
J. Differential Equations 250 (2011) 26–32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Nonexistence of type II blowup solution for a semilinear
heat equation

Noriko Mizoguchi a,b,∗
a Department of Mathematics, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
b Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho
Kawaguchi, Saitama 332-0012, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 August 2009
Revised 6 September 2010

MSC:
35K20
35K55

A solution u of a Cauchy problem for a semilinear heat equation

{
ut = �u + |u|p−1u in RN × (0, T ),

u(x,0) = u0(x) in RN

is said to undergo type II blowup at t = T < ∞ if

lim sup
t→T

(T − t)1/(p−1)
∣∣u(t)

∣∣∞ = ∞.

Let pS and pJL be the exponents of Sobolev and of Joseph and
Lundgren, respectively. We prove that when pS < p < pJL, a radial
solution u does not exhibit type II blowup if u does not blow
up at infinity. Let ϕ∞ be the positive singular stationary solution
with radial symmetry. It was shown in Matano and Merle (2009)
[12] that for pS < p < pJL if the number of intersections with
±ϕ∞ is at most finite, then the radial solution does not undergo
type II blowup. We do not impose an assumption on the number of
intersections with ±ϕ∞. For example, when a radial initial data u0
is nonnegative and nonincreasing in r = |x|, the result in Matano
and Merle (2009) [12] does not exclude type II blowup for p in
the range, while our result does it.
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1. Introduction

We are concerned with blowup of solutions to a Cauchy problem for a semilinear heat equation

{
ut = �u + |u|p−1u in RN × (0, T ),

u(x,0) = u0(x) in RN
(1.1)

with p > 1, T > 0 and u0 ∈ L∞(RN ). Here a solution u of (1.1) is said to blow up at t = T < ∞ if
lim supt→T |u(t)|∞ = ∞ with L∞-norm | · |∞ . We call T blowup time of u. Let pS be the Sobolev
critical exponent, i.e.,

pS =
{∞ if N = 1,2,

1 + 4
N−2 if N � 3.

As for the blowup problem for (1.1), there are phenomena which are quite different in the subcritical
case (p < pS ) and in the supercritical case (p > pS ). We refer to [4,12] and their references for detail.
One of such interesting features is the blowup rate.

According to [6], any solution of the Cauchy problem with p < pS blowing up at t = T fulfills

∣∣u(t)
∣∣∞ � C(T − t)−

1
p−1 for t ∈ [0, T ) (1.2)

with some constant C > 0. The right-hand side of (1.2) is the blowup rate of a solution to the corre-
sponding ordinary differential equation ut = up . The blowup satisfying (1.2) is said to be of type I and
of type II otherwise.

We call a point a ∈ RN a blowup point of u if there exist sequences {an} ⊂ RN , {tn} ⊂ (0, T ) with
an → a and tn → T as n → ∞ such that u(an, tn) → ∞ as n → ∞. In order to investigate asymptotic
behavior around a blowup point a of a solution u of (1.1) with blowup time T , a transformation
through backward self-similar variables

w(y, s) = (T − t)
1

p−1 u(x, t), y = (T − t)−1/2(x − a), s = − log(T − t)

was used in [5–7]. The function w satisfies

⎧⎨
⎩

ws = �w + y

2
∇w + |w|p−1 w in RN × (sT ,∞),

w(y, sT ) = T 1/(p−1)u0
(
a + T 1/2 y

)
in RN ,

(1.3)

where sT = − log T . An advantage of the transformation is that w is a global solution of (1.3). Asymp-
totic behavior of u around the blowup point a corresponds to that of w as s → ∞. Type I blowup of
u is equivalent to the uniform boundedness of |w(s)|∞ in [sT ,∞). Therefore it is important in the
study of behavior of w to know whether the blowup of u is of type I or not.

In the supercritical case, there seem to be known results only for radial solutions. If u is radially
symmetric, then (1.1) is written as

⎧⎨
⎩ ut = urr + N − 1

r
ur + |u|p−1u in (0,∞) × (0, T ),

u(r,0) = u0(r) in [0,∞)

(1.4)

with r = |x|. Let ϕ∞ be the singular positive stationary solution of (1.4) defined by

ϕ∞(r) = c∞r− 2
p−1 for r > 0 (1.5)
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with

c∞ =
{

2

p − 1

(
N − 2 − 2

p − 1

)} 1
p−1

.

There exists an important exponent pJL due to Joseph and Lundgren given by

pJL =
{∞ if N � 10,

1 + 4
N−4−2

√
N−1

if N � 11.

The exponent pJL is closely related to the properties of regular stationary solutions of (1.4). For α > 0,
let ϕα be a solution of

⎧⎨
⎩ϕ′′ + N − 1

r
ϕ′ + |ϕ|p−1ϕ = 0 in (0,∞),

ϕ(0) = α, ϕ′(0) = 0.

(1.6)

In the supercritical case, ϕα(r) is positive for all r � 0 by the Pohoz̆aev identity [15]. For a function f
on [0,∞) with f 
≡ 0, let z( f ) be the supremum over all j such that there exist 0 < r1 < r2 < · · · <

r j+1 < ∞ with f (ri) · f (ri+1) < 0 for i = 1,2, . . . , j. For each α > 0, the following holds [10]:

(i) if p < pJL , then z(ϕα − ϕ∞) = ∞;
(ii) if p > pJL , then z(ϕα − ϕ∞) < ∞.

When p > pJL , there exists a type II blowup solution of (1.4) by [8,9] (also see [14]). On the other
hand, it was proved in [11] that when pS < p < pJL , a solution u of (1.4) does not exhibit type II
blowup if there exists t0 ∈ [0, T ) such that

(A1) z(ut(t0)) < ∞;
(A2) z(u(t0) − ϕ∞) < ∞ and z(u(t0) + ϕ∞) < ∞.

They improved the result in [12] removing the assumption (A1). However the other assumption (A2)
has remained. It was mentioned in [12] that they do not know whether the possibility of type II
blowup is eliminated without the assumption (A2).

In this paper, we do not impose the hypothesis on the number of intersections with ±ϕ∞ .

Theorem 1.1. Suppose that pS < p < pJL. Let u be a radial solution of (1.1) blowing up at t = T < ∞. If u does
not blow up at infinity, that is, there exist constants C, K > 0 such that |u(x, t)| � C for |x| � K and t ∈ [0, T ),
then the blowup of u is of type I.

If a radial initial data u0 is nonnegative and nonincreasing in r � 0, then u does not blow up at
infinity [13]. Therefore the following is immediate from Theorem 1.1.

Corollary 1.1. Let pS < p < pJL. If a radial initial data u0 is nonnegative and nonincreasing in r � 0, then
type II blowup does not occur for (1.1).

When u0 is nonnegative and nonincreasing in r, the above result in [12] does not exclude type II
blowup for p in the range, while our result does it.

For a solution u of (1.4), each zero of ut(t) and u(t) ± ϕ∞ is isolated for t > 0 regardless
of the situation of t = 0 (e.g. [1,2,11,12,16]). One also find in these papers that z(ut(t)) and
z(u(t) ± ϕ∞) are nonincreasing in t . The same way as the proof of Theorem 1.1 shows that at most
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finitely many intersections between a solution u(t) with blowup time T and ±ϕ∞ approach zero as
t → T regardless of the value of p.

Theorem 1.2. Let u be a radial solution of (1.1) with p > 1 blowing up at t = T < ∞. Suppose that u does not
blow up at infinity. For a positive integer i, let ri(t) be the ith zero of u(t) − ϕ∞ for t ∈ (0, T ) which does not
disappear before t = T , where the numbering is done in size of those zeros. Let

m(u) = sup
{

i: lim inf
t→T

ri(t) = 0
}
.

Then we have m(u) < ∞. The same conclusion holds for u(t) + ϕ∞ .

In Section 2, we intuitively explain why the value of exponent p is restricted to pS < p < pJL to
eliminate type II blowup. In Section 3, we prove the main theorems.

2. The role of the range p S < p < pJL

In this section, we give heuristic explanation about what role the range pS < p < pJL plays. One
can find the full proof in [11,12], which is very long and complicated.

Let u be a radial solution of (1.1), i.e., a solution of (1.4), blowing up at t = T < ∞. Put M(t) =
|u(t)|∞ and

U (η, τ ) = M(t)−1u
(
M(t)−(p−1)/2η, t

)
with τ =

t∫
0

M(s)p−1 ds.

Then τ → ∞ as t → T since M ′(t) � M(t)p for all t ∈ (0, T ). A straightforward calculation yields

Uτ = Uηη + N − 1

η
Uη + |U |p−1U − a(τ )

(
η

2
Uη + 1

p − 1
U

)
in (0,∞) × (0,∞),

where a(τ ) = (p−1)M′(t)
M(t)p . The blowup of u is of type I if |a(τ )| � C for sufficiently large τ with some

C > 0. Since we are giving intuitive observation, we omit taking a time sequence in convergence
in the rest of this section. If u exhibits type II blowup, then a(τ ) → 0 as τ → ∞. Suppose that
M(t) = u(0, t) for t < T sufficiently close to T , which holds if u0(r) is nonnegative and nonincreasing
in r � 0 for example. Then U (η, τ ) → ϕ1(η) locally uniformly in [0,∞) as τ → ∞, where ϕ1 is the
solution of (1.6) with α = 1. Therefore

u(r, t) ∼ M(t)ϕ1
(
M(t)

p−1
2 r

)
as t → T . (2.1)

A similar instinct consideration on type II blowup was given in [9]. The idea of rescaling as above
was used to prove type I blowup in subcritical case in [17]. As mentioned in Introduction, we see
z(ϕ1 − ϕ∞) = ∞ if pS < p < pJL . Therefore it follows from (2.1) that z(u(t) − ϕ∞) = ∞. Similarly to
above, we see z(u(t) + ϕ∞) = ∞.

For a positive integer i, let ri(t) be as in Theorem 1.2. Since ri(t) remains for t ∈ (0, T ), we have

ur
(
ri(t), t

) − (ϕ∞)r
(
ri(t)

) 
= 0 for t ∈ (0, T ).

If it equals zero at some time, the zero of u(t) − ϕ∞ disappears at the time [2,11,16]. By the implicit
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function theorem, we see

r′
i(t) = − ut(ri(t), t)

ur(ri(t), t) − (ϕ∞)r(ri(t))
for t ∈ (0, T ). (2.2)

Let Ri be the ith zero of ϕ1 − ϕ∞ for a positive integer i, where the numbering is done in size of
those zeros. It follows from (2.1) that

ri(t) ∼ M(t)−
p−1

2 Ri as t → T . (2.3)

Suppose that M(t) is increasing for t < T sufficiently close T . From (2.3), we see

r′
i(t) ∼ − p − 1

2
M(t)−

p−1
2 −1M ′(t) < 0 as t → T .

It follows from (2.2) that when t < T is sufficiently close to T , ut(ri(t), t) < 0 if i is even and
ut(ri(t), t) > 0 if i is odd. Since z(ϕ1 − ϕ∞) = ∞ for pS < p < pJL , we obtain that z(ut(t)) = ∞.

It seems from above argument that at least one of (A1), (A2) is necessary to exclude type II blowup
in the case of pS < p < pJL . However in next section we prove the nonexistence of type II blowup
solution in the range of p without (A1) nor (A2).

3. Proof of Theorem 1.1

When a solution u of (1.1) blows up at t = T < ∞, u(x, T ) ≡ limt→T u(x, t) exists if x is not a
blowup point of u by the standard parabolic regularity theory. Since u(x, T ) has a singularity, classical
backward uniqueness theorem in RN cannot be applied to our case. The following result on backward
uniqueness in an exterior domain was given in [3], which plays a crucial role to prove the main
theorems.

Proposition 3.1. For positive constants R, T , let Q R,T = (RN\B R) × [0, T ], where B R = {x ∈ RN : |x| � R}.
Assume that u satisfies

|�u + ut | � M
(|u| + |∇u|) in Q R,T

and

∣∣u(x, t)
∣∣ � M exp

(
M|x|2) in Q R,T

for some constant M > 0. If u(x,0) = 0 for all x ∈ RN\B R , then u vanishes identically in Q R,T .

The following result was shown in Theorem 1.6 of [11].

Proposition 3.2. Suppose that pS < p < pJL. Let u be a solution of (1.4) blowing up at t = T < ∞. If there
exists t0 ∈ [0, T ) such that

(A1) z(ut(t0)) < ∞;
(A2) z(u(t0) − ϕ∞) < ∞ and z(u(t0) + ϕ∞) < ∞,

then the blowup of u is of type I.
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Under the conditions (A1), (A2) with some t0 ∈ [0, T ), we get

sup
t∈[t0,T )

z
(
ut(t)

)
< ∞

and

sup
t∈[t0,T )

z
(
u(t) − ϕ∞

)
< ∞ and sup

t∈[t0,T )

z
(
u(t) + ϕ∞

)
< ∞.

This is essential in the proof of Proposition 3.2. For a function f 
≡ 0 on [a,b] with 0 � a < b � ∞,
let z( f : [a,b]) be the supremum over all j such that there exist a < r1 < r2 < · · · < r j+1 < b with
f (ri) · f (ri+1) < 0 for i = 1,2, . . . , j. We can prove the following lemma by the quite same manner as
the proof of Proposition 3.2.

Lemma 3.1. Suppose that pS < p < pJL. Let u be a solution of (1.4) blowing up at t = T < ∞. If there exist
R > 0 and t0 ∈ [0, T ) such that

(A1′) supt∈[t0,T ) z(ut(t); [0, R]) < ∞;
(A2′) supt∈[t0,T ) z(u(t) − ϕ∞; [0, R]) < ∞ and supt∈[t0,T ) z(u(t) + ϕ∞; [0, R]) < ∞,

then the blowup of u is of type I.

Proof of Theorem 1.1. Let u be a solution of (1.4) blowing up at t = T which does not blow up at
infinity. Then there exist C1, K1 > 0 such that

∣∣u(r, t)
∣∣ � C1 in [K1,∞) × [0, T ). (3.1)

Put v(r, t) = ut(r, t) for [0,∞) × (0, T ). It is immediate that there exist C2 > 0, K2 > K1 such that

∣∣v(r, t)
∣∣ � C2 in [K2,∞) × (0, T ).

Then u(r, T ) ≡ limt→T u(r, t) and v(r, T ) ≡ limt→T v(r, t) exist for r > K2.
It is immediate that

vt = vrr + N − 1

r
vr + p|u|p−1 v in (0,∞) × (0, T ). (3.2)

According to Proposition 3.1, we obtain R > K2 such that

v(R, T ) 
= 0. (3.3)

There exists t0 ∈ (0, T ) such that

(i) if v(R, T ) > 0, then

v(R, t) � 1

2
v(R, T ) for t ∈ [t0, T );

(ii) if v(R, T ) < 0, then

v(R, t) � 1

2
v(R, T ) for t ∈ [t0, T ).



32 N. Mizoguchi / J. Differential Equations 250 (2011) 26–32
Then we see

u(R, t) − ϕ∞(R) 
= 0 and u(R, t) + ϕ∞(R) 
= 0 for all t ∈ (t1, T ) (3.4)

with some t1 ∈ [t0, T ). Indeed, we treat the case of (i) since we can similarly prove in the sec-
ond case. The first statement in (3.4) for all t ∈ [t0, T ) is trivial if u(R, t) < ϕ∞(R) for t ∈ [t0, T ).
If u(R, t2) � ϕ∞(R) for some t2 ∈ [t0, T ), then u(R, t) > ϕ∞(R) for all t ∈ (t2, T ) since ut(R, t) > 0 for
t ∈ [t0, T ). The second one in (3.4) is similarly shown. Then z(ut(t); [0, R]), z(u(t) − ϕ∞; [0, R]) and
z(u(t) + ϕ∞; [0, R]) are nonincreasing in t [16]. Therefore the conditions (A1′), (A2′) in Lemma 3.1
hold. Consequently the blowup of u is of type I by Lemma 3.1. �

Theorem 1.2 is proved in the same way as Theorem 1.1.

Remark 3.1. It was mentioned in Remark 3.10 of [12] that if u is a solution of (1.4) with pS < p < pJL

which undergoes type II blowup at t = T < ∞, then u(r, T ) = ϕ∞(r) for all r > 0 or u(r, T ) = −ϕ∞(r)
for all r > 0. Under an additional assumption that u does not blowup at infinity, then we can also
prove Theorem 1.1 applying Proposition 3.1 to u(r, t)−ϕ∞(r) or u(r, t)+ϕ∞(r). However, they carried
out very long and complicated analysis to get the fact in Remark 3.10 of [12]. On the other hand, our
method is much simpler since application of Proposition 3.1 to ut enables us to use Lemma 3.1,
which is essentially as same as Theorem 1.6 in [11]. In fact, the proof of Theorem 1.6 in [11] used the
hypothesis (A1), while [12] made further effort to remove (A1). We will apply our method in order to
show the nonexistence of type II blowup solution for other equation in a forthcoming paper.
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