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It is easy to see that if the maximum degree of G is 4, then the chromatic
number y(G) is at most 4 + 1. In fact there is a simple recursive greedy
procedure for colouring a graph G with 4(G)+ 1 colours. Having coloured
G — x we simply colour x with a colour not appearing on the (at most) 4
neighbours of G — x. Of course, this colouring may not be optimal. In fact,
in 1941, Brooks [ 5] proved that y(G) =4+ 1 precisely if some component
of G is a 4+ 1-clique or 4=2 and G is not bipartite.

In [15], Reed showed that this result is just the tip of the iceberg. In
fact, as the maximum clique size, w(G), of G moves further away from
A(G)+ 1, so does the chromatic number. Specifically, we have:

THEOREM 1. There is a positive constant & such that if A>3 then y(G) <
(1—e)(4(G)+1)+ew(G).

THEOREM 2. For every b there is a A, such that if A(G)=A4, and
o(G) < (A(G) + 1) —2b then x(G) < (4(G)+1)—b.

As shown in [15], the second theorem is tight up to a o(b) term. More
strongly, the following conjecture, if true, would also be essentially best
possible:

Conjecture 3. y(G)<[3(4(G)+1)+30(G)T.

In this paper, we consider graphs for which w(G)< 4 — 1. Borodin and
Kostochka [4] conjectured that if 4(G)>=9 and w(G)<4(G)—1 then
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x(G)< A —1 (this is problem 4.8 in [7], and we refer readers to [7] for
more details). Beutelspacher and Hering [3] independently conjectured
that this statement holds for sufficiently large 4. We prove their conjecture,
1.e., we show:

THEOREM 4. There is a Ay such that if A(G)>=A4, and w(G)<A(G)—1
then y(G) < A(G)—1. In fact, Ay,= 10" will do.

The crux of the proof is dealing with cliques which have about 4 vertices.
For example, applying Theorem 2, we see that Theorem 4 holds for graphs
with no 4 — 3 cliques. In fact, if we impose a stronger condition, that each
vertex neighbourhood contains at most 15(4) edges, then, as shown in [9],
there is a 1hp54 colouring of G.

Three interesting earlier papers also point out that it is these large
cliques with which we need to concern ourselves. First, Borodin and
Kostochka [4] showed that if w(G) < 4(G)/2 then y(G) < A4(G)— 1. Next,
Kostochka [8] showed that if w(G)<A4(G)—29 then y(G)<4(G)—1.
Finally, in 1987, Mozhan in his Ph.D. thesis showed that if w(G)<
A(G)—4 and 4 =31 then y(G)<4(G)—1.

Our proof of Theorem 4 relies on the fact that if G is a minimal coun-
terexample to the theorem, then any reasonably dense set of about 4
vertices in G is either a clique or the intersection of two cliques. More
precisely, we show:

LemMa 5. If G is a minimal counter-example to Theorem 4 and H is a
subgraph of G with at most 74/6 vertices such that every vertex of H has at
least 34/4 neighbours in H then H is either a clique or consists of a clique
Cy with less than A — 1 vertices and a vertex vy.

We mention one corollary of this lemma which we prove separately:

LEMMA 6. If G is a minimal counter-example to Theorem 4 of maximum
degree A, then its A —1 cliques are disjoint.

The proof we give yields a similar result of some independent interest:

Lemma 7. If G is a minimal counter-example to the Borodin—Kostochka
conjecture of maximum degree A, then its A —1 cliques are disjoint.

We will also need a strengthening of Lemma 6.

Lemma 8. If G is a minimal counter-example to Theorem 4 of maximum

degree A, and K is a A —1 clique of G then no vertex of G— K sees more

than four vertices of K. Furthermore, at most four vertices of K have degree
A—1.
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These results will allow us to handle the dense sets. We defer any more
precise explanation of how we do so, because our explanation requires
machinery developed in the proofs of Lemmas 5-8, presented in the next
section.

Our technique for dealing with vertices with sparse neighbourhoods is
that presented in [9]. It involves examining a naive colouring procedure
which consists of choosing a random colour for each vertex with each
possibility equally likely, uncolouring those involved in a conflict, and then
completing the colouring, essentially by greedily extending the partial
colouring. We shall see that, surprisingly, analyzing a slight variant of this
procedure using simple but powerful probabilistic tools allows us to obtain
the theorem stated above. The proof technique is similar to that in [15].
We refer the reader to [ 10-14] for others results in the same vein. In par-
ticular, [13] surveys a number of results using this or related techniques.

2. THE DENSE SETS

Proof of Lemma 6. Let G be a minimal counterexample to Theorem 4
of maximum degree 4. We first observe:

9. No two intersecting A —1 cliques intersect in fewer than A — 3 vertices.

To see this note that if two 4 — 1 cliques intersect in 4 — k vertices, then
a vertex in their intersection has 4 + k — 3 neighbours in their union.
We next observe:

10. No two A—1 cliques intersect in A — 3 vertices.

Proof. Suppose that there are two A4 —1 cliques which intersect in a
A —3 clique C. Let a, b, ¢, d be the other four vertices in the union of these
two 4 —1 cliques and note that each of these four vertices is adjacent to
every element of C. Now, there is no triangle in the graph F induced by
a, b, ¢, d as otherwise this triangle along with C forms a 4 clique, a con-
tradiction. Thus, F is bipartite and has maximum degree two. It follows
that we can partition a, b, ¢, d into two pairs of non-adjacent vertices. By
relabelling, we can assume that neither ab nor c¢d is an edge of G.

By the minimality of G (and Brooks’ Theorem), we know that H =
G—C—a—b—c—dhas a 4—1 colouring. We shall fix some such colour-
ing and extend it to a colouring of G. To begin, we note that any vertex
in G— H has at most 2 neighbours in H because it is in a 4 — 1 clique in
G — H. Thus, we can choose some colour i which does not appear on any
of the at most four vertices of H which are incident to at least one of a or
b, and assign this colour to both ¢ and 5 . (Recall that 4 >9 so there are
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at least 8 colours in total.) Similarly, we can choose a colour different from
i to assign to both ¢ and d thereby obtaining a 4 — 1 colouring of G — C.
We can greedily extend this to a 4 — 1 colouring of G because each vertex
of C sees all four of a, b, ¢, and d, and only two colours are used on these
four vortices. ||

Finally, we prove:

11. No two A —1 cliques intersect in A — 2 vertices.

Suppose there are two 4 — 1 cliques which intersect in a 4 —2 clique C.
Let x and y be the two other vertices in these two intersecting cliques. Note
that x and y are non-adjacent since G contains no 4 clique.

If no vertex of C sees any of G — C — x — y. As above, we can extend this
to a colouring of G — C in which x and y have the same colour. Now, since
each vertex of C has at most 4 — 1 neighbours and sees both x and y, we
can greedily complete this colouring to a 4 — 1 colouring of G.

So, we assume there is a vertex z of G— C—x — y adjacent to a vertex
in C. If z sees all of C, then since G has no 4 clique, it misses both x and
y. In this case, we 4 — 1 colour H —z and extend this colouring to a 4 —1
colouring of G — C by colouring all of x, y, z with the same colour, one
which appears on none of the at most six vertices of H adjacent to an
element of this triple. We can now greedily extend this colouring to a 4 —1
colouring of G because each vertex of C sees all of {x, y, z}.

Thus, we can assume that z misses some vertex w in C. Note that w sees
all of C+x+ y—w and hence has at most one neighbour in H. If z sees
three or more vertices of C, then we will extend a 4 — 1 colouring of H—z
to a 4 —1 colouring of G. We first colour z and w with some colour i which
appears neither on any of the at most 4 — 3 neighbours of z in H nor on
the neighbour of w in H if such an animal exists. We next colour both x
and y with a colour different from i which appears on none of the at most
four vertices of H adjacent to at least one vertex of this pair. Finally, we
colour the vertices of C—w saving some neighbour v of z to colour last.
When we come to colour a vertex u of C — v, there will be one uncoloured
neighbour of u : v and there will be a pair of neighbours of u# with the same
colour: {x, y}. Thus, we can greedily extend our colouring of G— C to a
A —1 colouring of G —v. Finally, v sees all of w, x, y, z but we used only
two colours on these four vertices so we can actually extend our colouring
to a 4—1 colouring of G, a contradiction.

Thus, we can assume that z sees at most two vertices of C. We can also
assume that every non-neighbour w of z has a neighbour in H. Otherwise,
we can 4 — 1 colour H, colour w with the same colour as z and extend this
colouring to a colouring of G as we did in the last paragraph.
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Our next step is to show that there is some vertex w of C not adjacent
to z such that the graph H,, obtained from H by adding an edge from z
to the neighbour of w in H contains no 4 clique. To this end, note that if
H,,, contains a 4 clique then N(z) contains a 4 —2 clique D, and the
neighbour u of w in H sees all of D. If Ny(z) contains a 4 — 2 clique, then
by considering the degrees of the vertices in this clique, we see that there
are at most 2 vertices of H —z — N (z) which see at least 4 — 2 vertices of
Ng(z). Furthermore, each such vertex has at most two neighbours in C.
Thus, there are at most four w in C not adjacent to z for which H,, is a
A clique. Since there are at least seven vertices in C and at most two of
them are adjacent to z, it follows that we can choose some non-neighbour
w of z in C such that H,, contains no 4 clique.

Now, we note that 4(H,,) < 4 as z has a neighbour in C and w has only
one neighbour in H. Thus, by the minimality of G, we can 4 —1 colour
H,,. This yields a 4—1 colouring of H+w in which z and w have the
same colour. As above, we can extend this to a 4 — 1 colouring of G if we
first colour x and y with the same colour and save a neighbour v of z to
colour last. This contradiction completes the proof of Lemma 6. ||

Exactly the same proof yields Lemma 7. Essentially the same proof yields
Lemma 8.

Proof of Lemma 8. Suppose there is a 4 — 1 clique K and a vertex not
in K which has at least five neighbours in K. Then, we let x be a vertex of
G — K which has the maximum number of neighbours in K, note that this
is at most 4 — 3. Let y be a non-neighbour of x in K, let C=K— y and let
D be the neighbourhood of x in C.

If no vertex of D sees any of G— C—x — y, then each vertex in D has
degree 4 — 1. In this case, by the minimality of G, we can 4 — 1 colour H =
G — C—x—y. We can extend this to a colouring of G — C in which x and
y have the same colour. We can then complete this to a 4 — 1 colouring of
G — D, since each vertex in C— D has two neighbours in D. Now, since
each vertex of D has at most 4 — 1 neighbours and sees both x and y, we
can greedily complete this colouring to a 4 —1 colouring of G. Thus, we
can assume there is a vertex z in G — C —Xx — y adjacent to a vertex in D.

If z sees four or more vertices of D, then we will extend a 4 — 1 colouring
of H—z to a 4—1 colouring of G. To do so, we choose some non-
neighbour w of z in C other than y. We first colour z and w with some
colour i which appears neither on any the at most 4 —4 neighbours of z
in H nor on the at most two neighbours of w in H. We next colour both
x and y with a colour different from i which appears on none of the at most
A —3 vertices of H adjacent to at least one vertex of this pair. Next, we
colour the vertices of C— D, all of which have two uncoloured neighbours
in D. Finally, we colour the vertices of D saving some neighbour v of z to
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colour last. When we come to colour a vertex u of D — v, there will be one
uncoloured neighbour of u : v and there will be a pair of neighbours of u
with the same colour: {x, y}. Thus, we can greedily extend our colouring
of G—D to a 4—1 colouring of G —v. Finally, v sees all of w, x, y, z but
we used only two colours on these four vertices so we can actually extend
our colouring to a 4 —1 colouring of G, a contradiction.

Thus, we can assume that z sees at most three vertices of D, and hence
misses a vertex w in D. Now, if w has a neighbour u in H, we set H' =
H + zu. Otherwise, we set H' = H. In either case, by Lemma 6, we know H'
contains no 4 clique. Further, 4(H') < 4 as z and u have neighbours in C.
Thus, by the minimality of G, we can 4 —1 colour H'. This yields a 4 — 1
colouring of H +w in which z and w have the same colour. As above, we
can extend this to a 4 —1 colouring of G if we first colour x and y with
the same colour and save a neighbour v of z in D to colour last. This
contradiction completes the proof of the first statement of Lemma 8.

Now, suppose there is some 4 — 1 clique C in G containing a set S of five
vertices each with degree 4 — 1. Let v be a vertex of S, and let z be the
neighbour of v outside C. Since z has at most four neighbours in C, there
is at least one non-neighbour w of z in S. We can mimic the proof above
to find a colouring of G— C+w in which z and w have the same colour.
We can complete the colouring if we colour v last and some other vertex
of S second last. ||

We turn now to the last result on dense sets stated in the introductory
section.

Proof of Lemma 5. Consider a minimal counterexample G to Theorem 4,
and a set H with at most 74/6 vertices which induces a graph of minimum
degree 34/4. By our degree condition, for each pair {x, y} of vertices of H,
there must be at least 4/3 vertices in the set S, ,=N(x) " N(y)n H.

Thus, if H has 4 disjoint pairs of nonadjacent vertices {(xy, 1), ..,
(X4, v4)}, then there must be at least 4/48 > 6 vertices which are in two of
the S, . In particular this implies that H contains two vertices a and b
such that N(a) n N(b) n H contains two disjoint pairs of nonadjacent ver-
tices, call them (x, y) and (v, w). By the minimality of G, we can 4 —1
colour G — H. We can extend this to a colouring of G—H+x+ y+w+v
in which (x, y) and (w, v) are pairs of vertices with the same colour,
because of our degree condition on H. Set S=a+b+ (N(a) n N(b)n H) —
v—w—x —y. We next extend our colouring to a 4 — 1 colouring of G— S
by first colouring those vertices of G — S which have at most one neighbour
in S and then colouring the set 7" of vertices of G — .S which have at least
two neighbours in S. We note that our degree condition ensures that |S| >
A/3 —2.If |S| < 4/2 — 1 then each vertex of S must see at least 4/4 + 2 ver-
tices of H— S and hence there are at least 4%/12 edges from S to H—S. In
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this case, since |S|<4/2, we obtain: |T|>A4/6. Thus, in either case,
|SUT|>=4/2—2. So, each vertex of H— S — T has at least two neighbours
in S+ T and there is no problem colouring them. Each vertex of T has two
neighbours in S, so we can indeed extend our 4 —1 colouring to G—S.
Now, we can colour all of S—a —b, because each vertex in this set sees
both @ and b. Finally, we can colour ¢ and b because both their
neighbourhoods contain the four vertices v, w, x, y on which we used only
two colours. This is a contradiction.

So, we can assume that H has no four disjoint pairs of non-adjacent
vertices. Hence by considering the clique obtained by deleting a maximum
family of pairs of disjoint pairs of non-adjacent vertices of H, we see that
if we let C; be a maximum clique of H then H — Cj has at most six ver-
tices. If H— Cy has at least two vertices then by the maximality of Cg,
there are either two pairs of nonadjacent vertices in H or there is a stable
set of size three in H. That is, there are four vertices of H which permit a
two colouring, and more strongly, we see we can choose two of these ver-
tices in Cp. In either case, we can colour G — H with 4 —1 colours by the
minimality of G, extend this by colouring some set X of four vertices of H
including two in C, with only two colours, then colour H— Cp, and
finally colour Cy, saving two of the at least 4/2 — 8 vertices which see all
of X to colour last. This will yield a 4 — 1 colouring of G, a contradiction.
So, we see that H does indeed consist of a clique C, and a vertex vg.
Furthermore, if H is not a clique then by Lemma 8, C, has at most 4 —2
vertices. |

For the rest of the paper, G is a minimal counter example to Theorem 4
with maximum degree 4 and % is the set of maximal cliques of G which
contain at least 34/4 4+ 1 vertices. We note that the minimality of G implies

12.  Every vertex of G has degree A or A —1.

Our results imply:

13. If two elements C,; and C, of € with |C,|<|C,| intersect, then
|C,— Gyl < 1.

Proof. By considering a vertex in the intersection of the two cliques, we
see that their union contains at most 4+ 1 vertices. Hence, we can apply
Lemma 5 to the graph obtained from their union. ||

14.  No element of € intersects two other elements of €.

Proof. By (13), these three elements of S would have to have a com-
mon intersection. Further, since a vertex in this common intersection sees
all of the rest of the vertices in the graph H induced by their union, we see
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that H has at most 4+ 1 vertices. Applying Lemma 5 to H yields a
contradiction. |

This result implies that we can partition V(G) up into sets S, ..., S},
L=V(G)— {C| Ce®} so that each S; is either a clique C; of % or a
clique C; of ¥ and a vertex v; of V— C; which sees at least 34/4 vertices
of C;. In the second case, we say S, is a near clique.

We shall need the following results concerning this partition:

LeEmMmA 15. If v is a vertex in some C; such that |C;| =4 — p then there
is a most one neighbour of v outside C; which sees more than p + 3 vertices
of C;. Furthermore, if v has degree A —1 there are no such neighbours.

Proof. Suppose, for a contradiction that there are two such vertices x
and y. By the minimality of G, we can 4 — 1 colour G— C;—x — y. By (13)
and (14), there must exist distinct w and z in C; such that w misses x and
z misses y. We can extend our colouring so as to give w and x the same
colour and y and z the same colour. We can now complete our colour by
colouring the vertices of C;—w —z, saving v to colour last, and some
neighbour of x to colour second last.

If v has degree 4 — 1, a similar argument applies if v has a neighbour x
in G — C; with at least p + 3 neighbours in C,. We first colour G — C; — x,
then colour x and w the same colour for some non-neighbour w of x in C;
and finally colour C;, saving v for last, and some neighbour of x for second
last. |

LemMMA 16. For any C;, if |C;|=4— p then we can find at least A/15
disjoint triples each of which consists of a vertex v of C; and two neighbours
of v outside of C; both of which have at most p + 3 neighbours in C;.

Proof. Take, a maximal such set of triples, suppose it has k elements.
Let S be the set of 2k vertices outside C; contained in one of these triples.
Let T be the set of k vertices of C; contained in some triple. Since G has
minimum degree at least 4 — 1, the maximality of our triple set and lemma
15 imply that each vertex of C;— T has at least p — 1 neighbours in S. Thus
there are at least (p — 1)(4 —k) edges between S and C;— T. On the other
hand there are at most 2k(p + 3) such edges. So, if p is at least 2, then the
desired result holds. If p =1, then the result holds by Lemma 8, because
all but four of the vertices of C; see at least two vertices of G — C; each of
which has degree at most four in C,. Hence we can actually find a disjoint
set of (4 —4)/7 disjoint triples. |

LemMA 17. If v is a vertex whose neighbourhood contains fewer than
A%/32 — A/4 pairs of non-adjacent vertices then it is in some S,.
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Proof. If v is not in any S; then by Lemma 5, there is some vertex v,
in N(v) which sees less than 34/4 — 1 vertices of N(v). More strongly, there
is a sequence vy, ..., U 44, Of vertices of G such that v, sees less than 34/4
vertices of N(v) —{v;| j<i}. The result follows. ||

Now that we have a better grasp of what the dense sets in G look like,
we can prove Theorem 4.

3. A PROOF SKETCH
Crucial to the proof is the following straightforward result.

LemMa 18.  Any partial 4 — 1 colouring of G satisfying the three following
conditions can be extended to a A —1 colouring of G.

(1) for every vertex ve L there are at least 2 colours appearing twice
in the neighbourhood of v,

(i1) for each near clique S;, there are two uncoloured neighbours of v;
in C;, and

(1) for every C;, there are two uncoloured vertices w; and x; of C;
whose neighbourhoods contain two repeated colours.

Proof. Simply colour the uncoloured vertices one at a time. If S, is a
near-clique, then we colour v; before colouring any of C;, (ii) ensures this
is possible. For any S;, we colour w; and Xx; after all of the rest of C;. This
ensures that we can colour C;— w; — x; because all the vertices in this set
see both w; and x,. We can colour w; and x; by (iii). We can colour the
vertices of L because of (i). |

Now, we will attempt to find a partial 4 — 1 colouring satisfying condi-
tions (i), (ii), and (iii) by analyzing the probabilistic procedure described
in the introduction. That is, by considering a partial colouring obtained by
colouring each vertex with a uniformly independently chosen colour and
then uncolouring vertices which are involved in conflicts.

It turns out that ensuring that (1) is satisfied is straightforward. To intro-
duce our technique, we first prove this result. So, consider a uniformily ran-
dom partial 4 — 1 colouring of the vertices of G. Let v be a vertex of L.

Our first step is to examine the number of repeated colours we expect in
N(v). We let U, be the set of pairs of vertices of N(v) which receive the
same colour and such that this colour appears nowhere else on N(v). We
let W, be the set of colours used to colour these pairs. We let Z,=
|U,| =|W,|. Clearly this is at most the number of repeated colours on N(v).
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By Lemma 17, there are at least 4%/32—A/4 pairs of non-adjacent
vertices in N(v). For any particular such pair, {u, w}, both vertices receive
the same colour with probability 1/(4 —1). If u, w both receive the same
colour, then they will form one of the pairs counted by Z, provided they
both retain that colour in the partial colouring and no other vertex in N(v)
receives the colour, i.e., if and only if no other vertex in N(u) U N(w) L N(v)
receives that colour. The probability that no such vertex receives that
colour is (1 —1/(4—1)N@WONWMONDI=3 5 (1 _1/(4—1))3473=>373 It
follows that Exp(Z, )>(A2/32 A/4)x 1)(4—1)x373= 4/1000.

Thus, for each vertex, the expected number of colours which appear
twice in its neighbourhood in the partial colouring is high, and so it seems
hopeful that with positive probability, every vertex will have two pairs of
neighbours which recieve the same colour in the partial colouring. To
prove this requires two more steps: First, we would like to show that for
each v, Z, is highly concentrated, i.e., that the probability that Z, differs
from its expected value by a significant amount is small. This will establish
that for any one particular v, with high probability N(v) will contain two
repeated colours. The second step is to strengthen this statement, showing
that with positive probability every vertex will have many such pairs in its
neighbourhood.

The first step requires the use of the following:

19 (Azuma’s Inequality [2]). Let Y=Y, Y,,.. Y, be a sequence of
random events. Let X=X(Y,, Y,, .., Y,,) be a random variable defined by
these Y,. If for each i,

max |EXP(X| Yl’ Y23 sees 1+1) EXP(X| Yl» Y2> esy Yz)' <Ci

then the probability that | X —Exp(X)| > a is at most de—aCEe),

Using which, we can obtain:

20. Pr(Z,<2)<d47".

Proof. To apply Azuma’s Inequality, we must be careful about the
order in which we assign the random colours to V(G). We order the
vertices of G as wy, ..., w, so that the vertices adjacent to v are a suffix of
this order. We let w, be the last vertex of V'— N(v) under this order.

For each of these choices we now bound the potential effect on Exp(Z,).
Note that changing the colour of w; from j to k& will not affect W,— j—k.
Thus, choosing a different colour for w; can affect the value of , by at most
2. Furthermore, for each w; not in N(v), the probability that changing w,’s
colour will affect Z, is at most the probability that one of the two colours
assigned to w; is also assigned to one of its neighbours in N(v). If we denote
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by d; the number of neighbours w; has in N,, then this is at most
2d,;/(4 —1). Thus, the maximum effect that colouring such a w; can have on
the expected value of Z, is ¢;=4(d;/(4—1)). Clearly Y5_, d,< 4?, and so
>5_, ;<44 + 5. Furthermore, each ¢, is at most 5, and so Y5_, ¢?<214.
Thus, the sum of all the ¢? is at most 254. Our claim now follows
immediately from Azuma’s Inequality, by setting a = 4/1000 —2. ||

The second step in our proof that (i) holds requires:

LEmMMA 21 (The Lovasz Local Lemma [6]). Consider a set & of (typi-
cally bad) events such that for each A€ &

(1) Pr(4)<p, and

(2) A is mutually independent of a set of all but at most d of the other
events.

If ep(d+ 1) <1 then with positive probability, none of the events in & occur.
(Here e=2.71....)

Now, for each vertex v in L, we let 4, be the event that there are fewer
than two repeated colours in v’s neighbourhood. By (20), each A, holds
with probability less than 4 ~7. So, the Local Lemma will imply that no 4,
holds, i.e., that there is a colouring satisfying (i), provided we can show
that each 4, is mutually independent of a set of all but at most A4° other
A,. But, it is easy to see that each A, is mutually independent of the set

{A, | there is no uv path with at most four edges}.

The complement of this set has size less than 4%+ 1. So, we are done.
The rest of the proof uses two similar applications of our two
probabilistic tools.

4. SOME MORE DETAILS

We now complete the proof of Theorem 4. To do so, we need to define
two new kinds of events. For each near-clique S;, we let E; be the event
that (ii) fails to hold on S;. For each S;, we let F; be the event that (iii)
fails to hold on C,. We note that if none of the events in the set & =
(U4,)u (U E;)u (U F;) hold then the random colouring satisfies (i), (ii),
and (iii) of Lemma 18. To finish the proof we use the Lovasz Local Lemma
to show that this occurs with positive probability.

We note that each E; depends only on the colour of the vertices in S; and
within distance one of it. Similarly, each F; depends only on the colour of
the vertices in S; and within distance two of it. It follows that each event
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in & is independent of a set of all but at most 34° other events. So, we need
only show that each event in & holds with probability at most 4 ~°.

We have already established this bound for the 4,. We note that for
each near clique S;, there is a set R; of 34/4 neighbours of v; in C;. If E;
is to hold, then we must have assigned at least 34/4 — 2 different colours
to R;. However, the expected number of colours we assign to R, is less than
(4—1)(1 —1/e), which exceeds the number of colours we expect to assign
to a set of size 4 — 1. Furthermore, the number of colours ¥, assigned to
R; depends only on the colour choices for the elements of R; and each
choice can affect the total number of colours used by at most 1. So, apply-
ing Azuma’s inequality, we see that Pr(|N,— Ex(N,)| > ) <e /4. Setting
t=34—(1—1/e)(4—1)—2 yields that each E; occurs with probability less
than 476,

To compute the probability bound on F;, we consider the set 7; of 4/15
disjoint triples guaranteed to exist by Lemma 16. We let M, be the number
of these triples for which the vertex in C; is uncoloured, both the other ver-
tices are coloured with a colour which is also used to colour a vertex of C,,
and no vertex of the triple is assigned a colour assigned to any vertex in
any of the other triples. This last condition is present to ensure that chang-
ing the colour of a vertex can only affect the value of M, by two.

To begin, we compute the expected value of M,. To this end, we let
T, be the union of the vertex set of the triples in .7;. We note that M,
counts the number of triples (a, b, ¢) in Z; with ¢ € C; such that there are
colours j, k, / and vertices x, y, z with xe C;— T, — N(a), ye C;— T;— N(b),
ze N(¢)— T}, such that

(1) j is assigned to @ and x but to none of the rest of T;u
N(a) u N(x),

(2) k is assigned to b and y but to none of the rest of T,u
N(b)U N(y),

(3) [1is assigned to z and ¢ but on none of the rest of 7.

To begin, we fix a triple {a, b, ¢} in 7. Welet 4, , . , . be the event that
(1), (2), and (3) hold. This is clearly at least (4 —1)~%1/e. Furthermore,
two such events with different sets of indices are disjoint. Now, there are
134/30 choices for both x and y. There are at least 44/5 choices for z and
(4—1)(4—2)(4—3) choices for distinct j, k,I So, a straightforward
calculation shows that the probability that (1), (2), and (3) hold for some
choice of {j, kI, x,y,z} is at least (4—1)"%(4—1)(4—2)(4-3)
(134%/30)(44/5)(1/e%) = 1/7¢°. Since, there are A4/15 triples in 7, M, is at
least (4/15)(1/7¢°) = A4/105¢°.
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We now prove that M, is concentrated around this mean. We will colour
the vertices of V' — T first and then the vertices of 7;. We note that changing
the colouring of a vertex w; of V' —T,; with d; will only affect M, if some
neighbour of w; in T, receives the same colour as one of the two colours
chosen for w;. This occurs with probability at most 2d;/4 where d, is the
number of neighbours of w; in T,. Hence the expected change ¢, in M,
which occurs when we colour w; is at most 4d;/4. Thus, since the d; sum
to at most 4%/5 and each ¢; is at most 4/5, we see that the sum of cf over
w; not in T; is at most 44/25. Thus, the sum of all the cj? is at most 4.
Applying, Azuma’s inequality with 7= 4/105¢> — 2 yields the desired result.

5. SOME CONCLUDING REMARKS

We note that fairly straightforward modifications yield the value
A,=10%. We are certain that the proof can be modified to yield 4,= 10°.
We expect that a more careful analysis could bring the bound on 4, down
to 1000. However, we doubt if the proof technique can be used to prove
any bound better than 4,=100.

On the other hand, Lemma 7 may prove useful in resolving the conjec-
ture. For example, suppose the following were true:

22.  Every graph G of maximum degree nine all of whose cliques of size
eight are disjoint, can be partitioned into two graphs of maximum degree
four, neither containing a clique of size five (and hence by Brook’s Theorem,
such a G is eight colourable).

Then, no minimal counterexample to the Borodin—-Kostochka conjecture
could have maximum degree nine, which by a result of Kostochka,
Borodin, and Toft, implies that the conjecture holds. This would be a very
attractive way of proving the conjecture. Even if (22) is not true, it may be
possible to prove the Borodin—Kostochka conjecture using a similar state-
ment where the hypotheses are strengthened (i.e., by considering the inter-
sections of the cliques of size seven).
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