Synthesis of new (pyrazol-1-yl)(7-nitro-1h-indol-2-yl) ketone derivatives

Abdellatif El Kihel a,*, Abdelfattah Lagnaoui a, Tania Harjane a, Yasser Kattir a,b, Salaheddine Guesmi b, Patrick Bauchat c

a Laboratoire de Chimie BioOrganique, Faculté des Sciences, BP20, 24000 El Jadida, Morocco
b Laboratoire de Chimie de Coordination et d’Analytique, Faculté des Sciences, BP20, 24000 El Jadida, Morocco
c Synthèse et Electrosynthèse Organiques, UMR 6510, Université de Rennes I, Avenue général Leclerc, 35042 Rennes Cédex, France

Received 20 August 2010; accepted 29 September 2010
Available online 6 October 2010

1. Introduction

The indole nucleus is probably the most widely distributed het-
erocyclic ring system found in nature (Kuethe et al., 2005). Due
to the existence of a vast array of structurally diverse and biolog-
ically active indoles, it is not surprising that the indole nucleus is
an important feature in many medicinal agents and the most

Abstract The condensation of 7-nitroindole-2-carbohydrazide derivatives with acetylacetone lead to (pyrazol-1-yl)(7-nitroindol-2-yl)ketones.

Keywords Ethyl 7-nitroindole-2-carboxylate; 7-Nitroindole-2-carbohydrazide; Pyrazolylindole; Acetylacetone

important of all structural classes in drug discovery (Smith et al., 1998). The synthesis and reactivity of indole derivatives have been a topic of research interest for well over a century.

Compounds which contain the pyrazole functionality continue to attract great interest due to their varied and significant pharmacological effects. For example, the identification of new and selective cox-2 inhibitors (Penning et al., 1997), for the re-

© 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

2. Results and discussion

Due to the potent biological activity exhibited by various in-
doles derivatives, there is a continuous demand for novel

* Corresponding author. Tel.: +212 523343003; fax: +212 523342187.
E-mail address: elkhielabdelatif1@yahoo.fr (A.El. Kihel).

Peer-review under responsibility of King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

doi:10.1016/j.arabjc.2010.09.032
synthetic procedures in this area. In 1990s, it has attracted much attention, as it employs simple and readily available starting materials. In previous papers (El Kihel et al., 2007; El Ouar et al., 1995), we have reported some reactions of 7-aminoindoles, in this work; we have improved the synthesis of substituted ethyl 7-nitroindole-2-carboxylate 3(a–c) that the synthesis of ethyl 7-nitroindole-2-carboxylate has been reported (Murakami et al., 1993, 1998). The starting compounds 7-nitroindole-2-carboxydradizes 4(a–c) were prepared by the reaction of hydrazine hydrate with substituted ethyl 7-nitroindole-2-carboxylate. These hydrazides when reacted with acetylacetone yielded (3,5-dimethyl-1H-pyrazol-1-yl)(7-nitro-1H-indol-2-yl)ketone 5(a–c).

2.1. Preparation of substituted 2-nitrophenylhydrazones 2(a–c)

Phenylhydrazones 2(a–c) were generally prepared starting from substituted ortho-nitroanilines 1(a–c) via diazotization, followed by Japp Klingemann reaction using ethyl a-methylacetoacetate in the presence of KOH/EtOH. Phenylhydrazones 2(a–c) thus prepared consisted of Z- and E-geometrical isomers (Scheme 1). We showed that these geometrical isomers are rapidly interconvertible by the polyphosphoric acid as catalyst used for Fischer indolization and thus give the same result on Fischer indolization.

2.2. Fischer indolization

The Fischer indolization of the phenylhydrazones 2(a–c) was carried out mainly with polyphosphoric acid (PPA) which caused the reaction to proceed the most rapidly instead of other catalysts (Scheme 1).

The identification of the indolic products 3(a–c) was based on spectroscopic data. In the 1H NMR spectra of these products, we noted the upfield-shifted proton NH to 10 ppm and the disappearance of the singlet of methyl group during Fischer indolization.

2.3. Synthesis of carbohydrazides 4(a–c)

For the synthesis of the carbohydrazide 4(a–c), we have used the method reported by literature (Harrison et al., 2006; Narayana et al., 2005; Farghaly, 2004). The reaction between the ethyl 7-nitroindole-2-carboxylates and hydrazine hydrate lead to the titled products (Scheme 1). The identification of the structure was based on spectroscopic data.

The 1H NMR spectra of the carbohydrazide 4a displayed two singlets at 4.61 and 11.25 due to protons of NH$_2$H$_2$ group instead of ethyl group protons in the ethyl 7-nitroindole-2-carboxylate.

2.4. Synthesis of pyrazolylindole derivatives 5(a–c)

Acid-catalyzed substitution reactions on indole derivatives containing only 7-nitro substituent in the benzene ring, in general, are prohibited by the acid lability of the indole nucleus, and in those cases where these reactions are possible, the substituent orientation and the remaining functionality are not always the most desired. Ready access has provided the impetus to investigate synthetic schemes that might be expected to provide various indole-substituted by pyrazole moiety (Farghaly, 2004; Hiremath et al., 1988; Farhanullah et al., 2004; Jukic et al., 1999; Przheval’skii et al., 2004). This work describes general procedure by which (3,5-dimethyl-1H-pyrazol-1-yl) (7-nitro-1H-indol-2-yl)ketone derivatives 5(a–c) may be conveniently prepared in neutral medium by the reaction of the carbohydrazides with acetylacetone.

The establishment of the structure of these compounds 5(a–c) has been confirmed by spectroscopic data. The 1H NMR spectra of the compound 5a showed the presence of the sharp singlets at 2.36 and 2.62 due to protons of two methyl groups of pyrazole moiety and the methine proton appeared at 6.04 ppm. The 13CNMR spectra of 5a exhibited two signals at 13.2 and 13.6 assignable to carbons of two methyl groups. The molecular ion peak at m/z 284 was observed in the mass spectrum of 5a. These spectra data and elemental analysis supported the structure of 5a.

3. Conclusion

In this work, we report the condensation of 7-nitroindole-2-carboxydradizes with acetylacetone leading to new (3,5-dimethylpyrazol-1-yl)(7-nitro-1H-indol-2-yl)ketones. The structures of obtained products were established with spectroscopic data of proton and carbon 13 NMR, mass.
4. Experimental

All compounds were characterized by their 1H-NMR and 13C-NMR spectra as well as by microanalysis or HRMS spectra. NMR spectra were recorded on Bruker ARX 200 (200 MHz for 1H and 50.3 MHz for 13C) spectrometer (6-ppm/TMS, J-Hz); for 13CNMR, the multiplicities were determined through DEPT. Microanalysis were performed by the “Laboratoire Central de Microanalyse du UATRS” (Rabat). Mass spectra were recorded on a Varian MAT 311 spectrometer. Melting points were measured using a Koffler apparatus and were uncorrected.

4.1. Preparation of o-nitrophenylhydrazones 2(a–c)

Solid NaNO2 (32 mmol) was added portion wise to a solution of substituted ortho-nitroaniline (29 mmol) and concentrated HCl (6.4 g) in H2O (22 ml) at 0–7 °C. The resulting diazonium salt solution was added dropwise to a solution of ethyl α-methylacetoacetate (29 mmol) and 50% aqueous KOH in salt solution was added dropwise to a solution of ethyl (DMSO-d6): 11.3(CH3); 14.3(CH3); 55.8(OCH3); 61.3(CH2); 7.23 (s, 3H, CH3); 7.70 (t, J = 9.3 Hz, 1H, H3); 8.09(dd, J = 9.3 Hz, J = 2.1 Hz, 1H, H2); 8.31(dd, J = 9.3 Hz, J = 2.1 Hz, 1H, H5); 10.29(s, 1H, NH). 13CNMR (DMSO-d6): 14.8(CH3); 62.0(CH2); 110.1(CH-3); 120.5(CH-6); 122.5(CH-5); 130.6(CH-4); 130.9, 131.1, 131.8, 133.9 (ArC); 161.2(CO2). HRMS, m/z: 234(M), calcd. for C11H10N2O4: 234.064, found: 234.064.

4.2. Ethyl 7-nitroindole-2-carboxylate derivatives 3(a–c)

A mixture of the hydrazone 2(a–c) (7.5 mmol) and polyphosphoric acid (10 g) was heated at about 1 h, and then the hydrazide was separated out by filtration and crystallized from ethanol.

4.2.1. Ethyl 7-nitroindole-2-carboxylate 3a

Yield = 61%; mp = 94–96 °C (Ethanol). 1HNMR (DMSO-d6): 1.45(t, J = 8.4 Hz, 3H, CH3); 4.47(q, J = 8.4 Hz, 2H, CH2); 7.23 (s, 3H, CH3); 7.70 (t, J = 9.3 Hz, 1H, H3); 8.09(dd, J = 9.3 Hz, J = 2.1 Hz, 1H, H2); 8.31(dd, J = 9.3 Hz, J = 2.1 Hz, 1H, H5); 10.29(s, 1H, NH). 13CNMR (DMSO-d6): 14.8(CH3); 62.0(CH2); 110.1(CH-3); 120.5(CH-6); 122.5(CH-5); 130.6(CH-4); 130.9, 131.1, 131.8, 133.9 (ArC); 161.2(CO2). HRMS, m/z: 234(M), calcd. for C11H10N2O4: 234.064, found: 234.064.

4.2.2. Ethyl 7-nitroindole-2-carboxylate 3b

Yield = 70%; mp = 108–110 °C (Ethanol). 1HNMR (DMSO-d6): 1.45(t, J = 7.1 Hz, 3H, CH3); 2.50(s, 3H, CH3); 4.47(q, J = 7.1 Hz, 2H, CH2); 7.31(s, 1H, H3); 7.64(d, J = 1.3 Hz, 1H, H2); 8.03(d, J = 1.3 Hz, 1H, H6); 10.29(s, 1H, NH). 13CNMR (DMSO-d6): 14.8(CH3); 21.4(CH3); 61.9(CH2); 109.1(CH-3); 123.7(CH-6): 130.5(CH-4); 128.6, 129.6, 131.0, 131.5, 133.3(ArC); 161.2(CO2). HRMS, m/z: 248(M), calcd. for C12H12N2O5: 264.075, found: 264.075.

4.2.3. Ethyl 5-methyl-7-nitroindole-2-carboxylate 3c

Yield = 55%; mp = 144–146 °C (Ethanol). 1HNMR (DMSO-d6): 1.44(t, J = 7.1 Hz, 3H, CH3); 3.92(s, 3H, OCH3); 4.61(q, J = 7.1 Hz, 2H, CH2); 7.23(d, J = 2.3 Hz, 1H, H6); 7.50(d, J = 2.3 Hz, 1H, H3); 7.90(d, J = 2.3 Hz, 1H, H5); 10.11(s, 1H, NH). 13CNMR (DMSO-d6): 14.3(CH3); 56.3(OCH3); 61.5(CH3); 108.5(CH-6); 110.8(CH-3); 113.7(CH-4); 125.3, 130.2, 131.2, 133.1, 153.5(ArC); 160.7(CO2). HRMS, m/z: 264(M), calcd. for C12H12N2O5: 264.075, found: 264.075.

4.3. Synthesis of 7-nitroindole-2-carboxyhydrazide derivatives 4(a–c)

A mixture of (2 mmol) ethyl 7-nitroindole-2-carboxylic acid (10 mmol hydrazine hydrate and 30 ml of ethanol was shaken at room temperature for 30 min. It was left for about 1 h, and then the hydrazide was separated out by filtration and crystallized from ethanol.

4.3.1. 7-Nitroindole-2-carboxylic acid 4a

Yield = 48%; mp > 300 °C. 1HNMR (DMSO-d6): 4.61(s, 2H, NH2); 2.79(t, J = 7.1 Hz, 1H, H5); 7.33(d, J = 1.7 Hz, 1H, H6); 8.14(dd, J = 7 Hz, J = 1 Hz, 1H, H2); 8.19(dd, J = 7 Hz, J = 1 Hz, 1H, H5); 10.23(s, 1H, NH); 11.25(s, 1H, NH). 13CNMR (DMSO-d6): 106.6(CH-6); 120.0(CH-3); 121.7(CH-5); 130.4(CH-4); 129.1, 131.4, 133.4, 134.0(ArC); 159.7(CO). HRMS, m/z: 220(M), calcd. for C9H8N4O2: 220.059, found: 220.060.

4.3.2. 5-Methyl-7-nitroindole-2-carboxylic acid 4b

Yield = 58%; mp > 300 °C. 1HNMR (DMSO-d6): 2.48(s, 3H, CH3); 4.64(s, 2H, NH2); 7.27(d, J = 1.7 Hz, 1H, H3); 7.98(d, J = 1 Hz, 1H, H6); 8.05(d, J = 1 Hz, 1H, H5); 10.24(s, 1H, NH); 11.18(s, 1H, NH). 13CNMR (DMSO-d6): 20.6(CH3); 105.5(CH-6); 121.8(CH-3); 130.5(CH-4); 127.5,
5.3. 5-Methoxy-7-nitroindole-2-carbohydrazide 4c
Yield = 56%; mp > 300 °C. 1HNMR (DMSO-d\textsubscript{6}): 2.39(s, 3H, CH\textsubscript{3}); 2.50(s, 3H, CH\textsubscript{3}); 2.65(s, 3H, CH\textsubscript{3}); 6.07(s, 1H, CHpyrazolic); 3.11(d, J = 1.7 Hz, 1H, H\textsubscript{3}); 8.12(d, J = 1.9 Hz, 1H, H\textsubscript{4}); 12.28(s, NH). 13CNMR (DMSO-d\textsubscript{6}): 13.8(CH\textsubscript{3}); 14.8(CH\textsubscript{3}); 20.9(CH\textsubscript{3}); 111.1(CHpyrazolic); 113.7(CH-3); 124.0(CH-6); 130.6(CH-4); 128.6, 129.5, 131.4, 132.1, 133.3, 146.2, 153.1(CH-3); 157.8(CO). HRMS, m/z: 298(M), found 298.096. Analysis: C\textsubscript{14}H\textsubscript{12}N\textsubscript{4}O\textsubscript{3} (298.3); calcd. C 57.41, H 4.69, N 17.09.

4.4. Condensation of 7-nitroindole-2-carbohydrazide derivatives 4(a–c) with acetylacetone

The 7-nitroindole-2-carbohydrazide derivatives 4(a–c) (2.4 mmol) and acetylacetone (3.6 mmol) were heated under reflux with acetic anhydride (1.0 ml) for 5 h. After cooling, the obtained solid product was filtered off, and then recrystallized from ethanol.

4.4.1. (3,5-Dimethylpyrazol-1-yl)(7-nitro-1H-indol-2-yl)ketone 5a
Yield = 48%; mp > 300 °C. 1HNMR (DMSO-d\textsubscript{6}): 2.36(s, 3H, CH\textsubscript{3}); 2.41(s, 3H, CH\textsubscript{3}); 2.61(s, 3H, CH\textsubscript{3}); 6.04(s, CHpyrazolic); 7.54(d, J = 2.7 Hz, 1H, H\textsubscript{3}); 7.96(d, J = 3.3 Hz, 1H, H\textsubscript{6}); 12.27(s, 1H, NH). 13CNMR (DMSO-d\textsubscript{6}): 13.4(CH\textsubscript{3}); 14.8(CH\textsubscript{3}); 56.2(OCH\textsubscript{3}); 111.1(CHpyrazolic); 112.0(CH-3); 113.3(CH-6); 113.4(CH-4); 109.7, 114.1, 125.8, 130.4, 132.9, 146.1, 153.4(ArC); 153.5(CO). HRMS, m/z: 314(M), found 314.102. Analysis: C\textsubscript{14}H\textsubscript{14}N\textsubscript{4}O\textsubscript{3} (314.3); calcd. C 57.32, H 4.49, N 17.83; found C 57.41, H 4.69, N 17.09.

Acknowledgement

The authors thank the Prof. M. Soufyane for some spectroscopic data.

References

