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Abstract

Hochster established the existence of a commutative noetherian ring C̃ and a universal resolution U of
the form 0 → C̃e → C̃f → C̃g → 0 such that for any commutative noetherian ring S and any resolution V

equal to 0 → Se → Sf → Sg → 0, there exists a unique ring homomorphism C̃ → S with V = U⊗
C̃

S.
In the present paper we assume that f = e + g and we find the minimal resolution of C̃ ⊗Z Q by free
B-modules, where B is a polynomial ring over the field of rational numbers. The modules of the resolution
are described in terms of Schur functors. The graded strands of the differential are described in terms of
Pieri maps.
© 2007 Elsevier Inc. All rights reserved.
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0. Introduction

Fix positive integers e, f , and g, with r1 � 1 and r0 � 0, for r1 and r0 defined to be f − e and
g − f + e, respectively. Hochster [Ho] established the existence of a commutative noetherian
ring C̃ and a universal resolution

U : 0 → C̃e → C̃f → C̃g
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such that for any commutative noetherian ring S and any resolution

V : 0 → Se → Sf → Sg,

there exists a unique ring homomorphism C̃ → S with V = U ⊗
C̃

S. The ring C̃ is generated as
an algebra by the entries of the matrices giving the universal complex with these Betti numbers,
together with the universal Buchsbaum–Eisenbud multipliers assuring that the First Structure
Theorem from [BE] holds. The generators of C̃ were described in [Hu]. Over a field K of char-
acteristic zero [PW] gave the presentation and the description of the decomposition of C̃ to the
irreducible representations of GLe(K) × GLf (K) × GLg(K). Finally, the explicit basis of C̃ as
a Z-module and its presentation as an algebra over Z was given in [T].

The ring C̃ is important because of its universality property. It found a remarkable application
as Heitmann [He] used it to give a counterexample to the rigidity conjecture.

In the present paper we take the next step, by describing the syzygies of C̃, i.e. the minimal
resolution of C̃ as a module over the polynomial algebra of which C̃ is a factor. We do it only
in the case r0 = 0 over a field of characteristic zero. These are reasonable assumptions; as, for
bigger r0, the Buchsbaum–Eisenbud multipliers satisfy Plücker relations, so the resolution of C̃

would include the knowledge of (unknown) resolutions of Plücker ideals. Over fields of positive
characteristic, the resolution of C̃ would include the knowledge of an (unknown) resolution of a
determinantal ideal.

We use the techniques from [W] and the papers mentioned above. We describe the terms of the
resolution of C̃. In the case under consideration we know that there is exactly one Buchsbaum–
Eisenbud multiplier, which we call a, and we know that a is a nonzerodivisor in C̃; so the
resolution of C̃ has the same terms as the analogous resolution of C̃/aC̃. The last ring is the
coordinate ring of a variety of pairs of matrices that form a complex and satisfy certain rank
conditions.

The resolution of C̃/aC̃ has a very nice structure. It is filtered by resolutions of certain
maximal Cohen–Macaulay modules supported in a determinantal variety. We describe these com-
plexes in several ways.

Let us set up the notation of the paper. We deal with the universal ring C̃ when r0 = 0. In
this case, f = e + g and C̃ = B̃/J̃ , for B̃ equal to the polynomial ring Z[{φj,i}, {ψk,j }, a], with
1 � i � e, 1 � j � f , and 1 � k � g, where {φj,i} ∪ {ψk,j } ∪ {a} is a list of indeterminates
over Z. The indeterminate a corresponds to the unique Buchsbaum–Eisenbud multiplier which
occurs in the present situation. Let φ be the f × e matrix and ψ be the g × f matrix with entries
φj,i and ψk,j , respectively. View the matrices φ and ψ as homomorphisms of B̃-modules:

B̃e φ−→ B̃f ψ−→ B̃g.

We give J̃ in the language of [T]. For each

partition of {1, . . . , f } into I ∪ Ī with |I | = e and |Ī | = g, (0.1)

let ∇Ī ,I be the sign of the permutation which arranges the elements of Ī , I into increasing order,
φ(I) the submatrix of φ consisting of the rows from I , and ψ(Ī ) the submatrix of ψ consisting
of the columns from Ī . In this notation, the ideal J̃ which defines the universal ring C̃ is

I1(ψφ) + ({
detψ(Ī ) + ∇Ī ,I a detφ(I)

∣∣ I ∪ Ī from (0.1)
})

. (0.2)
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One resolution of C̃ by free B̃-modules may be found in [K]. The resolution of [K] is not mini-
mal; but it is straightforward, coordinate free, and independent of characteristic; furthermore, one
can use it to calculate TorB̃• (C̃,Z). If e and g are both at least 5, then TorB̃• (C̃,Z) is not a free
abelian group; and therefore (see Roberts [R] or Hashimoto [Ha]), the graded Betti numbers in
the minimal resolution of C̃ ⊗Z K by free B̃ ⊗Z K-modules depend on the characteristic of the
field K.

Henceforth, we work over a field K of characteristic zero. Consider the vector spaces E,F,G

over K of dimensions e, f, g respectively, with f = e + g. Since we will apply the geometric
technique of [W], we identify B = B̃ ⊗Z K with the coordinate ring of the affine space

HomK(E,F ) × HomK(F,G) × K.

The vector space Hom(E,F ) is naturally equal to F ⊗ E∗; and therefore, B is the polynomial
ring

B = SymK(F ∗ ⊗K E) ⊗K SymK(G∗ ⊗K F) ⊗K K[a].

Let E ⊗K B
φ−→ F ⊗K B

ψ−→ G ⊗K B be the natural maps given by

φ(u) =
∑

i

vi ⊗ (
v∗
i ⊗ u

)

and

ψ(v) =
∑

i

wi ⊗ (
w∗

i ⊗ v
)
,

for each u ∈ E and v ∈ F . It is not necessary to pick bases; however, if u1, . . . , ue; v1, . . . , vf ;
and w1, . . . ,wg are bases for the vector spaces E, F , and G; and u∗

1, . . . , u
∗
e ; v∗

1 , . . . , v∗
f ; and

w∗
1, . . . ,w∗

g are the corresponding dual bases for E∗, F ∗, and G∗; then
∑

i vi ⊗ v∗
i , which is

used in the definition of φ, is the element in F ⊗ F ∗ which represents the identity map under the
canonical identification of F ⊗F ∗ with Hom(F,F ). The coordinate functions in B may be iden-
tified as φi,j = v∗

i ⊗ uj ∈ F ∗ ⊗ E and ψi,j = w∗
i ⊗ vj ∈ G∗ ⊗ F . The matrices which represent

the maps ψ and φ, with respect to the chosen bases, are the generic matrices (ψi,j ) and (φi,j ), re-
spectively. We have C = C̃ ⊗Z K and J = J̃ B . So, B is the polynomial ring K[{φi,j }, {ψi,j }, a],
C = B/J , and J is given by (0.2). In Corollary 6.2, we produce the modules in the minimal
resolution G of C by free B-modules. The ring B is bigraded with φi,j ∈ B(1,0), ψi,j ∈ B(0,1),
and a ∈ B(−e,g). The ideal J and the resolution G are homogeneous with respect to this bidegree.

Notice that in [W] one uses the notation LλE, KλE to denote the Schur and Weyl functors. In
this paper we work over a field of characteristic zero, so we have our SλE isomorphic to Lλ′E or
KλE, where λ′ is a conjugate partition. The module SλE is defined for any dominant weight λ

(i.e., for any integers λ1 � λ2 � · · · � λe) because

S(λ1,...,λe)E = S(λ1+t,...,λe+t)E ⊗
( e∧

E∗
)⊗t

for any integer t .
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Let us recall the result from [PW] that gives a natural basis for the universal ring C. We notice
that the proper GL-representation in

C = B

J
= SymK(F ∗ ⊗ E) ⊗K SymK(G∗ ⊗ F) ⊗K K[a]

J

for the multiplier a is
∧e

E∗ ⊗ ∧f
F ⊗ ∧g

G∗. Indeed, the representation S1gF ⊗ S1gG∗ is
equal to

SλE ⊗ S(μ1,...,μg−1,0,−λe,...,−λ1)F ⊗ SμG∗ ⊗
( e∧

E∗ ⊗
f∧

F ⊗
g∧

G∗
)

,

for λ = 1e and μ = 0. In other words, in C, each maximal minor of ψ is equal to the appropriately
signed complementary maximal minor of φ times the image of

∧e
E∗ ⊗ ∧f

F ⊗ ∧g
G∗.

Proposition 0.3. The ring C has the following decomposition to representations of GL(E) ×
GL(F ) × GL(G):

C =
⊕
λ,μ,t

SλE ⊗ S(μ1,...,μg−1,0,−λe,...,−λ1)F ⊗ SμG∗ ⊗
( e∧

E∗ ⊗
f∧

F ⊗
g∧

G∗
)⊗t

,

where we sum over all partitions λ with e parts, partitions μ with g−1 parts and t � 0. Note that
the representation corresponding to the triple (λ,μ, t) is a factor of (SλE ⊗ SλF

∗) ⊗ (SμF ⊗
SμG∗) ⊗ at .

Proof. Applying Theorem 1.3 from [PW], or Theorem 5.10 from [T], we get

C =
⊕
λ,μ,t

LλE ⊗ L(e+g−λu,...,e+g−λ1,μ1,...,μs)F ⊗ LμG∗ ⊗
( g∧

G∗
)⊗t

.

Changing Schur functors to Weyl functors (i.e., L’s to S’s), partitions λ,μ to λ′,μ′ respectively,
and adjusting powers of determinant representations to get a GL(E) × GL(F ) × GL(G)—
equivariant statement we get the result. �
Corollary 0.4. The ring C is a free K[a]-module.

Notation 0.5. The ring C/aC is isomorphic to the factor of A := K[φi,j ,ψi,j ] by the ideal I

given by the relations ψφ = 0 and
∧g

ψ = 0. The ring A = B/a inherits the bidegree of B with
φi,j ∈ A(1,0) and ψi,j ∈ A(0,1).

In section one we recapitulate the geometric method for calculating syzygies. Section two
contains a brief introduction to the Pieri maps which are used in our description of the differ-
entials in our resolutions. Section two also contains the Comparison Principle which we use to
prove the acyclicity of some complexes. The modules in the minimal resolution, F•, of A/I by
free A-modules are given in Theorem 3.4. Theorem 5.13 describes the homogeneous strands of
the differential of F•. The differential of F• is viewed as arising from an iterated mapping cone in
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Theorem 5.4. In section four, we resolve a family of maximal Cohen–Macaulay modules over the
determinantal ring Ā/Ig(ψ), for Ā = Sym•(F ⊗ G∗). The familiar rank one maximal Cohen–
Macaulay modules Symi (cokψ), for 0 � i � e + 1, which are resolved by the Eagon–Northcott
complex, are members of our family. Section six gives the free B-modules in the resolution of
the universal ring C = B/J .

1. Geometric technique of calculating syzygies

In this section we provide a quick description of the main facts related to the geometric
technique of calculating syzygies; see [W] for more details. We work over a field K. The char-
acteristic of K must be zero for the Bott algorithm; otherwise, in this section, the characteristic
of K is arbitrary.

Let us consider the projective variety V of dimension m. Let X = AN
K be the affine space. The

space X × V can be viewed as a total space of trivial vector bundle E of dimension N over V .
Let us consider the subvariety Z in X × V which is the total space of a subbundle S in E . We
denote by q the projection q :X × V → X and by q ′ the restriction of q to Z. Let Y = q(Z). We
get the basic diagram

Z

q ′

⊂ X × V

q

Y ⊂ X.

The projection from X × V onto V is denoted by p and the quotient bundle E/S by T . Thus
we have the exact sequence of vector bundles on V

0 −→ S −→ E −→ T −→ 0.

The dimensions of S and T will be denoted by s, t respectively. The coordinate ring of X will be
denoted by A. It is a polynomial ring in N variables over K. We will identify the sheaves on X

with A-modules.
The locally free resolution of the sheaf OZ as an OX×V -module is given by the Koszul com-

plex

K•(ξ) : 0 →
t∧

(p∗ξ) → ·· · →
2∧

(p∗ξ) → p∗(ξ) → OX×V ,

where ξ = T ∗. The differentials in this complex are homogeneous of degree 1 in the coordinate
functions on X. The direct image p∗(OZ) can be identified with the sheaf of algebras Sym(η),
where η = S∗.

The idea of the geometric technique is to use the Koszul complex K(ξ)• to construct for each
vector bundle V on V the free complex F•(V) of A-modules with the homology supported in Y .
In many cases the complex F(OV )• gives the free resolution of the defining ideal of Y .

For every vector bundle V on V we introduce the complex

K(ξ,V)• := K(ξ)• ⊗OX×V
p∗V .

This complex is a locally free resolution of the OX×V -module M(V) := OZ ⊗ p∗V .
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Now we are ready to state the basic theorem (Theorem (5.1.2) in [W]).

Theorem 1.1. For a vector bundle V on V we define a free graded A-module

F(V)i =
⊕
j�0

Hj

(
V,

i+j∧
ξ ⊗ V

)
⊗K A(−i − j).

(a) There exist minimal differentials

di(V) : F(V)i → F(V)i−1

of degree 0 such that F(V)• is a complex of graded free A-modules with

H−i

(
F(V)•

) = Riq∗M(V).

In particular, the complex F(V)• is exact in positive degrees.
(b) The sheaf Riq∗M(V) is equal to Hi (Z,M(V)) and it can be also identified with the graded

A-module Hi (V ,Sym(η) ⊗ V).
(c) If φ :M(V) → M(V ′)(n) is a morphism of graded sheaves then there exists a morphism of

complexes

f•(φ) : F(V)• → F(V ′)•(n).

Its induced map H−i (f•(φ)) can be identified with the induced map

Hi
(
Z,M(V)

) → Hi
(
Z,M(V ′)

)
(n).

If V is a one dimensional trivial bundle on V , then the complex F(V)• is denoted simply
by F•.

The next theorem gives the criterion for the complex F• to be the free resolution of the coor-
dinate ring of Y .

Theorem 1.2. Let us assume that the map q ′ :Z → Y is a birational isomorphism. Then the
following properties hold.

(a) The module q ′∗OZ is the normalization of K[Y ].
(b) If Riq ′∗OZ = 0 for i > 0, then F• is a finite free resolution of the normalization of K[Y ]

treated as an A-module.
(c) If Riq ′∗OZ = 0 for i > 0 and F0 = H0(V ,

∧0
ξ) ⊗ A = A, then Y is normal and it has

rational singularities.

This is Theorem (5.1.3) in [W].
In all our applications the projective variety V will be a Grassmannian. To fix the notation, let

us work with the Grassmannian Grass(r,E) of subspaces of dimension r in a vector space E of
dimension n. Let
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0 →R → E × Grass(r,E) → Q→ 0

be a tautological sequence of the vector bundles on Grass(r,E).
Assume that the characteristic of the field K is zero. Then the vector bundle ξ will be a direct

sum of the bundles of the form Sλ1,...,λn−rQ⊗ Sμ1,...,μrR. Thus all the exterior powers of ξ will
also be the direct sums of such bundles. We will apply repeatedly the following result to calculate
cohomology of vector bundles Sλ1,...,λn−rQ⊗ Sμ1,...,μrR.

Proposition 1.3 (Bott’s algorithm). Assume that the characteristic of K is zero. The cohomology
of the vector bundle Sλ1,...,λn−rQ ⊗ Sμ1,...,μrR on Grass(r,E) is calculated as follows. We look
at the weight

(λ,μ) = (λ1, . . . , λn−r ,μ1, . . . ,μr)

and add to it ρ = (n,n − 1, . . . ,1). If the resulting sequence

(λ,μ) + ρ = (λ1 + n, . . . , λn−r + r + 1,μ1 + r, . . . ,μr + 1)

has repetitions, then

Hi
(
Grass(r,E),SλQ⊗ SμR

) = 0

for all i � 0. If the resulting sequence has no repetitions, there is a unique permutation w ∈
Σn that makes this sequence decreasing. Then the sequence ν = w((λ,μ) + ρ) − ρ is again a
nonincreasing sequence. Then the sheaf SλQ ⊗ SμR has only one nonzero cohomology group,
the group H
, where 
 = 
(w) is the length of w. This cohomology group is isomorphic to the
representation SνE of GL(E) corresponding to the highest weight ν.

This is Corollary (4.1.9) in [W].

2. The Pieri maps and the Comparison Principle

Ultimately, the differentials in all of our resolutions are described in terms of Pieri maps. For
the purposes of the present paper, it is not important to give an explicit description of the exact
action of one these maps on each element in its domain. However, it is possible to record such a
description. We will first describe what the Pieri map is and explain why it exists. Then we will
point any reader so-inclined in the direction of recording an explicit formula for the Pieri map.
We are interested only in a special case that is relevant to our resolutions.

Let E be a finite dimensional vector space over a field K of characteristic zero. Suppose
that λ = (λ1, . . . , λm) is a partition and a and b are integers with 1 � a � b � m. Define μ =
(μ1, . . . ,μm) by

μi =
{

λi if i < a or b < i,

λi − 1 if a � i � b.

Assume that μ is also a partition. Let N = b − a + 1. The GL(E)-module S1N E ⊗ Sμ(E) is
equal to a direct sum of irreducible GL(E)-modules. The Pieri formula, which is a special case
of the Littlewood–Richardson rule, see, for example, Corollary (2.3.5) in [W], shows that the
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irreducible GL(E)-module Sλ(E) is a summand of S1N E ⊗Sμ(E) with multiplicity one. Hence,
there is exactly one nonzero GL(E)-module homomorphism

P :Sλ(E) → S1N E ⊗ Sμ(E),

up to multiplication by a unit, and this is the map that we call the Pieri map.
To investigate the action of the Pieri map P , it suffices to take N = 1. One obtains the general

case by iteration. Inspired by the work of Maliakas and Olver [MO], we notice that the partition λ

and the skew partition Λ/ν have exactly the same Ferrers diagram, where Λ = (λ1 +1, . . . , λm +
1,1) and ν = 1m+1; and therefore, Sλ and SΛ/ν are the exact same Schur functor. We also notice
that when one box is moved from the right side of row a to the left side row m + 1 in the Ferrers
diagram for Λ/ν the resulting skew partition is Λ − εa/ν − εm+1 and

SΛ−εa/ν−εm+1E = S1E ⊗ SμE,

where εj represents the (m + 1)-tuple with 1 in position j and zero everywhere else. Thus,
P :Sλ(E) → S1E ⊗ Sμ(E) is the same as P :SΛ/νE → SΛ−εa/ν−εm+1E, which moves one box
from the right side of the arbitrary row a to the left side of the bottom row. Maliakas and Olver
give an explicit formula for the related map that moves a box from the left side of the bottom
row of an arbitrary skew-partition to the right side of an arbitrary row. Presumably, one can
manipulate the map given in [MO] to make it apply to the present situation. Our approach is to
start over and just calculate the explicit formula from scratch in our own notation. The skew-
Schur module SΛ/νE is equal to

∧n1 E ⊗ · · · ⊗ ∧nt E

R(Λ/ν,E)
,

for ni = λ′
i − ν′

i , as described in Proposition (2.1.9) of [W]. The Pieri map

P :SΛ/νE → SΛ−εa/ν−εm+1E

is induced by a map

n1∧
E ⊗ · · · ⊗

nt∧
E →

n1∧
E ⊗ · · · ⊗

nr−1∧
E ⊗ · · · ⊗

nt+1∧
E, (2.1)

for the appropriate choice of r . The combinatorial description of (2.1) says that one sums over
all possible sets of rest stops, r = s0 < s1 < s2 < · · · < s
 = t , along the direct route from row r

to the bottom row. Once the rest stops are planned, one uses co-multiplication to split off one box
at each rest stop, one carries the extra box from row s0 to row s1, puts it down and picks up the
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extra box sitting on row s1 and moves it to row s2 etc., and then one uses multiplication to join
the new box to the old boxes at the new spot:

n1∧
E ⊗ · · · ⊗

nt∧
E

‖
n1∧

E ⊗ · · · ⊗
ns0∧

E ⊗ · · · ⊗
ns1∧

E ⊗ · · · ⊗
ns2∧

E ⊗ · · · ⊗
ns
∧

E

↓
n1∧

E ⊗ · · · ⊗
( ns0 −1∧

E ⊗ E

)
⊗ · · · ⊗

( ns1 −1∧
E ⊗ E

)
⊗ · · · ⊗

( ns2 −1∧
E ⊗ E

)
⊗ · · · ⊗

ns
∧
E

↓
n1∧

E ⊗ · · · ⊗
ns0 −1∧

E ⊗ · · · ⊗
(

E ⊗
ns1−1∧

E

)
⊗ · · · ⊗

(
E ⊗

ns2−1∧
E

)
⊗ · · · ⊗

(
E ⊗

ns
∧
E

)

↓
n1∧

E ⊗ · · · ⊗
ns0 −1∧

E ⊗ · · · ⊗
ns1∧

E ⊗ · · · ⊗
ns2∧

E ⊗ · · · ⊗
ns


+1∧
E

‖
n1∧

E ⊗ · · · ⊗
nr−1∧

E ⊗ · · · ⊗
nt+1∧

E.

The coefficient for the term that corresponds to a particular set of rest stops is a quotient of
products of hook lengths.

Our approach is a combination of the geometric technique and representation theory. We will
use the Comparison Principle to prove the acyclicity of some complexes. In practice, we will
know that the complex H• is acyclic without explicitly knowing its differential, and we will know
an explicit differential on (H′•, d ′

i ). We apply the Comparison Principle to show that (H′•, d ′
i ) is

acyclic.

Proposition 2.2 (The Comparison Principle). Let A be a coordinate ring on some representation
W of a linearly reductive group G. Let H• and (H′•, d ′

i ) be two finite G-equivariant minimal
complexes of A-modules. If conditions (a)–(e) all are satisfied, then the complexes H• and H′•
are isomorphic.

(a) The terms Hi and H′
i are direct sums of modules of type Vλ ⊗ A(−j), where Vλ is an

irreducible representation of G of highest weight λ.
(b) For each i, the terms Hi and H′

i are isomorphic as graded equivariant G − A-bimodules,
and, for i < 0, we have Hi = H′

i = 0.
(c) The complex H• is acyclic.
(d) The homology modules H0(H•) and H0(H′•) are isomorphic as G − A-bimodules.
(e) Denote H′

i = ⊕t
s=1 Vλs ⊗ A(−js) with j1 � · · · � jt . Let v′

λs
be the highest weight vector

in Vλs . Assume that
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(∗) for all j , the images d ′
i (v

′
λs

⊗ 1) with js = j are linearly independent vectors modulo
the image

∑
js<j d ′

i (Vλs ⊗ A(−js)) in H′
i−1.

In particular, if the term Vλ ⊗A(−j) occurs at most once in the complex H′•, for each highest
weight λ, then it is enough to replace (∗) with the condition,
(∗∗) for all s, the image d ′

i (v
′
λs

⊗ 1) is nonzero modulo the image
∑

u<s d ′
i (Vλu ⊗ A(−ju))

in H′
i−1.

Proof. We construct a G-equivariant isomorphism of complexes h• : H′• → H•. We induct on i.
For i = 0 and 1, the maps hi exist by condition (d). Assume the map hi−1 has been constructed.
To construct hi we denote H′

i = ⊕t
s=1 Vλs ⊗A(−js). Let v′

λs
be the highest weight vector in Vλs .

We notice that the images d ′
i (v

′
λs

⊗1) give the cycles which are the highest weight vectors of cor-
responding weights λ that are linearly independent modulo images generated in lower degrees.
Thus, for each s there is exactly one representation Vλs ⊗ A(−js) with highest vector vλs ⊗ 1
of weight λs in the appropriate degree in Hi whose differential equals hi−1 ◦ d ′

i (v
′
λs

⊗ 1). We
define hi(v

′
λs

⊗ 1) to be vλs . This map extends uniquely to become an equivariant isomorphism
h′

i : H′
i → Hi and by construction it is obvious that h• is a map of complexes. �

3. The terms in the minimal resolution of A/I

We apply the geometric technique to calculate the minimal free resolution of A/I as an A-
module. The notation is set up in 0.5. Recall that K is a field of characteristic zero. We use freely
the notation of [W]. Denote

X = {
(d2, d1) ∈ HomK(E,F ) × HomK(F,G)

}
.

Therefore we have A = K[X]. Consider the incidence variety

Z = {
(d2, d1,R) ∈ X × Grass(e + 1,F )

∣∣ Im(d2) ⊆ R ⊆ Ker(d1)
}
.

Clearly the image q(Z) by the first projection q :Z → X is equal to the set Y := V (I). Notice
that Z is the desingularization of Y because generically on Y we have R = Ker(d1) and the
projection q is obviously proper.

We are in the situation described in section one. In this special case we have ξ = E ⊗ Q∗ ⊕
R ⊗ G∗. We also have η = E ⊗ R∗ ⊕ Q ⊗ G∗. Let us look at the cohomology groups of the
exterior powers of ξ and of symmetric powers of η.

Proposition 3.1. We have

(a) Hi (Grass(e + 1,F ),Symj (η)) = 0 for i > 0,

(b) H0(Grass(e + 1,F ),Symj (η)) = (A/I)j for all j � 0.

Proof. We have

Sym(η) =
⊕

SλE ⊗ SλR∗ ⊗ SμQ⊗ SμG∗,

λ,μ
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where we sum over partitions λ with e parts and partitions μ with g − 1 parts. We notice that
higher cohomology of the bundles SλR∗ ⊗ SμQ is zero, with H0 being just

S(μ1,...,μg−1,0,−λe,...,−λ1)F.

Comparing it with Proposition 0.3 we are done. �
Proposition 3.1 implies that the complex F• is a minimal free resolution of the coordinate ring

of Y .
Let us analyze the cohomology of the exterior powers of ξ . We have

•∧
(ξ) =

⊕
λ,μ

Sλ′E ⊗ SλQ∗ ⊗ SμR⊗ Sμ′G∗.

To calculate the cohomology of the summand corresponding to the pair (λ,μ) we need to apply
the Bott algorithm, Proposition 1.3, to the sequence

(−λg−1, . . . ,−λ1,μ1, . . . ,μe+1).

Proposition 3.2.

(a) The representations of F we get from the above procedure are all of the type
∧s

F , for
some s with 0 � s � f .

(b) The ring K[Y ] is normal and Gorenstein and has codimension eg + 1 as a quotient of K[X].

Remark. Assertion (b) is already well known in arbitrary characteristic by work of Kempf [Ke]
(characteristic 0) and De Concini and Strickland [DS] on the variety of complexes. Also, K[Y ]
clearly is Gorenstein in arbitrary characteristic as a quotient of the Gorenstein ring C by the
regular element a; see Corollary 0.4.

Proof. Let us look what will be the highest number in our sequence after applying Bott’s al-
gorithm. It clearly is either −λg−1 or μ1 − g + 1. But μ1 � g, otherwise the corresponding
summand is zero as it involves the factor Sμ′G∗. Thus the first number is � 1. Similarly, the
last number is either μe+1 or −λ1 + e + 1. Since λ1 � e (otherwise the summand is zero, as it
contains factor Sλ′E), we see that the last number is � 0. Thus our weight has to be of the type
(1s ,0f −s).

Let us look at the top exterior power of ξ . Clearly this is

top∧
ξ = S(g−1)eE ⊗ Seg−1Q∗ ⊗ Sge+1R⊗ S(e+1)gG

∗.

To calculate the corresponding term, we need to apply Bott’s algorithm to the sequence
(−eg−1, ge+1) which gives the representation

∧f
F in H(g−1)(e+1). This is the top of the reso-

lution. The representation there is

top∧
ξ = S(g−1)eE ⊗

f∧
F ⊗ S(e+1)gG

∗
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in the homological degree e(g − 1) + g(e + 1) − (g − 1)(e + 1) = eg + 1. The representation is
one dimensional, therefore K[Y ] is Gorenstein, of codimension eg +1 as claimed. The normality
follows because Z is a desingularization of Y . �

The rest of this section is devoted to identifying all of the terms of F•. The main ideas are
contained in the proof of Proposition 3.2: we apply the Bott algorithm many times; however,
there are many details to work out. Our answer is recorded as Theorem 3.4 and is expressed
in terms of the objects in Definition 3.3. After the proof of Theorem 3.4 is complete, we offer
Examples 3.20 and 3.21.

Definition 3.3. Let k be an integer and λ = (λ1, . . . , λg−1) be a dominant weight. Let i = λ′
k ,

which is defined to be the number of indices j with λj � k. Notice that λi � k > λi+1. Define
p(λ; k) to be the dominant weight

p(λ; k) = (λ1, . . . , λi, k, λi+1 + 1, . . . , λg−1 + 1),

N(λ; k) to be the integer g − 1 − λ′
k + k, and Tλ;k to be the free A-module

Tλ;k = Sλ′E ⊗K

N(λ;k)∧
F ⊗K Sp(λ;k)G

∗ ⊗K A.

Theorem 3.4. In the notation of (0.5), the minimal resolution of A/I by free A-modules is

F• =
⊕
(λ;k)

Tλ;k
(−|λ|,−|λ| − N(λ; k)

)
.

The sum is taken over all pairs (λ; k), where λ = (λ1, . . . , λg−1) is a partition with e � λ1, and
k is integer with 0 � k � e + 1. The term Tλ;k(−|λ|,−|λ| − N(λ; k)) appears in F|λ|+k .

Proof. We know that

Fi =
⊕
d�0

|λ|+|μ|=i+d

Hd
(
Grass(e + 1,F ), Sλ′E ⊗ SλQ∗ ⊗ SμR⊗ Sμ′G

) ⊗ A
(−|λ|,−|μ|).

We calculate the cohomology of the vector bundle

Sλ′E ⊗ SλQ∗ ⊗ SμR⊗ Sμ′G∗, (3.5)

for partitions λ = (λ1, . . . , λg−1) and μ = (μ1, . . . ,μe+1) with μ1 � g and λ1 � e.
We first assume that the contribution of (3.5) is nonzero and we identify k. Start with the

weight

α(λ,μ) = (−λg−1, . . . ,−λ1,μ1, . . . ,μe+1),

and recalling ρ = (e + g, . . . ,1), we have

α(λ,μ) + ρ = (−λg−1 + e + g, . . . ,−λ1 + e + 2,μ1 + e + 1, . . . ,μe+1 + 1).
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Since μ1 � g and λ1 � e, we see that all coordinates of α(λ,μ)+ρ are integers from the interval
[1, e + g + 1]. Bott’s algorithm tells us that the pair (λ,μ) gives a nonzero contribution only
if the coordinates of α(λ,μ) + ρ are distinct. Thus, for such a pair (λ,μ), there is a unique
t ∈ [1, e + g + 1] such that the coordinates of α(λ,μ) + ρ fill the set [1, e + g + 1] \ {t}. The
parameter k =: k(λ,μ) is defined to be the cardinality of the set

{s | μs + e + 2 − s > t}.
It is clear that 0 � k � e + 1. The numbers

μ1 + e + 1, . . . ,μs + e + 2 − s, . . . ,μe+1 + 1

form a decreasing list; so, as long as one makes the proper interpretation at the boundaries for k,
it is convenient to write

μk + e + 2 − k > t > μk+1 + e + 1 − k. (3.6)

Now we start with the data (λ; k) and we manufacture the corresponding partition μ and
integer t . Let

A1 > A2 > · · · > Ae+2 (3.7)

be the complement of {−λg−1 + e + g, . . . ,−λ1 + e + 2} in {e + g + 1, . . . ,1}. Define t to be
Ak+1 and define μ by

(μ1 + e + 1, . . . ,μe+1 + 1) = (A1, . . . , ̂Ak+1, . . . ,Ae+2). (3.8)

We see that μ is a partition, g � μ1, the coordinates of α(λ,μ)+ρ are distinct, and k(λ,μ) = k.
Now that we have manufactured μ and t from the data (λ; k), we calculate the contribution

of the vector bundle (3.5) to F•. When α(λ,μ) + ρ has been reordered to become a decreasing
sequence, the result is

w
(
α(λ,μ) + ρ

) = (e + g + 1, . . . , t̂ , . . . ,1);

therefore, w(α(λ,μ)+ρ)−ρ = 1e+g+1−t0t−1. The contribution of the vector bundle (3.5) to F•
is equal to

Sλ′E ⊗K

e+g+1−t∧
F ⊗K Sμ′G∗ ⊗K A

(−|λ|,−|μ|).
This contribution is a summand of F|λ|+|μ|−
, where 
 is the length of the permutation w. To
complete the argument, we show that

|μ| − 
 = k, (3.9)

e + g + 1 − t = N(λ; k), and (3.10)

μ′ = p(λ; k). (3.11)

(It is clear from definition that |p(λ; k)| = |λ| + N(λ; k).)
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To accomplish these ends, we introduce the indices i1 < · · · < ie+1 to which the terms μs +
e + 2 − s go when α(λ,μ) + ρ has been reordered to become a decreasing sequence. In other
words, if (B1, . . . ,Be+g) is the decreasing sequence

(B1, . . . ,Be+g) = (e + g + 1, . . . , t + 1, t̂ , t − 1, . . . ,1), (3.12)

then the decreasing sequences

(Bi1 , . . . ,Bie+1) = (μ1 + e + 1, . . . ,μe+1 + 1), (3.13)

are equal. To rearrange α(λ,μ) + ρ into decreasing order, one must make


 = (g − i1) + (g + 1 − i2) + · · · + (g + e − ie+1) = (e + 1)g +
(

e + 1

2

)
−

e+1∑
s=1

is

exchanges. Equation (3.13) yields

Bis = μs + e + 2 − s (3.14)

and Eq. (3.12) gives

Bs =
{

e + g + 2 − s, if Bs > t,

e + g + 1 − s, if t > Bs.
(3.15)

Recall from (3.6) that Bis > t if and only if s � k. Combine (3.14) and (3.15) to see that

is =
{

g − μs + s, if s � k,

g − μs + s − 1, if k < s.

We now have

e+1∑
s=1

is = (e + 1)g − |μ| +
(

e + 2

2

)
− (e + 1 − k);

and therefore, Eq. (3.9) holds.
We establish (3.10) and (3.11) by explicitly recording the values for μ and t in terms of the

data (λ; k). We think of λ as ene (e − 1)ne−1 · · ·1n10n0 . It is clear that ns = λ′
s − λ′

s+1. We study
the entries of the vector

[−λg−1,−λg−2, . . . ,−λ1] + [e + g, e + g − 1, . . . , e + 2]. (3.16)

For each integer s, with 0 � s � e, the vector (3.16) contains the following subvector of consec-
utive integers:
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[−s, . . . ,−s] + [
e + 1 + λ′

s , . . . , e + 2 + λ′
s+1

];
and therefore, the set of entries of (3.16) is

⋃
0�s�e

{



∣∣ e + 2 − s + λ′
s+1 � 
 � e + 1 − s + λ′

s

}
. (3.17)

The complement of (3.17), in the interval [1, e + g + 1], is

{
e + 2 − s + λ′

s

∣∣ 0 � s � e + 1
}
. (3.18)

The elements of (3.18) were written in decreasing order in (3.7) with

As = e + 3 − s + λ′
s−1,

for 1 � s � e + 2. So, t = Ak+1 = e + 2 − k + λ′
k . Equation (3.10) follows immediately. Also,

Eq. (3.8) shows that

μs =
{

1 + λ′
s−1, for 1 � s � k,

λ′
s , for k + 1 � s � e + 1.

(3.19)

A quick calculation shows that p(λ; k)′s is also given by the right side of (3.19); thus, (3.11) holds
and the proof is complete. �
Example 3.20. Let us take e = g = 2. We give two versions of our resolution F•. In the first
version, we write (a, b; c;d, e) for S(a,b)E ⊗ ∧c

F ⊗ S(d,e)G
∗. Our resolution has the following

terms.

(1,1;4;3,3) ⊗ A(−2,−6)

↓
(1,0;4;3,2) ⊗ A(−1,−5) ⊕ (1,1;2;2,2) ⊗ A(−2,−4)

↓
(1,0;3;2,2) ⊗ A(−1,−4) ⊕ (1,1;1;2,1) ⊗ A(−2,−3) ⊕ (0,0;4;3,1) ⊗ A(0,−4)

↓
(1,1;0;2,0) ⊗ A(−2,−2) ⊕ (0,0;3;2,1) ⊗ A(0,−3) ⊕ (1,0;1;1,1) ⊗ A(−1,−2)

↓
(0,0;2;1,1) ⊗ A(0,−2) ⊕ (1,0;0;1,0) ⊗ A(−1,−1)

↓
(0,0;0;0,0) ⊗ A

The terms of F• are also listed in the following picture, which has the added advantage of
giving insight into the maps of F•. The row which corresponds to the partition λ is Sλ′E ⊗K tλ as
described in Theorem 4.7. Each row is acyclic. The Koszul complex map down the column on the
right, as described in Proposition 5.12, induces an acyclic sequence on the zeroth homology of the
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rows; see (5.3). An iterated mapping cone produces the complex F•; as shown in Theorem 5.4. In
other words, there is a map of complexes from the middle row to the bottom row; there is a map
of complexes from the top row (shifted up by one against the differential) to the mapping cone
formed from the bottom two rows; and F• is the mapping cone of this second map of complexes.
Notice that it is not correct to think of this picture as a double complex. The “knight move”
T2;1(−2,−3) → T0;2(0,−3) which is induced by

∧2
φ, see (5.10), is one of the components of

the differential of F•.

T2;3(−2,−6) T2;2(−2,−4) T2;1(−2,−3) T2;0(−2,−2)

T1;3(−1,−5) T1;2(−1,−4) T1;1(−1,−2) T1;0(−1,−1)

T0;3(0,−4) T0;2(0,−3) T0;1(0,−2) T0;0

Example 3.21. Let us take e = 2, g = 3. Our resolution has the following terms where we write
(a, b; c;d, e, f ) for S(a,b)E ⊗ ∧c

F ⊗ S(d,e,f )G
∗.

(2,2;5;3,3,3) ⊗ A(−4,−9)

↓
(2,1;5;3,3,2) ⊗ A(−3,−8) ⊕ (2,2;2;2,2,2) ⊗ A(−4,−6)

↓
(2,2;1;2,2,1) ⊗ A(−4,−5) ⊕ (2,1;3;2,2,2) ⊗ A(−3,−6) ⊕ (2,0;5;3,2,2) ⊗ A(−2,−7)

⊕ (1,1;5;3,3,1) ⊗ A(−2,−7)

↓
(2,2;0;2,2,0) ⊗ A(−4,−4) ⊕ (2,0;4;2,2,2) ⊗ A(−2,−6) ⊕ (1,0;5;3,2,1) ⊗ A(−1,−6)

⊕ (1,1;3;2,2,1) ⊗ A(−2,−5) ⊕ (2,1;1;2,1,1) ⊗ A(−3,−4)

↓
(1,0;4;2,2,1) ⊗ A(−1,−5) ⊕ (1,1;2;2,1,1) ⊗ A(−2,−4) ⊕ (2,1;0;2,1,0) ⊗ A(−3,−3)

⊕ (0,0;5;3,1,1) ⊗ A(0,−5) ⊕ (2,0;1;1,1,1) ⊗ A(−2,−3)

↓
(0,0;4;2,1,1) ⊗ A(0,−4) ⊕ (1,0;2;1,1,1) ⊗ A(−1,−3) ⊕ (1,1;0;2,0,0) ⊗ A(−2,−2)

⊕ (2,0;0;1,1,0) ⊗ A(−2,−2)

↓
(0,0;3;1,1,1) ⊗ A(0,−3) ⊕ (1,0;0;1,0,0) ⊗ A(−1,−1)

↓
(0,0;0;0,0,0) ⊗ A
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Also, F• is the iterated mapping cone of a picture built using the following modules.

T2,2;3(−4,−9) T2,2;2(−4,−6) T2,2;1(−4,−5) T2,2;0(−4,−4)

T2,1;3(−3,−8) T2,1;2(−3,−6) T2,1;1(−3,−4) T2,1;0(−3,−3)

T1,1;3(−2,−7)

⊕
T2,0;3(−2,−7)

T1,1;2(−2,−6)

⊕
T2,0;2(−2,−5)

T1,1;1(−2,−3)

⊕
T2,0;1(−2,−4)

T1,1;0(−2,−2)

⊕
T2,0;0(−2,−2)

T1,0;3(−1,−6) T1,0;2(−1,−5) T1,0;1(−1,−3) T1,0;0(−1,−1)

T0,0;3(0,−5) T0,0;2(0,−4) T0,0;1(0,−3) T0,0;0

4. A family of maximal Cohen–Macaulay modules over a determinantal ring

Our investigation of the differential in the resolution F• quickly leads to a family of modules
of independent interest.

The parameterization of F• given in Theorem 3.4 allows us to write down the terms of F• in
a different way. One way to do that is to look at the terms with a fixed λ. In order to describe this
part of the complex we need another geometric construction related to the Grassmannian of G.
Consider Grass(g − 1,G) with the tautological sequence

0 → R̄→ G × Grass(g − 1,G) → Q̄→ 0. (4.1)

We are dealing with the polynomial ring Ā = Sym(F ⊗ G∗) and the modules supported in the
determinantal varieties of maps ψ of rank � g − 1. We look at twisted complexes F̄(SλR̄∗)• =
F̄(λ)• which come from taking ξ = F ⊗ Q̄∗. Each such complex is the pushdown of the locally
free resolution of the sheaf

M(λ) := SλR̄∗ ⊗ Sym(F ⊗ R̄∗).

Proposition 4.2. The sheaf M(λ) has no higher cohomology. Thus the complex F̄(λ)• is a free
resolution of the Ā-module

M(λ) := H0(Grass(g − 1,G),M(λ)
)
.

Assume that λ ⊂ eg−1. Then the complex F̄(λ)• is a complex of length f − g + 1. Thus the
corresponding module M(λ) is a maximal Cohen–Macaulay module.
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Proof. This is a standard application of the geometric technique, see [W, Chapter 6]. �
Remark. Let us look at the resolution of M(λ) more precisely. It is a pushdown of the twisted
Koszul complex

SλR̄∗ ⊗
•∧

(F ⊗ Q̄∗).

Thus we can describe the terms as
∧i

F tensored with the representation Sμ(i)G, where μ(i) is
the result of Bott algorithm applied to the weight

(−i,−λg−1, . . . ,−λ1).

The terms we get in H0 correspond to i satisfying −i � −λg−1. For each such i, the H0-module
is equal to

i∧
F ⊗ S(−i,−λg−1,...,−λ1)G =

i∧
F ⊗ S(λ1,...,λg−1,i)G

∗,

and it appears in the ith place in the complex F̄(λ)•. The terms we get in Hs for s � 1 correspond
to i satisfying the inequalities

−λg−s − 1 � −i + s � −λg−s−1.

For each pair (i, s), the Hs -module is equal to

i∧
F ⊗ S(−λg−1−1,...,−λg−s−1,−i+s,−λg−s−1,...,−λ1)G

=
i∧

F ⊗ S(λ1,...,λg−s−1,i−s,λg−s+1,...,λg−1+1)G
∗

=
i∧

F ⊗ Sp(λ;i−s)G
∗,

and it appears in the (i − s)th place in the complex F̄(λ)•.

Proposition 4.3. Let λ be a partition contained in the rectangle eg−1. Then the terms of the
complex F• containing the factor Sλ′E are identical with the terms of the complex Sλ′E⊗F̄(λ)•⊗
A(−|λ|,−|λ|)[|λ|]. Here [i] means homological shift, i.e., the term in position zero of Sλ′E ⊗
F̄(λ)• ⊗ A(−|λ|,−|λ|) occurs in F|λ|.

Proof. Direct calculation—just look at the pairs (λ; k). The lowest term where Sλ′E occurs
corresponds to k = 0. Apply Theorem 3.4 to see that Sλ′E ⊗ ∧0

F ⊗ SλG
∗ ⊗ A(−|λ|,−|λ|)

occurs in the term F|λ|. �
This new description of the terms can best be expressed in the language of Definition 3.3. The

modules M(λ) of Proposition 4.2 are maximal Cohen–Macaulay modules over the determinantal
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ring Ā/Ig(ψ), for Ā = Sym(F ⊗ G∗), where ψ :F ⊗K Ā → G ⊗K Ā is the natural map. These
modules have independent interest. In Theorem 4.7 we record the Ā resolution tλ of H0(tλ) =
M(λ) using one parameter k in place of the two parameters i and s that were used to date. Recall
that K is a field of characteristic zero, F and G are vector spaces over K of dimension f and g,
respectively, and e = f − g.

Definition 4.4. Let k be an integer and λ = (λ1, . . . , λg−1) be a dominant weight.
(a) Let tλ;k to be the free Ā-module

tλ;k =
N(λ;k)∧

F ⊗K Sp(λ;k)G
∗ ⊗K Ā.

(b) Define a homomorphism tλ;k → tλ;k−1. Let N = 1 + λ′
k−1 − λ′

k . It follows that there exist
dominant weights α and β with αlast � k > β1,

p(λ; k) = (
α, kN,β

)
and p(λ; k − 1) = (

α, (k − 1)N ,β
)
.

The homomorphism

tλ;k → tλ;k−1 (4.5)

is the composition

tλ;k =
N(λ;k)∧

F ⊗ Sp(λ;k)G
∗ ⊗ Ā →

N(λ;k)∧
F ⊗ S1N G∗ ⊗ Sp(λ;k−1)G

∗ ⊗ Ā

→
N(λ;k)∧

F ⊗ S1N F ∗ ⊗ Sp(λ;k−1)G
∗ ⊗ Ā →

N(λ;k)−N∧
F ⊗ Sp(λ;k−1)G

∗ ⊗ Ā = tλ;k−1,

where the first map is the Pieri map, the second is
∧N

ψ∗, and the third is the module action
of

∧•
F ∗ on

∧•
F .

(c) For each dominant weight λ = (λ1, . . . , λg−1), we define the complex tλ:

· · · → tλ;k
(
0,−N(λ; k)

) → tλ;k−1
(
0,−N(λ; k − 1)

) → ·· · ,

with tλ;k in position k.

Remarks. (a) The dominant weight p(λ; k) may be interpreted as the result of applying Bott’s
algorithm to the sequence

λ1, . . . , λg−1,N(λ; k).

(b) If λg−1 � −1 and k < 0, then tλ;k = 0.
(c) If λg−1 � −1 and k � 0, then p(λ; k) is a partition.
(d) The maps and modules of tλ form a complex because the Littlewood–Richardson rule tells

us that the only coordinate free K-vector space map
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Sα,k1+N ,(k−1)M,βG∗ → S12+N+M G∗ ⊗ Sα,(k−1)N ,(k−2)1+M,βG∗

is zero, when α and β are dominant weights with αlast � k and k − 1 > β1.

Proposition 4.6. If λ = (λ1, . . . , λg−1) and μ = (e − λg−1, . . . , e − λ1) are dominant weights,
then the complexes tλ and (tμ)∗[−e − 1] are isomorphic. Furthermore, if λ is contained in
[−1, e + 1]g−1, then μ also sits in [−1, e + 1]g−1 and (tλ)i = 0 for i < 0 or e + 1 < i.

Proof. A way to see duality of the terms is as follows. Let k and 
 be integers with k +
 = e+1.
The modules

N(λ;k)∧
F ⊗ Sp(λ;k)G

∗ and
N(μ;
)∧

F ⊗ Sp(μ;
)G∗

are dual to one another because N(λ; k) + N(μ;
) = f and if

p(λ; k) = (A1, . . . ,Ag) and p(μ;
) = (B1, . . . ,Bg),

then Ai + Bg+1−i = e + 1. A direct calculation completes the proof. �
Theorem 4.7. Let k be an integer and λ = (λ1, . . . , λg−1) be a dominant weight.

(1) If λg−1 � −1, then
(a) tλ is a resolution of H0(tλ), and
(b) H0(tλ) is a module over Ā/Ig(ψ).

(2) If λ ⊂ [−1, e + 1]g−1, then
(a) H0(tλ) is a perfect Ā-module with

Exte+1
Ā

(
H0(tλ), Ā

) = H0(tμ)

for μ = (e − λg−1, . . . , e − λ1), and
(b) H0(tλ) is a maximal Cohen–Macaulay Ā/Ig(ψ)-module.

Proof. Apply the Comparison Principle, Proposition 2.2, to the complexes H• = F̄(SλR̄∗)• and
H′• = tλ. �
Example. In particular, if λ = (ig−1), then the complex tλ is isomorphic to the Eagon–Northcott
complex Ci , see, for example, [E, Figure A2.6], and

H0(tig−1) =

⎧⎪⎨
⎪⎩

∧e+1 cok(ψ∗), if i = −1,

Ā/Ig(ψ), if i = 0,

Symi (cok(ψ)), if 1 � i.
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5. The homogeneous strands of the differential of F•

We return to the resolution F•. The present section has two main results. In Theorem 5.4 we
show that F• may be obtained as an iterated mapping cone as had been promised in Example 3.20.
In Theorem 5.13 we describe the homogeneous strands of the differential of F•.

The description of the terms of the complex F• given in Theorem 3.4 is not accidental.
It comes from a pushdown of different Koszul complex. Consider again the Grassmannian
Grass(g − 1,G) and the tautological sequence

0 → R̄→ G × Grass(g − 1,G) → Q̄→ 0

of (4.1). Consider the sheaf of algebras

B = Sym(E ⊗ F ∗) ⊗ Sym(F ⊗ R̄∗)

over Grass(g − 1,G). Obviously, we have linear maps

φ :E ⊗B → F ⊗B and ψ ′ :F ⊗B → R̄⊗B

of sheaves of B-modules. The condition ψ ′φ = 0 induces the Koszul complex of sheaves of
B-modules given by the entries of the composition:

K• : 0 → Ke(g−1) → Ke(g−1)−1 → ·· · → K1 →K0,

with Ki = ∧i
(E ⊗ R̄∗) ⊗B. Notice that

Ki =
⊕
|λ|=i

Sλ′E ⊗ SλR̄∗ ⊗B.

Lemma 5.1. The complex K• is acyclic.

Proof. The complex K• of B-modules is the relative version of the Koszul complex for the
variety of complexes. To be more precise, take three vector spaces E, F , G′ of dimensions
e, f, g − 1 respectively. Consider the polynomial ring

B = Sym(E ⊗ F ∗) ⊗ Sym(F ⊗ G′ ∗).

The ring B is the coordinate ring of the affine space X of pairs (φ,ψ ′) of linear maps

φ :E → F and ψ ′ :F → G′.

We want to show that the subvariety Y of pairs of maps (φ,ψ ′) such that ψ ′φ = 0 is a complete
intersection cut out by the entries of the product matrix ψ ′φ. To show this it is enough to show
that the codimension of Y in X is e(g − 1). Of course dimX = ef + f (g − 1). To calculate
dimension of Y we construct its usual desingularization

Z = {
(φ,ψ ′, S) ∈ X × Grass(e,F )

∣∣ Im(φ) ⊂ S ⊂ Ker(ψ ′)
}
.
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The first projection (φ,ψ ′, S) �→ (φ,ψ ′) is a birational map, as over a general point we
have to have S = Im(φ), so over an open set where φ has a full rank the first projection is
an isomorphism. Projecting Z onto the Grassmannian we see that the fibres have dimension
e2 + (f − e)(g − 1), so

dimY = dimZ = e(f − e) + e2 + (f − e)(g − 1).

We conclude that

dimX − dimY = e(g − 1)

which concludes the proof. �
Let us denote M̂(λ) := SλR̄∗ ⊗B and M̂(λ) := H0(Grass(g − 1,G),M̂(λ)).

Proposition 5.2. We have the following properties:

(a) Hj (Grass(g − 1,G),Ki ) = 0 for j > 0 and 0 � i � e(g − 1),
(b) Hj (Grass(g − 1,G),M̂(λ)) = 0, for j > 0, and
(c) the resolution of M̂(λ) as an A-module is F̄(λ)• ⊗Ā A.

Proof. This is clear from the definitions. �
The Koszul complex K• induces an acyclic complex of sections

K•: 0 → Ke(g−1) → Ke(g−1)−1 → ·· · → K1 → K0, (5.3)

where Ki := H0(Grass(g − 1,G),Ki ) = ⊕
|λ|=i Sλ′E ⊗ M̂(λ). We can now use the iterated

mapping cone construction to construct the resolution F′• of the zeroth homology group of K•.
The terms of this resolution are the same as the terms of F•. The whole process can be made
GL(E) × GL(F ) × GL(G)-equivariant.

Theorem 5.4. The resulting complex F′• is isomorphic to F•.

Proof. Both complexes are equivariant resolutions of the same A-module A/I . The resolution
F• is minimal and the complexes have the same terms. �
Corollary 5.5.

(a) The ψ -component of the complex F• is the sum of differentials in the complexes F̄(λ)•.
(b) The complementary partitions with respect to the rectangle eg−1 give the parts of F̄(λ)• that

are dual to each other. The complex F• is self-dual and has length equal to eg + 1.

Proof. The first part follows from the construction of the mapping cone. The second part was
explained in Proposition 4.6. �
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We turn now to describing the homogeneous strands of the differential of F•. For future ref-
erence we write the map of (a) from the previous result as

d
λ;k
λ;k−1(1) : Tλ;k = Sλ′E ⊗K tλ;k

1⊗(4.5)−−−−→ Sλ′E ⊗K tλ;k−1 = Tλ;k−1, (5.6)

where “(4.5)” is the map of (4.5). The symbol “(1)” in d
λ;k
μ;
(1) in (5.6) indicates that we consider

exactly one map Tλ;k → Tμ;
. In (5.10) we also consider only one map d
λ;k
μ;
(1) : Tλ;k → Tμ;
;

however in (5.11) we consider two maps d
λ;k
μ;
(c), with c equal to 1 or 2.

Proposition 5.7. The differential of the complex F• has three components. One involves only the
map φ, the second only the map ψ , and the third component is of degree (1,1) in φ and ψ , and it
does not change the F -component of the term. We refer to these components as the φ-component,
the ψ -component, and the (ψφ)-component, respectively.

Proof. Consider two terms Tλ,k and Tλ̄,k̄ satisfying the condition

|λ| + k = |λ̄| + k̄ + 1. (5.8)

The nonzero differential can occur between these two terms only if λ ⊃ λ̄ and p(λ; k) ⊃ p(λ̄; k̄).
There are three cases.

In Case 1 we have k̄ < k. The conditions λ̄ ⊆ λ and (5.8) force k̄ = k − 1 and λ̄ = λ. Let
N = N(λ; k) − N(λ̄; k̄). The map Tλ;k → Tλ̄;k̄ factors through Tλ̄;k̄ ⊗ ∧N

F ⊗ ∧N
G∗ and

involves only ψ .
In the two remaining cases, k � k̄. Let i = λ′

k (so λi � k > λi+1) and let ī be the analogous
number for (λ̄; k̄); that is, λ̄ī � k̄ > λī+1. The inequalities

p(λ; k)i+1 = k � k̄ = p(λ̄; k̄)ī+1 � p(λ; k)ī+1 (5.9)

tell us that ī � i.
In Case 2 we have k � k̄ and ī < i. The condition (5.8) gives

0 =
∑
s�ī

(λs − λ̄s) + (λī+1 − k̄) +
∑

ī+2�s�i

(λs − λ̄s−1) + (
k − (λ̄i + 1)

) +
∑

i+1�s

(λs − λ̄s).

The condition p(λ̄; k̄) ⊆ p(λ; k) ensures that 1 � λs − λ̄s−1 for all s with ī +2 � s � i. The same
condition also ensures that all of the other listed differences are nonnegative. Thus, i � ī + 1 and
all of the remaining listed differences are zero. One may quickly calculate that

p(λ̄; k̄) = p(λ; k), k̄ = λi, λ̄i = k − 1,

and λ̄s = λs for all s �= i. Let N = N(λ̄; k̄) − N(λ; k). The map Tλ;k → Tλ̄;k̄ factors through

Sλ̄′E ⊗ ∧N
E ⊗ ∧N(λ;k)

F ⊗ Sp(λ̄;k̄)G
∗ and involves only φ.

In Case 3 we have k � k̄ and ī = i. The inequalities of (5.9) tell us that k̄ = k. The conditions
λ̄ ⊆ λ and (5.8) force λ̄ to differ from λ by exactly one box. It follows that p(λ̄; k̄) and p(λ; k)

also differ by exactly one box. The terms Tλ;k and Tλ̄;k̄ have the same SL(F )-coordinate and the
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map Tλ;k → Tλ̄;k̄ factors through Tλ̄;k̄ ⊗ E ⊗ G∗. The degree of the differential is one in both ψ

and φ. �
The description of the terms of the complex F• given in Theorem 3.4 allows us also to under-

stand the φ-component of the differential. Consider two terms of F• with the same factor SμG∗,
but occurring in neighboring terms of the complex. In other words, we are given the data (λ; k)

and (λ̄, k̄), from Case 2 of the proof of Proposition 5.7, with k � 1 and λ′
k � 1. One may check

that N(λ̄; k̄) = N(λ; k) + k̄ − k + 1. The map

d
λ;k
λ̄;k̄ (1) :Tλ;k → Tλ̄;k̄ (5.10)

is the composition

Tλ;k = Sλ′E ⊗
N(λ;k)∧

F ⊗ Sp(λ;k)G
∗ → Sλ̄′E ⊗ S(k̄−k+1)′E ⊗

N(λ;k)∧
F ⊗ Sp(λ;k)G

∗

→ Sλ̄′E ⊗
k̄−k+1∧

F ⊗
N(λ;k)∧

F ⊗ Sp(λ;k)G
∗ → Sλ̄′E ⊗

N(λ̄;k̄)∧
F ⊗ Sp(λ;k)G

∗ = Tλ̄;k̄ ,

where the first map is the Pieri map, the second is
∧k̄−k+1

φ, and the third is exterior multipli-
cation.

Finally, we can also describe the terms between which we have a (ψφ)-component map.
Consider the term

Tλ;k = Sλ′E ⊗
N(λ;k)∧

F ⊗ Sp(λ;k)G
∗.

Consider a corner box of the partition λ′ such that we can also subtract the corresponding box
from p(λ; k) in such way that we get another nonzero term, with the same cohomology group,
in the complex F•. The exterior power

∧N(λ;k)
F will be unaffected. The new term will occur

in degree by one smaller in F• than the original term (we decreased λ′ by one box, but the
homogeneous degree from ψ and the number of cohomology group stayed the same). Between
these two terms we have a (1,1) degree map from (ψφ)-component. In other words, let εj

represent the (g − 1)-tuple with 1 in position j and zero everywhere else. The maps

d
λ;k
λ−εj ;k(c) :Tλ;k → Tλ−εj ;k, (5.11)

with c = 1 or 2, are defined provided λ − εj is a partition and λj �= k. The hypothesis ensures
that

p(λ − εj ; k) = p(λ; k) − εJ ,

where

J =
{

j, if λj > k,

j + 1, if k > λj .

The map is the composition:
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Tλ;k = Sλ′E ⊗
N(λ;k)∧

F ⊗ Sp(λ;k)G
∗ → S(λ−εj )′E ⊗ S1E ⊗

N(λ;k)∧
F ⊗ S1G

∗ ⊗ Sp(λ−εj ;k)G
∗

→ S(λ−εj )′E ⊗
N(λ;k)∧

F ⊗ Sp(λ−εj ;k)G
∗ = Tλ−εj ;k.

The first arrow is two Pieri maps to split one box from each of λ′ and p(λ; k). The second
arrow has two components. The first component (c = 1) uses the map E ⊗ G∗ → A given by the
composition ψφ. The second component (c = 2) uses the maps ψ and φ separately. To be more
explicit, notice that the representation E ⊗ ∧i

F ⊗ G∗ occurs with multiplicity 2 in

i∧
F ⊗ (E ⊗ F ∗) ⊗ (F ⊗ G∗).

The two components of the second arrow involve the two possible embeddings of
∧i

F into∧i
F ⊗ F ∗ ⊗ F . Let us describe these two embeddings explicitly. We define two linear maps

tr : K → F ∗ ⊗ F sending 1 to
∑f

i=1 v∗
i ⊗ vi for some basis {v1, . . . , vf } of F . The other is the

evaluation ev :F ⊗ F ∗ → K. Two embeddings of
∧i

F into
∧i

F ⊗ F ∗ ⊗ F are then defined as
follows. One is just

i1 := 1 ⊗ tr :
i∧

F →
i∧

F ⊗ F ∗ ⊗ F,

the other is the composition

i2 :
i∧

F
Δ⊗tr−−−→

i−1∧
F ⊗ F ⊗ F ∗ ⊗ F

σ(2,4)−−−−→
i−1∧

F ⊗ F ⊗ F ∗ ⊗ F
m⊗1⊗1−−−−→

i∧
F ⊗ F ∗ ⊗ F,

where σ(2,4) switches the second and fourth factor, and m denotes the exterior multiplication.
Thus the φ and ψ components of our differential are easy to identify (up to scalar). The only

problem is the (ψφ)-component where we do not know which linear combination of maps ic ,
with c equals 1 or 2, to choose. This problem can be solved, however, by looking at the construc-
tion of the complex F• given in Theorem 5.4.

Let us choose two partitions λ and ν such that ν ⊂ λ, |λ/ν| = 1. We have the induced map of
sheaves

Sλ′E ⊗ M̂(λ) → Sν′E ⊗ M̂(ν)

which is a component of the differential of K•. The induced map of sections is the equivariant
homomorphism of A-modules

f (λ, ν) :Sλ′E ⊗ M̂(λ) → Sν′E ⊗ M̂(ν).

The category of GL(E) × GL(F ) × GL(G)-modules is semi-simple, so we know that there is an
equivariant map

f̂ (λ, ν) :Sλ′E ⊗ F̄(λ)• ⊗Ā A → Sν′E ⊗ F̄(ν)• ⊗Ā A

of the minimal resolutions covering the map f (λ, ν).
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Proposition 5.12.

(a) The (ψφ)-components of the differential of the complex F• are the corresponding compo-
nents of the maps f̂ (λ, ν).

(b) The strand of the complex F• with the SL(F )-component
∧0

F is

⊕
λ

Sλ′E ⊗ SλG
∗ ⊗ A

(−|λ|,−|λ|),

where the sum is taken over all partitions λ contained in eg−1. This is a subcomplex of F•
and is isomorphic to the corresponding subcomplex of the Koszul complex

•∧
(E ⊗ G∗) =

⊕
λ⊂eg

Sλ′E ⊗ SλG
∗ ⊗ A

(−|λ|,−|λ|),

on the composition ψφ.

Proof. Assertion (a) follows from the definition of iterated cone construction; and (b) is a con-
sequence of (5.11) because d

λ;k
λ−εj ;k(2) = 0 when the SL(F )-component of Tλ;k is

∧0
F . �

Theorem 5.13. There exists a family of constants {sλ;k
μ;
(c)} such that the differential of F• is

equal to

∑
s
λ;k
μ;
(c) d

λ;k
μ;
(c),

where the maps d
λ;k
μ;
(c) :Tλ;k → Tμ;
 have been previously defined at (5.6), (5.10), and (5.11).

Furthermore, if {sλ;k
μ;
(c)

′} is a family of constants for which

(
F•,

∑
s
λ;k
μ;
(c)

′dλ;k
μ;
(c)

)
(5.14)

is a complex, and such that for every pair (λ; k) there exist a pair (μ;
) such that {sλ;k
μ;
(c)

′} is

nonzero; then (5.14) is acyclic and there is equivariant homotopy between (5.14) and F•.

Proof. We saw in Proposition 5.7 that the differential of F has three components. Furthermore, if
we ignore two of the components of the differential, then we have shown that the third component
is given by (5.6), (5.10), or (5.11), up to constant. The final assertion is an application of the
Comparison Principle. �
6. The resolution of B/J

Now that we have some data involving the resolution of A/I , we apply it to find the terms of
the resolution of B/J .

Theorem 6.1. We have the isomorphisms TorAi (A/I,K) = TorBi (B/J,K) preserving the
SL(E) × SL(F ) × SL(G) representation structure and homogeneous bidegree.
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Proof. Consider the minimal graded free resolution of B/J as an B-module:

G• : 0 → Geg+1 → ·· · → G1 → G0.

The complex G• ⊗B B/aB has the ith homology module equal to TorBi (B/J,B/aB). On the
other hand, the long exact sequence of homology which is obtained by applying B/J ⊗B − to
the short exact sequence

0 → B
a→B → B/aB → 0

yields TorBi (B/J,B/aB) = 0 for i � 2 and yields the exact sequence

0 → TorB1 (B/J,B/aB) → B/J
a→B/J → B/(a,J ) → 0.

We know from Corollary 0.4 that a is a nonzerodivisor on B/J ; so, TorB1 (B/J,B/aB) is also
zero and G• ⊗B B/aB is an A-free resolution of A/I . This resolution is minimal because the
matrices of the maps in this complex are obtained from those of maps of G• by specializing a to
zero. The terms of both minimal resolutions G• and G• ⊗B B/aB are the same, and they (after
tensoring with K) give us the Tor groups mentioned in the theorem. �
Corollary 6.2. The terms in the minimal graded free resolution, G•, of the universal ring C =
B/J as a B-module are exactly the same as the terms of the resolution F• of Theorem 3.4, once
“A” is replaced by “B .”

Theorem 6.1 continues to hold over Z; however, the resolutions F• and G• of Corollary 6.2
requires that K be a field of characteristic zero.
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