = €. It is easy to check that the combined mask= (1o, ..., t3) Satisfies the OEP
conditions (cf. Proposition 1.11). Assuming that all the side-conditions of the OEP are satisfied (to be
checked in individual constructions), we thus obtain a tight framelet.

One can reduce the number of mother wavelets to two by defining

71 1= e10(2)19(- + 1), 7o 1= 19a(2").

Thent = (1g, 71, T2) Satisfies the OEP conditions with a new fundamental funation A.
In the case where one uses the UEP rather than the @EPL, and hence one uses the assumption
that

A:=1— |- |ro(- + 71)|2 >0.

Leta be the square root of. One can then define three wavelet masks by

- a
71 :=e170(- + ), Ty 1= —, T3 1= e17y.

V2
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The reduction from three to two mother wavelets can still be carried out, but one then joins again the
OEP case, now with the new fundamental function A.

This section is organized as follows. First, in Section 3.1, we use the UEP approach just sketched to
construct univariate tight framelets based on a new class of refinable fungigmsjo-splinesa class
that ranges from B-splines at one end, to the refinable functions constructed in [16] at the other end. This
yields the pseudo-spline wavelets of type I; a variant on the construction gives pseudo-spline wavelets
of type Il. The main advantage of this construction is the ability to increase the approximation order (as
compared to a spline system in [40]) of the system, while keeping the filters very short (although not as
short as in the [40] construction). We also illustrate (type Ill) the reduction to tight framelets that have
only two mother wavelets.

In Section 3.2 we use the OEP approach sketched above to give a systematic construction of tight
spline framelets, starting from B-splines of arbitrary order. Once again, each system is generated by two
or three mother wavelets, and the wavelets, in general, are not symmetric. We obtain in this way, from
any B-spline MRA, tight spline framelets of optimal approximation order. The filters, however, are longer
than their pseudo-spline counterparts. The same construction can also yield tight spline framelets with
maximal number of vanishing moments, by requiring then even longer filters.

In this era ofMat | ab, Mapl e, andSi ngul ar (cf. [23]), one can also construct systems by ad-
hoc methods, if the approximation order is not too large. In Appendix A, we present a variety of spline
systems that were computed in this way. All the systems have the maximal number of vanishing moments
(the approximation order of the systemadprtiori, also maximal). Some of the systems are generated by
two (not symmetric) mother wavelets, and others by three (symmetric) mother wavelets. In all examples
the corresponding wavelet masks are shorter than the spline masks in Section 3.2 (but still longer than
the non-spline masks in Section 3.1).

All the above constructions have their bi-framelet counterparts, which can be a way to recover
symmetry when an associated tight framelet uses non-symmetric wavelets. This is illustrated in Section 5;
note, however, that at least one of the bi-framelet constructions in Section 5 cannot be regarded as a
‘symmetrization’ of a tight framelet construction.

3.1. Pseudo-spline tight framelets

Let £ < m be two non-negative integers. We denote
‘(m + ¢
|rg,"*‘f(w)|2 = coF" (w/2) § : ( _ ) sin? (w/2) cog“(w/2).
l
i=0

Sincelr(’,"’el2 is non-negative, it is, by spectral factorization, the square of some trigonometric polynomial
rc’,""z. It is easy to prove that the corresponding refinable funcgipn lies in L,(R). Moreover, the shifts

E (¢ o) Of ¢, form a Riesz basis fovy(¢,, (). We refer to this refinable function aspseudo-spline

of orderm and type¢, or, in short, of type(m, £). Fixing m, we note that a pseudo-spline of type 0 is
anmth order B-spline, while the pseudo-spline of type- 1 coincides with the refinable functions of
orthonormal shifts that were constructed in [1€]:* is the mask of a filter withn + ¢ 4 1 non-zero co-
efficients. The smoothness @f, , increases withw and decreases with For example, a straightforward

computation (based on the transfer operator) shows thdtA{¥)-smoothness exponent ¢f, 1 is

a(m,l):=m —log,/(m+2),
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i.e., 1€ WE(R) for everya < a(m, 1), butg,, 1 ¢ WS (R). In the casen = 4 and¢ = 1 (which is
of possible practical interest), we obtain that the smoothness parameteitag4/6 ~ 2.71, hence that
$4.1 € C2(R). We note thatr(4, 0) = 3.5.

Next, we note tha,tr(’,”’el2 consists of the first + 1 terms in the binomial expansion of

1= (cof(w/2) + sir(w/2)""".

Thus, |75 ()12 + 78" (w +)|? < 1 and therefore we can use the UEP. Alse, 152 = O(| - |2)%+2.
This means that, in view of Theorems 2.8 and 2.11, all tight framelets that are extracted from the
pseudo-spline via the UEP will satisfy:

(a) The approximation order provided by the refinable function.is
(b) The approximation order of the framelet system is{mir2¢ + 2}.
(c) The order of the vanishing moment<ig- 1.

For example, in the case = 4 and¢ = 1, we obtain optimal approximation order 4, but we must have
at least one wavelet in the system with only two vanishing moments.
We propose two simple UEP-based constructions of pseudo-spline tight framelets.

3.1.1. Type | pseudo-spline tight framelets
This is a straightforward application of the principle above. Giwgen= r{,’“, we define

7= r{"’e = elr(')"’e(- + ),

where, as beforez(w) = €. As in Mallat’s [32] constructiongoto(- + ) + 1171(- + ) = 0. It also
follows that:

m—1 +Z

A=1— )= |nul= Z (m , )cos?m”@Zi(w/z)sinzl'(w/z).

i=0+1 !
Since A is a non-negativer -periodic trigonometric polynomial, we can findmaperiodic trigonometric
polynomiala such thatA = |a|2. We then define, = a/ﬁ andtz := e172(- + ) = e173, to conclude
thatt := (19, ..., 13) Satisfies the UEP. Hence, the resulting wavelet system is a tight frame. Note that
each mask corresponds to @m+ ¢ + 1)-tap filter.

The casen =4, ¢ =1 is depicted in Fig. 5. In this case the filters are slightly shorter compared with

the general case; one is 6-tap, and the others are 5-tap (this simplification happens because

A =10co8(w/2) sint(w/2) + 10cod(w/2) sirf(w/2) = 10 cod(w/2) sift(w/2);

a similar reduction occurs in general provided thatm — 3). The approximation order of the system is 4
(optimal), one of the wavelets has 4 vanishing moments, while the two others have 2 vanishing moments.
The L,-smoothness parameter is 2.71.

3.1.2. Type Il pseudo-spline tight framelets
We proceed as in the type | case to obtaimnd A as before. We then splt = A; + A1(- + ), with
A1 defined as the sum of the firék: — £ — 1)/2 terms in the definition ofA. (We assume tacitly that
m + £ is odd; the construction can be easily adapted to the even case, splitting the middle term evenly
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Fig. 6. (b), (c), and (d) are the graphs of the mother wavelets of the type Il pseudo-spline tight framelets derived from the
pseudo-spline (4,1) (a).

betweenA; and A1(- + ).) Choosingr, to be a square root od,, and 3 := e;72(- + ), we obtain
again a combined mask= (1o, ..., 3) that satisfies the UEP. Hence the resulting wavelet system is a
tight frame. The wavelets for the came= 4 and¢ = 1 are given in Fig. 6.

Remarks. (1) The above constructions of pseudo-spline tight framelets, published here for the first
time, have been in use for various applications since 1997. In particular, N. Stefansson used them, with
excellent results, in signal compression experiments.

(2) The papers by Chui and He [10] and Petukhov [34,35] present general methods for solving the
equations arising from the UEP methodrit= 2, seeking to find two appropriate and 7, whererg
is given such thatto(w)|? + |to(w + m)|? < 1. (If 79 is symmetric, they also show how to handle the
case when three symmettig, 1,, 3 are desired.) Applying their general method to the pseudo-sgjine
would lead tor;, 75, 75 that are closely related to the given here. One could also use these methods to
obtain twoty’, ;. Either of these tight framelets will have the same approximation order as given here.

3.1.3. Type lll pseudo-spline tight framelets

Applying the “reduction” technique sketched above, one can define a tight pseudo-framelet with only
two mother wavelets, corresponding@o:= 1 — A. Note that sinced = O(| - |**?) around the origin,
these type lll framelets provide the same approximation orders (and have the same number of vanishing
moments) as their type | and Il counterparts. However, the second mother wavelet now has a very long
filter: 3(m + £) + 1 in general, 14 in the more fortunate (4,1)-case.
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3.2. A systematic construction of spline framelets of high approximation order

We shall here apply the OEP construction. tdie a B-spline of ordew:, then
14 eo\" ~ 2 sif(w/2)
To construct tight framelets having approximation ordérdhe needs to fin® := ©,, , of the form

-1
Ow) =14 ¢;sit (w/2) (3.2)

j=1
such that, at the origin,
~2
1-0|p["=0(-*). (3.3)
In other words,®,, , must approximate the functiory[h|2 at the origin to order. Such a® can be
determined uniguely as shown in the next lemma.

Lemma 3.4. Let ¢ be the given B-spline of ordet; let ¢ be an integer < m. Then there is a unigue
positive trigopnometric polynomial of minimal degree

-1
O) =1+ c¢;sit(w/2)

j=1

satisfying, at the origin
1-0ld[*=o(I- ).

Proof. The key in the proof is that the (uniquely determined) coefficigntsin the definition of® are
non-negativeFrom (3.3), we have

2m
@(a)):( /2 ) [1+ 0(10/?)].
Sinw/2

Since

00 S '
arcsinwzw—i-Z%wzﬁl,
= @HNEj+D)

we have
.a)/Z aI’CSIr'(SIn(a)/Z)) Z 2 — 1! S (/2). 0.
SII’](a)/Z) sin(w/2) (21)”(2 +1)

Therefore,® is the unique trigonometrlc polynomial of minimum degree in (3.2) such that

1 2j — D! jz’" . -1 ,' Z
+Z<21>"<21+1> =1+) ey’ +0(yl). y—0.

j=1
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It follows from the above equation that the, j € N are positive. In particular® (w) > 0 for all
weR. O

To apply the approach sketched earlier, we need to checldtigpositive.

Proposition 3.5. For integerst, m with £ < m, let ® be the trigonometric polynomial given in Lem&
Then the trigopnometric polynomial
A:=06 — 0(2)(cos"(-/2) + si"(-/2))

is non-negative. Furthermorey = O(| - |%) near the origin.

Proof. We start by writingA as a homogeneous polynomial of degree- m + 2¢ — 2 in the arguments
x 1= cof(w/2) and y := sir’(w/2); this can be done by multiplying each term &iw/2) in ® by
(co(w/2) + sirf(w/2))"~/ = (x + y)"~/. We thus replace’ by
0, i<j,
Y4y = Zd ()Y x" with d (j) == { ("J), otherwise. (3.6)
i=0 e
In ©(2), we replace each sif(w) = (4xy)’ term by 2/ y/x/ (x 4+ y)2~2i-2,
Let p(x, y) be the homogeneous polynomiabiny (of degree:) that is obtained from this conversion
of ®. Then
-1

plx.y) = Zdy' di=)cidi()).

j=0
We make the following straightforward observations:

(i) Sinced;(j) andc; >0, for alli, j, it follows thatd; > 0, for all .
(i) Since, for eachj, and for eachi < n/2,d;(j) << d;;1(j), we have
di <diy1, i< %
(i) Since, for eachj, and for each < n/2,d;(j) <d,_;(j), we have
n
di < dn—ia s A
1< 2
(iv) One calculates that, for eveny 2d,_»(j) < d,_1(j). Therefore,

2dy 5 <dy_1.

Let g(x, y) be the polynomial (of degree¢2- 2) that was obtained fron®(2:). Theng(x, y) =
q(y, x), and the representation dfis of the form

p(x,y)—q(x,y)x +y Zbyx =,

We prove the Propaosition by showmg that eaclis non-negative. Sincg(x, y)(x™ + y™) is symmetric,
and in view of observation (iii) above, it suffices to show that: 0 fori <n/2.
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Now the condition - @|<]3|2 = 0(| - %) is equivalent (cf. Theorem 2.8) to the condition
O —O(2)cos"(-/2) = 0| - |*).

(This shows thatd = O(| - |*) near the origin.) Rewritten in terms of the polynomialsg, this last
condition says thap(x, y) — g (x, y)x™ is divisible byy*. It follows that the terms i (x, y) in y’, with
i < £, must match up exactly with corresponding terme i, y). By the symmetry (x, y) = g(y, x),
this determines all the coefficients4t consequently,

1 -2
g, y) =Y diy'x® 24y d yH
it i=0

andb; =0,i=0,...,¢— 1. Lett <i < n/2; then (withd, := 0 for negativek), b; =d; — (doe_>_; +
d;_,,). From observation (ii)d; > d,, while, since 2 —2—i,i —m < £ — 2, the same observation yields
thatdy,_»_; +d;_,, <2d,_,. Altogether,b; > d, — 2d,_, > 0, by observation (iv). O

Proposition 3.5 and Lemma 3.4 show that we can use our general ansatz, and obtain a systematic
construction of tight framelets (with two or three mother wavelets) Withm vanishing moments, for
an arbitrarymth order B-spline.

Remark. The arguments given here for the construction of tight framelets can be expanded easily to
“bi-framelets,” where one needs to identify and r;", i=1,...,r, so that the resulting framelets are
symmetric for both pseudo-spline and spline MRAs. Again, the general case requires an appropriate
function @ (which no longer needs to be positive); all the equations are the expected bi-orthogonal
generalizations of our tight frame equations here (see Section 5). Beéniséess constrained, the
construction is much easier; in fact, it turns out [17] that one can obtain dual frameletafrptwo
refinable functions, i.e., for any pair of, rg’.

Example 3.7 (Spline framelets with approximation ordé). For themth order B-spline withn > 4, take

m sin(w/2)
Ow) =1+ —
Then
sSin’ (w/2)

(w/2)%m

around the origin. We define

|rl(a))|2 = (1+ @) sSin’" (w/2).

Then, in the notations of the lemma above,

O(w) =1+ O(|ol*)

4
A@) = (x+3)"* 2+ Ty + )" = (x2 + (2+ ?m)xy + y2> (" + ™).

This expression is indeed divisible by, and is a non-negative linear combination of the various
monomials involved.
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For the benchmark case af = 4 and? = 1, the type | construction yields three 7-tap filters, longer
than the (6, 5, 5)-tap filters of the corresponding pseudo-spline construction. The approximation order is
(the optimal) 4 in both cases. The two wavelets of type Ill now have filters of lengths 7 and 17. The case
m = 4, = 4 yields wavelets with four vanishing moments and with filters of lengths 11.

We have shown here how to construct tight spline framelets with 2 and 3 mother wavelets. A natural
question is whether we can construct tight spline framelets with a single generator. A partial negative
answer is given in the following result.

Theorem 3.8. All the constructions of strongly local MRA-based tight frames that are derived from a
B-spline of orderm > 1 must have at least two mother wavelets.

Proof. The maskr, of themth order B-spline satisfid$y(w)|?> = cos$” (w/2). Suppose we used the OEP
conditions to construct a strongly local tight frame based on a single waveletmdbkt is,7; as well

as the fundamental functia® are trigpnometric polynomials. Recall (see the proof of Proposition 1.11)
that, equivalently, we could have applied the UEP with respect to the refinement mask whose square is

O (2)|10/?
—
But that implies that this latter refinement mask is CQF, i.e.,
O2)|wl* | O@)|wl*(+7)
2) O(+m)
or, equivalently,
O)(t+1t(+m)=O0O(+m), t:=0(+n)|wl
Comparing the degrees of the two sides of the last equality, we conclude that, for some positive epnstant
OR2)=00(C+n) and r+1(-+7m)=c. (3.9

]

Becauseéty|?|to|?(- + ) = 47" |w|?(2 - +7), we conclude from the first equality in (3.9), that
tt(-+m)=cd""t (2 +m). (3.10)

Suppose that (o) = Z';lzjla(j)e"-"“’. From (3.9) we conclude that(0) = ¢/2, and thatx(2j) =0
for any j # 0. Thus,k; > 0. If k; = 0 then (by comparing the constant term on both sides of (3.10))
(c/2)?> =c4c/2, a contradiction.

Thus,k; > 0. Letk, be the degree of the second highest non-zero termlbk, > 0, we are led to a
contradiction (since the coefficient ofe* 2« in the left-hand side of (3.10) is then non-zero, while the
same coefficient in the right hand-side of (3.10) is zero). Thas; 0. Similar arguments hold for the
negative frequency contributions toWe conclude, therefore, thats a linear combination of (at most)
three exponentials, hence can have at most a double zero at any given point. This implies=that
sincer has a zero of order2atz. O

Remarks. (1) The argument of this proof is instructive for non-spline MRA as well. If we have a strongly
local MRA-based tight framelet with only one mother wavelet, then (3.9) still holds, ensuringgRat
©®(2)|10/?/O is a trigonometric polynomial, which satisfies the CQF constrigiit = |7o|?(- + 7) = 1.
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In summary, all the strongly local tight framelet constructions in one variable that lead to a single mother
wavelet can be equivalently done by a (strongly local) standard CQF construction.

(2) Examples of exponential decay orthogonal spline wavelets constructed in [1] and [31] confirm that
the assumption of the compactly supported mother wavelets is heeded in the above Proposition.

4. Thefast framelet transform

We assume in this section that the reader is familiar with the details dattevavelet transform.
Our goal is to highlight the subtle difference between that widely used transform and its newer sibling,
the fast framelet transform. Substantial frame software is currently under development and will be made
available to the public as a part of the Software Distribution Center df\iéneelet Center for Ideal Data
Representatiofwww. wavel eti dr. or g).

Let f e Lo(R?); the function f is held fixed throughout the discussion. Assume that we are given
information aboutf on some uniform grid, a grid which, for notational convenience, we assume to be
the integer lattic&Z¢. The functionf is thus assumed to be ‘given to us’ in terms of the discrete values

(ialO(k))keZd'

Concrete assumptions on the exact naturéyf are made in the sequel. As a general rilgg(k) is a
local average of the values gfaround the poink.

Let X (¥) be an MRA-based wavelet system associated with the combinedmasgkg, ..., 7). As
before, the refinable function is denoted by as well as byp. We denote by = (xo, ..., x,) the filters
associated withizo, ..., 7).

The discussion of the fast framelet transform is made into three parts: (i) the decomposition algorithm,
(i) the reconstruction algorithm, and (iii) the interpretation of the wavelet coefficients that were obtained
in (i).

The analysis/decompositiostep of the fast framelet transform is identical to that of the fast wavelet
transform, with the only change that we do not necessarily havelzhigh pass filters. This step consists
of the convolution of(Fg ;) (j < 0) with each of the filters; followed by the downsampling:

E,j_1<—(x,'*F0,.,-)¢, i=0,...,l".
The following simple observation is the basis for timéerpretation of F; ;-sequences. (No special
assumptions oX (¥) are required here; we also omit the straightforward proof.)

Proposition 4.1. Assume that
Foo(k) = (f, Yoox), keZ’
Then
Fi (k)= (f,¥ix), i=0,....r, j<O, keZ

Suppose now that the sequenég, does not satisfy the assumptions of this proposition. For example,
suppose thakp o comprises the coefficients thegnthesizef, i.e., suppose that

¢* Foo:= Z Foo(k)g (- —k)

keZd
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either coincides withy’, or provides a good approximation yao Concretely, let us assume that’ Fy o

is theorthogonal projectior f of f onto Vo. If the shifts of¢ are orthonormal (an assumption that is
natural in the construction of orthonorm&l¥)), we still haveF, o(k) = (f, Yo.0x) =: Fo.0o(k). However,
for other tight framelets, this is not the case: the analysis of Section 2 shows that #y o is the
orthogonal projection of onto Vj, then the Fourier series @t is the function

Lf. $]

(6. p1
whereas the Fourier series fBj,o is [ f, ). Thus, if we denote by the Fourier coefficients d#, §],
we have that

F0,0= F0,0*CI. (42)

Since we do not assume the shiftspao be linearly independent, we might have many representations of
the orthogonal projectiof® f in the formP f = ¢ %' Fy o; we stress that (4.2) holds fewerysuch Fy .
We recall also that

atk)y =g, ¢(- — k), keZ’.

Thus, in casefp o is comprised of the coefficients of the orthogonal projection as above, we can simply
convolve it witha, obtain in this way the inner product$ o required in Proposition 4.1, and proceed to
decomposery . A similar analysis can be carried out if the dd@y(k) correspond to averages of the
type Foo(k) = (f, g(- — k)), with respect to some “measurement functignOne then computeﬁo,o(k)
as the inner products with(- — k) of the functionf in Vo characterized byf, g(- — k)) = Foo(k). The
Fourier series andé of Fyo and Fo o are then related b{, 3] = c[¢, @]

Let us discuss now the reconstruction process. As in the fast wavelet transform, the reconstruction
employs the filters

X, 1=0,...,r
whose Fourier series atg i =0, ..., r. l.e., if x; is real-valued,

xi (k) = x;(—k).
If 7 satisfies the assumptions of the UEP, then the reconstruction process is identical to that of the fast
wavelet transform: each sequengg is upsampled, and subsequently convolved wijth

Fij = xi * (Fijp). (4.3)

We then have the perfect reconstruction formda.1 = Y ;_, X; * (F; j+), and hence the reconstruction
step is as follows:

Fojer< Y Xix(Fj),  Jj=jo....—1 (4.4)
i=0
Note that the perfect reconstruction property is purely technical. It does not require the sequences
(F;;); to carry any useful information; it only requires thatsatisfies the conditions of the UEP
(Proposition 1.9), and th&f; ;); are obtained fron¥y ;1 via the frame decomposition algorithm.
If the systemX (¥) is constructed via the oblique extension principle, then we need to modify slightly
the reconstruction process.
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Proposition 4.5. Let X(¥) be a tight framelet that is constructed via the OEP, based on a combined
maskz (wherex; is the filter associated to each maskand a fundamental functio® (whose Fourier
coefficients form a sequenég. Let F; ;,i =0,...,r, j =0,-1,..., jo, be obtained fromFy via the
decomposition algorithm. Then, for eagh< O,

b Foji1=Xo* ((b* Foj)1) + Y _ % * (Fijy).
i=1

The proposition, thus, entails that the reconstruction can be done as follows:

(I) FOJO <~ b % FO,jo-
(i) Continue as in (4.4).
(iii) Keep in mind that the reconstructe‘iﬁj differs from the decomposeEO'?j (i.e., we do not satisfy
the perfect reconstruction formula). Preciseﬂ% = F(,Efj x b. Since convolution witlh amounts to
local averaging, the reconstructé@fo is a somewhat blurred version of the origirfalo.

Note that, again, the reconstruction algorithm does not require us to have any special interpretation for
the sequences; ;. We only need to know that, © satisfy the assumption of Proposition 1.11, and that
F; ; were obtained by the decomposition algorithm.

We summarize the discussion above in the following.

Thefast framelet transform. Let X (¥) be atight framelet constructed by the OEP, and associated with
the filters(x;);, the refinable functiow, and the fundamental MRA functia®. Leta (k) := (¢, ¢ (- —k)),
k € Z¢, and leth be the Fourier coefficients @d. Then

input FO,() 74 — C.
(1) Decomposition

i f f=¢>l</F0’0:
FO,O < a * F()’O
end

%at this point we assune Fyo(k) = (f, Yo.0x)-
for j=-1,-2,...,jo
fori=1...,r
Fij=xi*Fiji1),
end
end
%at this point we obtain that F;(k)=/(f Vi)

(2) Reconstruction
Fo,j() < b k FO,jo
for j=jo,...,—1
Fojr1= 2 i_oXi * (Fi j1)
end
if ®+#1,deconvol vebfrom#Fyo, end
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i f Fopowas convol ved withaduring the deconposition
deconvol vea from#Fyo, end

We remark that the sequenge- a x b has at least as many vanishing moments as the mother wavelets
¥ have (cf. Theorem 2.8). Thusx b is a low-pass filter and its deconvolution has a sharpening effect on
Foo. If fis known to be a smooth function, the deconvolutior 8fb may be then unnecessary because
a xbx Fpg is already a high order approximation B o.

5. Bi-frameets

In this section, we discuss general MRA-based wavelet frames. Two major generalizations are: (i) we
reconstruct bi-framelets, and not only tight framelets, and (ii) we allow the dilation operator to be based
on any expansive matrix with integer entries: given d x d matrix s with integer entries whose entire
spectrum lies outside the closed unit disk, we redefine the dilation op&dtobe

(Df)(y) = |dets|2 £ (sy).

Correspondingly, the wavelgt; ; x is now defined by
Vi jx =D/ (Yi(- — b)) = |dets/ 2y (s7 - —k).

The notion of a wavelet bi-frame is as follows: t= (¢, ..., ¥,) andw? = (v, ..., %) be two
sequences of mother wavelets. We say that the pair of systems

(x (). X(#)

is abi-frameif each of the two systems is Bessel, and we have the perfect reconstruction formula
f= Z(f v Wiju.  forall f e Lp(RY).
i,jk

The definition implies that each of the two systems, is, in particular, a frame. Also, the rale@iof
and X (&%) in the above definition are interchangeable.

We discuss here MRA-based constructions of such bi-frames (i.e., each of the two systems is a
framelet) and will refer to such constructions lsisframelets Note that the refinement mask of a
given refinable function now satisfies

&(S*) = -[O(i,
and, similarly, the mother wavelets are determined from their masks by the relation
I/Ah (S*) = Ti¢3-

Throughout the present section, we impose a smoothness condition on the refinable fuhatibns
viz. condition (4.6) of [40]. This condition is so mild (it is being satisfied, e.g., by the support function
of the unit cube), that we forgo mentioning it explicitly in the stated results.
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5.1. Mixed extension principles

Suppose thakX (¥) and X (%) are two MRA-based wavelet systems that correspond to the combined
(bounded) mask vectors = (1o, ..., 7,) andt? = (¢¢,...,t¢). Let ¢ and ¢ be the corresponding
refinable functions and l&lV;) and(V;’)j, respectively, be the corresponding MRAs.

Associated with the combined masksand r¢ is the following mixed fundamental function of the
parent vectors

00 -1
On () = Z T, (s*ja))tf (s*ja)) 1_[ ro(s*mw)tél(s*mw),

j=0 m=0

~.

r

here, 7, ¢ := Y7_, w;z{. The function®y is well-defined (a.e.), whenever two systeris¥) and
X (¢4) are both Bessel (indeed, the Bessel property implies [40] that the fundamental fure@tams
©4 of each system are finite a.e., while by Cauchy—Schwarfz< ©®©¢. Thus the sum that definézy
converges absolutely to an a.e. finite limit). Note that the definitiaaypimplies the following analogue
of (1.6):

Om (@) = 74 ()T (@) + T0(0) T () On (s*w). (5.1)

Invoking Corollary 2 of [41], we may follow the argument in the proof of Theorem 6.5 of [40] to
obtain the following result.

Proposition 5.2. Assume that the combined MRA masks (1o, ..., 7,) and t¢ = (¢§,..., t%) are
bounded. Assume also thatand ¢¢ are continuous at the origin and(0) = ¢¢(0) = 1, and that the
corresponding wavelet systeriigy ) and X (%) are Bessel systems. Then the following conditions are
equivalent

(@) The system paifX (¥), X (¢?)) is a bi-framelet.

(b) Forweo(Vg) N o(Vg’), the mixed fundamental MRA functiéh, satisfies
(b1) lim;_ o Om(s* w) = 1.
(02) If ve Z9/(s*2), if o+ v € 0 (Vo) Na (VY), then

(r(a)), 4 (w+ v))(_)M () = 0.

With this, we have the following result, which extends the mixed unitary extension principle of [41].

Corollary 5.3 (The mixed oblique extension principle (MOEP)Et r and ¢ be the combined masks
of the wavelet systends(¥) and X (¥¢), respectively. Assume that AssumptioBis satisfied by each
system and that botl (¢) and X (¢?) are Bessel systems. Suppose that we were able to fd a
periodic function® that satisfies the following

(i) © is essentially bounded, continuous at the origin, &h@) = 1.
(i) fwea(Vo)No (V) andv e Z4/(s*Z%) such thaiw + v € o (Vo) N (VY), then

O(w), fv=0,

d —
(r(@), 2@+ Mg ooy = { 0, otherwise. ®-4)
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Then(X (¥), X(¥?)) is a bi-framelet.

Proof. By Proposition 5.2, one needs to show only tBatoincides with the mixed fundamental function
On onao (Vo) N a(Vg’). Letw € R?. We consider two different cases.

(@) For somej, s*w ¢ o (Vo) N o (V). In this case, we choosg> 0 to be minimal with respect to
the above property, and iteratdimes with the case = 0 in (5.4) to obtain

j-1 j-1 k-1
O() = @(s*ja)) 1_[ to(s*’"a))rg (s*ma)) + Z Ty (s*ka))tff (s*ka)) 1_[ to(s*’"w)rg (s*’”a))
m=0 k=0 m=0

Sinces* w ¢ o (Vo) N o (VY), we must have thaty(s*"Yw)td (s*i-Dw) = 0. Now, we can repeat the
same argument wit replaced by®y, (since®), always satisfies (5.1) which is identical to the case
v =0 of (5.4)). Thus@ (w) = Oy (w), since each coincides with

j-1 k—1
Z 7y (s%w)td (s*w) l_[ (s w) g (s w).
k=0 m=0

(b) In the other case, we can also iterate (5.4jnes, wherej now is an arbitrary integer, and obtain
the same relation as before. This time, the second term converges absoluytely a&s, thanks to (iii),
to the mixed fundamental functiof (see the discussion above (5.1)). It remains to show that the first
term converges to 0. For this, for a givenc o (Vo) N a(Vg), one first findsw; andw, in w + 2774,

such that(w1)$“(w,) # 0. Then,

j-1 _ - A ﬁ
@(s*-/ )l_[ To(S*ma))f(‘)l(s*mw) _ O ]wz‘b(s ]f01)¢ (s fa)z).
m=0 P (w1)$? (w2)

This completes the proof, since the right hand side converges to 0, fav a.e.(Vy) N a(Vg’) (due to
the facts that is bounded ang and¢? are inL,(RY)). O

5.2. Approximation orders

With (X (¥), X (¥4)) a given pair of bi-framelets, we define the correspondingcated representa-
tion 0, by

Quifr > (Fvivic

VeV, keZd, j<n

We note that the roles af andw? are not interchangeable in this definition, since the interchange of
the ¥ and¥? may lead to a different approximation order. We refer to the systém?) as the dual
system. An argument similar to the one used in the proof of Lemma 2.4 leads to the following result.

Lemma 5.5. Let (X (¥), X(¥?)) be a bi-framelet system. Let ¢ be the two underlying refinable
functions. Then

—

0uf = ([F(s™).'160m) (s "),  f € La(RY).
In particular, Qo f = [ f, $?16Ow for every f € Lo(R?).
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Assume further that the dilation matrixis scalar,s = A1, for some integei > 1. We say that the
bi-framelet systems( (¥) and X (¢?) provide approximation ordenn, if, for every f in the Sobolev
spaceW,"* (R%),

If = Onfllpmey = O(AT").

The following result can be proven similarly to Theorem 2.8. In fact, it extends to the more general
isotropic dilation case.

Theorem 5.6. Let (X (¥), X(¥?)) be a bi-framelet system. Let ¢¢ be the two underlying refinable
functions. Assume thatprovides approximation ordern. Then the approximation order provided by the
truncated representatio®,, coincides with each of the followir@gua) numbers

(i) min{m,my}, with m, the order of the zero df — Ow[4, ] at the origin.
(i) min{m, mo}, with m, the order of the zero aPy — Oy (s*.)forg at the origin.
(i) min {m, m3}, with m3 the order of the zero df — Oy p¢? at the origin.

Next, we discuss the related notion of vanishing moments. We say that the bi-framelet pair has

vanishing moments of orden, if, for i =1,...,r, eachl,Z,»xﬁ;’ has a zero of ordernz, at the origin.
If the bi-framelet is constructed via the MOEP and has moments of argleghen

On — Ou(s")0tg =47 = O(1- "),

near the origin. Thus we have the following proposition.

Proposition 5.7. Let (X (¥), X (¥)) be a bi-framelet system. Assume that the bi-framelet has vanishing
moments of ordeti4, that the systenX (¢¢) hasmg vanishing moments, and that the refinable function
¢ provides approximation order. Then

(a) ¢ satisfies the SF conditions of ordep, i.e.,$ vanishes at each € 27 Z7\0 to order my.
(b) The approximation ordem:’ of the(Q,) satisfiesnin(m, 2m4) < m’ <m; in particular, if 2m4 > m,
thenm’' =m.

5.3. Constructions

The construction of a bi-framelet is, in fact, simpler than its tight framelet counterpart. Since there
is no need to take the square root@f; in MOEP (instead, one needs only to factor it), it is no longer
necessary to require thé@t, be non-negative. This gives us more choices®gr and more alternatives
in the construction. Indeed, in the current section, (very) short symmetric spline bi-framelets (with only
2 generators!) of desirable vanishing moments are constructed.

On the other hand, by modifying the tight framelet constructions, one can get bi-framelet constructions
that yield symmetric mother wavelets. If the refinable function itself is symmetric (for examgas if
a B-spline), we may not change the MRA (and hence we will have thersteap?). Only the wavelet
masks will be modified then. To capture symmetry, the key is to adhematdqup to a linear phase)
factorizations of the underlying trigonometric polynomials. If the refinable funefiggmnot symmetric
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(which is the case of all pseudo-splines of positive type), we will alter the underlying MRA first, i.e., we
will choose a real factorization ¢ |? into ¢16¢.

Here, we give some examples of such constructions. Using the MOEP, one can design many other
examples, suited to particular applications.

5.3.1. Pseudo-spline bi-framelets
With 7 := |zj"“|? and A as in Section 3.1, we choose any real factorizatioasryr§ andA = 2ty
We define

a=ati(+m),  thy=ar(+mr), j=02

Assuming thatp, ¢¢ lie in L»(R), and that each of the above wavelet masks has at least one vanishing
moment, we obtain in this way a bi-framelet. We can choose, e.qg., for arveveyiw) := cod" (w/2),
and

14
td(w) := cod" (w/2) Z (m jr E) sin? (w/2) co“ ) (w/2).
i=0

(Warning:m, [ need to be such that lies in L,(R)! This arises also in the construction of biorthogonal
wavelet bases, see, e.g., [9].) Astaandzy, one can choose any (real) factorization ef ttJ — 7o(- +

n)rg(- + 1) with 72(0) = rg(O) =0.

Example (Bi-framelets of typé4, 1)). For the type (4, 1) we have that
t(w) = coS(w/2)(1+ 4sirf(v/2)).

We splits to obtain
To(w) = cos(w/2), d(w) = cod(w/2) (1 + 4sirf(w/2)).

One checks then that' € L,(R) (in fact, ¢ € C1(R)). Also, in this cased (») = 2 sin’ w, hence we can
choose

() = 18 (w) = ? sir(w).

Note that all the filters obtained, with the exceptionr§f are 5-tap. The system provides approximation
order 4, and has 2 vanishing moments.

Of course, the above factorization is one of many. The masks of another bi-framelet of type (4,1) are
listed in Table 2 (courtesy of Narfi Stefansson, UW-Madison).

5.3.2. Spline bi-framelets
Let ¢ = ¢“ be a B-spline of orde#:, then
14+ e i@\"
> .

For a givent, let ® and A be the trigonometric polynomials given in Lemma 3.4 and Proposition 3.5,
respectively, in Section 3.2. We can choose now any real factorizatién(29 = ¢ and A = 2aa“.

To(w) = 16 () = (
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Table 2

The six masks of the second pseudo-spline bi-framelets of type (4, 1).
Here,a = /2 ands = /5. Based on signal compression experiments
that were done at UW, we recommend to w€efor decomposition and

t for reconstruction

@=a/16« 0 0O 1 4 6 4 1 0 0
W=a/16¢« [1 -1 -5 10 -5 -1 1 0 Q@
W=5/8 [0 0 -1 0 0 -1 0 0
W=s/8« [0 0 1 -2 2 -1 0 0
p=a/l6+ [0 -1 -1 5 10 5 -1 -1 Q0
1m=a/l6x [0 1 -4 6 -4 1 0 0 (Q
m=s/32« [0 -1 -2 1 1 -2 -1 0
3=s/32« [0 1 0 -3 3 0 -1 0
Define
171 :=eitto(- + 1), tf = e1tto(- + 1),
o = a, rﬁi =a?, and 3=-eyaq, rg = e1a’.
Then the systems correspondingrte= (1o, ..., 73) andt? := (rg’, ey rg) form bi-framelets, provided

thata(0) = a“(0) = 0 (that latter assumption is needed in order to satisfy condition (iii) of Corollary 5.3).

Example (Spline bi-framelets generated by tfghor) mother waveleds An interesting case of the
above general approach goes as follows.dget ¢ be the mask of the: order B-splinep. We choose

the trigonometric polynomia® such that (say, for an even) 1 — @|¢|2 = O(| - %), £ > m/2 (cf.
Section 3.2). We define

T1(w) = €9 sin™(w/2), o (w) = €760 (2w) si" (w/2).

SinceA = O(] - [%) near the origin, the corresponding trigonometric polynoriahust be divisible by
sin®(w/2). Since 2 > m, by the assumption, we may splitinto A (w) = 2aa?, with a(w) = sin" (w/2).
Continuing as in the general construction detailed above, we obtain

To(w) = si™(w/2), 13(w) = €¢ siN" (w/2).
The dual system is then
‘rg(a)) =a‘(w), 'rg (w) = €°a%(w).

Because thesg, r;’ ,j=0,1,2, 3satisfies (5.4), antl = 73, we can also define a system with 2 wavelets
instead of 3 by putting

To = To, 1 =11, Tp = To.
The dual system is then

7 = 10, =1 + 14, o =14

Theset;, t¢, j =0, 1, 2, also satisfy (5.4). Note that, = 1 (- — 1/2).
I
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For example, if we choosa =1 = 4, then all the wavelets and the dual wavelets have four vanishing
moments (and, of course, they are all symmetric). The filters for the syst@m are then all of length 5.
The dual systenX (¢¢) has still a low pass filter of length 5, while the high pass filters are 17-tap and
15-tap.

5.3.3. General constructions of bi-framelets with two or thigenmetrig wavelets
Let ¢ and ¢¢ be two univariate symmetric refinable functions with (bounded) maskand z¢,
respectively. Le® be a bounded real-valued Zoeriodic function,® (0) = 1. Assume that

A:=0 —O2) (w0t +1o(- + )T (- + 7))

is real and has (at least) a double zero at the originz#?dde any real factorization @ (2.), and let 2a¢
be any real factorization oA in a way thatz(0) = a?(0) = 0. Note that ifA and ® are trigonometric
polynomials, we can choose all the factors to be trigonometric polynomials, too. We can then define
the wavelet masks exactly as in the spline bi-framelet discussion (since we do not need toAequire
be positive any more). We obtain in this way a bi-framelet system, providedthay and X (¥¢) are
Bessel. There are three (symmetric) mother wavelets in each system.

We can modify the above construction and obtain systems generatediadbgnother wavelets,
following the general recipe of Section 3.2:

T = eyt (- + ), T2 = 10a(2"),

while

rf = e1t?1(- + 1), rg = t{,’ad(Z-).
We then obtain two symmetric generators for each system.

Finally, if ¢ or ¢? is not symmetric, the above constructions still work, but the resulting mother
wavelets may not be symmetric (and, of course, we need not require that the relevant factorizations
bereal).

In [17] it is shown that one can, in fact, construct bi-framelets from any pair of refinable fungtions
¢? (with compact support).

6. An especially attractive construction

As we said a few times before, the choice of the “right” framelet system should really depend on the
application. However, we can still point at a few constructions that stand out, even in the packed group
of “useful framelets.” We present in this section one such example. The highlight of this construction
is that we obtain maximal approximation order, maximal smoothness, maximal vanishing moments and
relatively short filters in one example. Importantly, the example belongs to one of our systematic methods,
which means that similar constructs, for other approximation orders, are possible.

In the example here, we choose the construction of a spline bi-framelet with two short filters from the
previous section. We choose the MRA which is generated by the cubic B-gplared, correspondingly,
we choose® to be

O(w)=1+ gsinz(a)/Z) + i—ésin“(a)/Z).



I. Daubechies et al. / Appl. Comput. Harmon. Anal. 14 (2003) 1-46 39

0.3

0.2

0.1

o

-0.2

-2

-1

0

-1

03

0.2

0.1

-0.2

0

-1

-6 -4 -2 0 2 4 6 4 -2 0 2 4 6

Fig. 7. The graphs of the two decomposition wavelets of the example in Section 6 are depicted in the first row. Both are obtained
by applying a 4-order difference to the cubic B-spline. The two reconstruction wavelets are depicted in the second row.

According to the theory in this paper, the total number (of the decomposition and the reconstruction
masks) of vanishing moments of any bi-framelet system that is based ingtaemh® is 6. The general
approach for this type of construction entails that we put a maximum number of vanishing moments, i.e.,
4, into the decomposition filters, hence only 2 vanishing moments into the reconstruction masks. Thus,
we enjoy an optimal approximation order of the framelet system (4), an optimal number of vanishing
moments in the decomposition masks (which is where we really need those moments), and relatively
very short high-pass filters: (5,5) in the decomposition, and (13,11) in the reconstruction (a total of 34
non-zero coefficients. In comparison, the cubic spline tight framelet of Example A.2, which also has 4
vanishing moments, and which is an ad-hoc construction, involves a total of 40 non-zero coefficients.
And, the bi-framelet here isot an ad-hoc construction!).

Figure 7 depicts the graphs of the four wavelets constructed in this way, while Table 3 records the
non-zero coefficients of the underlying six filters (courtesy of Steven Parker).

Appendix A. Ad-hoc constructions of tight spline framelets with shorter filters

We construct here some more tight wavelet frames by OEP from several low-order B-spline functions.
The ad-hoc constructions given here typically yield tight framelets whose mother wavelets have shorter
support than the results of the general construction in Section 3.2. The computation in the following
examples was done with the help of two computer algebra systdapd,e andSi ngul ar [23], and
the graphs are produced bt | ab.
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Table 3
The coefficients of the six filters (two low-pass ones and four high-pass ones) of the example in Section 6. The three
reconstruction filters are listed first, followed by the three decomposition filters. Note that all the coefficients are actually
rational

70 71 1) rg tf ‘(g
6 —0.0053819444 —0.0430555556
5 —0.0215277778 —0.1722222222
4 —0.1621527778 —0.3930555556
3 —0.5409722222 —0.7111111111 625
2 0.0625 —0.5987847222 —0.1527777778 0.0625 .0625 —0.2500
1 0.2500 02236111111 BD444444444 0.2500 —0.2500 03750
0 0.3750 22104166667 —0.1527777778 0.3750 .B750 —0.2500
-1 0.2500 2236111111 —0.7111111111 0.2500 —0.2500 00625
-2 0.0625 —0.5987847222 —0.3930555556 0.0625 .0625
-3 —0.5409722222 —0.1722222222
-4 —0.1621527778 —0.0430555556
-5 —0.0215277778
—6 —0.0053819444

Example A.1. Let 1o(w) = (1 + €7*)3/8; then the refinable functiog is the quadratic B-spline, whose
MRA provides approximation order 3. We choo®w) = (3 — coSw))/2, and find that - ©|$|2 =
O(| - |*. This implies that every OEP construction that is based on@himd¢ yields a wavelet system
with 2 vanishing moments, and with approximation order {&id} = 3 (cf. Theorem 2.8). One possible
construction of the mother wavelets is as follows:

V2

—iw)3
T(w) = —ﬂ(l—e )%,
‘L’z(a)) = _2_14(1 _ e*iu))3(1 + 6671.&) + efiZw)’
3(w) = —i—T;))(l_ efiw)2(1+5e7iw + 5620 4 g%, A

Then the (symmetric!) filters are of sizes 4, 6, 6. For the sake of comparison, note that among the (6, 5, 5)
filters of the type | construction of pseudo-splines of type (4, 1), one is not symmetric; that system does
have approximation order 4 (as compared to only 3 here). The correspoiding, 13 are shown in
Fig. 8. Another choice is the following. L& (w) = (219— 112 cosw) + 13 cog2w))/120. Set

() = 11 (1 — €7)°[(5776+ 81g) (L + 677) + 4849¢7%°],

2(w) = 1o(1 — €7)°[(73233+ 601) (1 + 6€ ) + (957098+ 700p)e 2

+ 61627863 +102713e*], (A.2)

where

to=+/458247

1 = /15424443399464% 226211192304 /284121413784 and

1o = /37714995~ 30900,,/15234392160
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Fig. 8. (b), (c), and (d) are the graphs of the symmetric wavelet functigng,, andy-3 corresponding to (A.1) in Example A.1.

The tight framelet provides approximation order 3 and has two vanishing moments. The filters are of size (4,6,6).

0.8

Fig. 9. The graphs of the mother wavelets corresponding to (A.2) in Example A.1. The system provides approximation order 3

and has 3 vanishing moments. The filters are of lengths 6 and 8.

Then{vr, ¥»} generates a tight framelet and has vanishing moments of order 3, as well as approximation
order 3. The filters are 6-tap and 8-tap, hence are much shorter than the type Ill (4,1) pseudo-spline
wavelets (whose filters are 6-tap and 14-tap. The approximation order of the systems there is 4, however,
and the wavelets there are a notch smoother). The graphs of the correspgndingre given in Fig. 9.

The exact (but more complex) expressions of the wavelet filters in radicals can be obtained for the

following examples as well; for simplicity, however, we will present them in decimal notation.

ExampleA.2. Takery(w) = (1+€77*)*#/16; then the refinable functiafis the cubic B-spline. Choosing
O (w) = 2452/945— 1657/840 cosw) + 44/105 cog2w) — 311/7560 cog3w),
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Fig. 10. The graphs of the wavelet functiofig and -, in Example A.2.{v/1, ¥2} generates a wavelet tight frame i (R)
and has vanishing moments of order 4.

we define

71(w) = (1— &) *[0.004648178373 0.037185426987¢"
+0.2315795758906% + 0.077492027449¢%
+ 0.009686503431é4w],

2(w) = (1 — €7)*[0.00815406597 0.065232527739¢"
+0.2214447466106% + 0.4016748903616%
+0.2571347152066* + 0.078828706252¢>
+0.009853588281¢%].

Then{vyr1, Y»} generates a tight framelet with vanishing moments of order 4, hence with approximation
order 4. The filter are 9- and 11-tap. The functighs vy, are shown in Fig. 10.
Example A.3. Let 1o(w) = (14 €7¢)%/32. Theng is the B-spline function of order 5. Let

O (0) = [3274— 2853 cosw) + 654 c0$2w) — 67 cog3w) /1008

Define
() =n(l- e‘i“’)s[l + 1067 + 167 4 1063 4 &%),
() = 12(1— €7)°[1+ 1067 + co67% + (10c, — 3307
+ o6 107> 4 e71],
T3(w) =13(1— €7@)*[1+ 967 + c367% + (9c5 — 240 (6773 4 &74)
+ €7 4 9g71% e,
where

1, =0.002079820445 1, =0.002143933408

t3=0.006087006866 and

c1=27.8020039303 ¢, =43597827553 3 =34.9890169103
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Fig. 11. (b), (c), and (d) are the graphs of the symmetric mother wavelets derived from the B-spline function of order 5 in (a) in
Example A.3. This tight framelet has vanishing moments of order 4, hence the approximation order is maximal, i.e., 5.

Then we obtain tight framelet that has vanishing moments of order 4, hence provides approximation
order 5. The three filters are of sizes 10, 12, 12, which is longer than the (8, 7, 7) filters of the type |
construction of pseudo-spline of type (5, 2), which also provide approximation order 5; the increase in
length is the price to pay for having splines and 4 instead of 3 vanishing moments; moreover the wavelets
in this example are symmetric. The scaling functipand the three waveletg;, v,, 3 are shown in
Fig. 11.

Another choice is the following:

O (w) = [927230— 455536 cotw) + 135068 co&w) — 24208 cos3w)
+ 2021 co$4w) /120960

71(w) = (1 — &7)°[0.025119887085- 0.251198870848¢"
4 0.262546371853¢%” 4 0.166262760002¢>”
4 0.065011596958¢" 4 0.014662218472¢>"
+0.001466221847¢%],

72(w) = (1— &) °[0.008881894968- 0.088818949683¢"
+ 0.328950148428¢>” 4 0.358476144742¢>
+0.2501811034088* 4 0.123734867140>”
+ 0.042684669937¢% 4 0.009185207037¢ "

+ 0.00091852070¢é8‘“].

This time we obtain a tight framelet with 5 vanishing moments, hence with approximation order 5. The
two wavelets are shown in Fig. 12.
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Fig. 12. The graphs of the two (non-symmetric) mother wavelets in Example A.3. The tight framelet has approximation order 5
as well as vanishing moments of order 5. Note that the filters are 12- and 14-tap.

Example A.4. Taketo(w) = (1+ €71°)8/64. Theng is the B-spline function of order 6.
Let
O (w) = [78020340- 91378878 cogv) + 33897504 coQw)
— 8438339 coS8w) + 1298168 cotlw)
— 93695 co$5w) | /13305600

() = (1 — e77)°[0.002145656868- 0.0257478824 168"
+0.1192553310906% + 0.2037482445826*
+0.1192553310906* + 0.025747882416¢>
+0.002145656868¢% ],

() = (1— &7)°[0.002080123603 0.024961483236"
+0.1259950758241¢* + 0.322110209123¢
+ 0.398690839006€*” + 0.322110209123¢>”
+0.125995075824€% + 0.024961483233¢"*
+0.002080123603€5 ],

73(w) = (1 — €7*)°[0.000927141464- 0.011125697570€"
+0.0579978249656¢% + 0.165648982061¢>
+ 0.2663513279516* + 0.249980354007¢>”
+0.2663513279516%* + 0.165648982061¢ "
+0.057997824965¢% + 0.011125697570€
+0.000927141464€'*].

Here, we obtain a tight framelet with vanishing moments of order 6, and with symmetric mother wavelets,
shown in Fig. 13.
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Fig. 13. (b), (c), and (d) are the graphs of the symmetric mother framelets derived from the B-spline function of order 6 in (a)
in Example A.4. The tight framelets has 6 vanishing moments, hence approximation order 6, as well.
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