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The relation of a scalar field with a perfect fluid has generated some debate along the last few years.
In this Letter we argue that shift-invariant scalar fields can describe accurately the potential flow of an
isentropic perfect fluid, but, in general, the identification is possible only for a finite period of time.
After that period in the evolution the dynamics of the scalar field and the perfect fluid branch off.
The Lagrangian density for the velocity-potential can be read directly from the expression relating the
pressure with the Taub charge and the entropy per particle in the fluid, whereas the other quantities of
interest can be obtained from the thermodynamic relations.
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1. Introduction

Recently many papers have addressed the question: can we
identify a scalar field with the potential flow of a perfect fluid? For
a representative sample of these works please see Refs. [1]. Here
we will concentrate on classical, relativistic field theories, but of
course one could extend our results and conclusions to the Newto-
nian regime by taking the appropriate limit. For a brief discussion
on the quantum aspects of these models see Section 5 at the end
of this Letter.

A perfect fluid is one with no dissipation effects [2]. For a
perfect fluid in general relativity [3] the energy–momentum ten-
sor and the entropy flux can be written in the form Tμν =
(ρ + p)uμuν + pgμν , and Sμ = suμ , respectively, with ρ , p and
s the energy density, pressure, and entropy density measured by
an observer at rest with respect to the fluid. The velocity uμ is
a four-vector pointing to the future, u0 > 0, and normalized to
uμuμ = −1, with the spacetime metric gμν taking the mostly-
plus-signature. Spacetime indexes are raised and lowered using the
spacetime metric, e.g. uμ = gμνuν . Both quantities, the energy–
momentum tensor and the flux of entropy are covariantly con-
served for a perfect fluid, ∇μT μν = ∇μSμ = 0.

Additionally we can have other conserved currents, ∇μNμ
i = 0,

such as those associated to the particle or baryon numbers. Here
the letter i is a label for these currents. For a perfect fluid the
conserved currents are all parallel, and we can write Nμ

i = niuμ ,
with ni a charge density. As usual, in order to close the system
we need a relation of the form ρ = ρ(s,ni); ultimately it should
be provided by the micro-physics. The other quantities of interest
can be read from the thermodynamic relations, such as the tem-
perature, T = (∂ρ/∂s)ni , the chemical potential, μi = (∂ρ/∂ni)s,n j ,
and so on. All these variables are related by the Euler equation,
ρ + p − T s − μini = 0.
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For the particular case of a potential flow, i.e. a fluid with no
vorticity, Ωμν = ∇μVν − ∇ν Vμ = 0, we can always write Vμ =
∂μΦ , with Φ a velocity-potential and Vμ = vuμ the Taub cur-
rent [4]. Here v = h/s is a measure for the enthalpy per unit of
entropy, and h = ρ + p is the enthalpy density. For “standard” flu-
ids (see for instance Ref. [5]) the Taub charge is positive-definite,
v > 0, with v = 0 only in vacuum, i.e. s = ni = 0 for all i.

Leaving fluids aside, a local, minimally coupled to gravity,
Lorentz invariant field theory with no more than two derivatives
acting on a real field φ is described by the action

S =
∫

d4x
√−gM4L

(
φ/M, X/M4). (1)

For our purposes φ is a Lorentz scalar measured in units of energy,
and X = −∂μφ∂μφ/2 is the kinetic term. We are taking units with
c = h̄ = 1, and M is an energy scale. A scalar field described by an
action of the form (1) is usually dubbed k-essence [6]. In this lan-
guage the Lagrangian density of a canonical scalar field takes the
form L= X − M4 V (φ/M), with V a potential term. In order to in-
clude the dynamics of the gravitational interaction we only have
to add a Einstein–Hilbert term to the expression above; however,
for the purposes of this Letter and with no loss of generality, we
will restrict our attention to fixed background spacetime configu-
rations.

Invariance under local Lorentz transformations defines energy
and momentum. The energy–momentum tensor associated to the
scalar field can be obtained varying the action in Eq. (1) with re-
spect to the spacetime metric,

Tμν = L′∂μφ∂νφ −Lgμν. (2)

From now on and in order to simplify the notation we will omit
the scale M . Here the prime denotes the derivative with respect to
the kinetic term. Using the relations
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uμ = ∂μφ√
2X

, p = L, ρ = 2XL′ −L, (3)

we can identify the energy–momentum tensor of a scalar field
with that of a perfect fluid, as long as the kinetic scalar is posi-
tive definite, X > 0. In addition, if Eq. (1) is invariant under shift-
transformations, φ → φ + const., that is, if the Lagrangian density
does not depend explicitly on the scalar field, L = L(X), we can
also identify the Noether current

Jμ = L′∂μφ (4)

with the flux of entropy in a perfect fluid,

s = √
2XL′. (5)

From the identities in Eqs. (3) and (5) we can read v = √
2X . The

energy–momentum tensor (2) and the Noether current (4) are both
covariantly conserved. Fields with no potential term are known as
purely-kinetics, and have been considered for their possible role to
the dark matter and/or dark energy problems [7].

Associated to Eq. (1) there are no other conserved charges apart
from the energy, momentum, and Noether charge. Then, if there
were any other thermodynamic charges in the fluid, they should
be distributed on a trivial configuration, i.e. the fluid should be
isentropic, s̄i = s/ni = const.; this guarantees a barotropic relation
of the form p = p(ρ). If on the contrary extra thermodynamic
charges do not exist, e.g. a gas of photons, we can simply iden-
tify the Taub charge with the temperature in the fluid, v = T ; see
Euler equation.

According to the previous lines, as long as the kinetic term
is positive definite, it seems possible to identify a shift-invariant
scalar field φ with the velocity-potential of an isentropic, per-
fect, rotation-less fluid Φ . But, what happens if the kinetic scalar
changes sign? Naturally the identifications in Eqs. (3) and (5), and
in particular that for the vector uμ , break down. If the dynamical
evolution of the scalar field prevented a sign inversion, we could
forget this concern. Something similar happens, for instance, when
a perfect fluid is isentropic, or rotation-less, at a given instant
of time, i.e. on a given Cauchy hypersurface: the dynamics main-
tains constant entropy per particle and no-vorticity along the fluid
evolution. However, as we will find next by means of a simple ex-
ample, this is not the case for the character of the derivative terms,
Section 2. In order to prevent this change of sign in the kinetic
scalar a constraint should be introduced in the action. This is con-
sidered in Section 3. We come back to our example in Section 4,
and conclude in Section 5 with some comments and discussion.

2. A simple example

Consider the case of a canonical scalar field with no potential
term, L= X . This theory is linear, and then it is easier to find exact
solutions. It is also shift-invariant, and, according to the relations
in Eqs. (3) and (5), it would seem possible to identify this field
with the potential flow of a stiff, perfect fluid p = ρ .

In order to see that this identification is not always viable, let
us look for the solutions of the form φ(t, x) = ϕ(t) + c1x living
on a flat, Robertson–Walker spacetime background, ds2 = −dt2 +
a2(t)(dx2 + dy2 + dz2), with c1 constant and a(t) the scale factor.
(Remember that we are working in the test field approximation,
that is, the scalar field does not gravitate and the function a(t) is
fixed a priori.)

From the Klein–Gordon equation, �φ = 0, we obtain

φ(t, x) = c2

∫
dt
3

+ c1x, (6)

a (t)
with c1 and c2 two arbitrary constants. We can use the family of
two-parametric solutions in Eq. (6) to construct the kinetic scalar
as a function of the scale factor,

X = 1

2

(
c2

2

a6
− c2

1

a2

)
. (7)

In order to identify the scalar field with the velocity-potential of
a perfect fluid we need to satisfy X > 0. From Eq. (7) it is evi-
dent that this condition is verified at early times, when a < acrit =√|c2/c1| (the particular value of this quantity depends on the
initial conditions for the scalar field). However, for a � acrit, the
inequality X > 0 does no longer holds.

The moral is simple: not all the particular solutions to a shift-
invariant scalar field satisfy the condition necessary to mimic a
perfect fluid, X > 0. But even if they do at a certain initial time,
t0, the evolution of the system can change this behavior. Imag-
ine for instance a universe filled with a scalar field, like in the
inflationary model, and assume that this field is invariant under
shift-transformations. If there were some small perturbations to
the homogeneous and isotropic background, we could not guaran-
tee a perfect-fluid-solution, even if the identification of the scalar
field with a perfect fluid were possible in the early universe. But,
how is it possible that something that looks like a perfect fluid,
and evolves like a perfect fluid, reaches a state that does not look
like a perfect fluid?

3. The constraints

In order to improve our understanding of the previous section,
we find it appropriate to start from the action principle describing
a perfect fluid in general relativity. Following Schutz formalism [8]
(see also Refs. [9], and Ref. [10] for a Newtonian description), the
Lagrangian density of an isentropic, rotation-less perfect fluid with
equation of state ρ = ρ(s,ni) is given by

S =
∫

d4x
√−g

[−ρ(s,ni) − Sμ∂μΦ + λ
(

SμSμ + s2)]. (8)

Eq. (8) is a functional of the spacetime metric, gμν , the entropy
flux, Sμ , the velocity-potential, Φ , the entropy density, s, and a
new field λ. For an isentropic fluid, s̄i = const., the charge density
ni is not a variable anymore, i.e. ni = const. × s. Here λ is a La-
grange multiplier that guarantees the standard normalization for
the flux of entropy, SμSμ = −s2. (The necessity of constraints is
analyzed in full detail in a seminal Letter by Schutz and Sorkin,
Ref. [11].) At this point we can also look at the velocity-potential
Φ as a Lagrange multiplier, necessary to guarantee entropy conser-
vation: integrating by parts and removing a surface term we can
replace Sμ∂μΦ by Φ∇μ Sμ in Eq. (8). (For a more general, rota-
tional fluid, the Lagrangian density requires an extra term of the
form SμβA∂μαA , with αA and βA additional fields related to the
Lagrangian coordinates of the fluid, A = 1,2,3; see the previous
references for further details.)

Varying Eq. (8) with respect to the spacetime metric, and using
the thermodynamic relations, we obtain the energy–momentum
tensor of a perfect fluid. The variation with respect to the La-
grange multipliers Φ and λ give the equations for the conservation,
∇μSμ = 0, and normalization, SμSμ = −s2, of the flux of entropy,
respectively. Finally, varying with respect to Sμ and s we get

uμ = (1/v)∂μΦ, (9a)

λ = v/2s. (9b)

Eq. (9a) is a decomposition (known as the Clebsch representation)
of uμ in terms of the velocity-potential; compare with the first
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Fig. 1. Shady region: values of φ′ = ∂φ(η, �x)/∂η and ∂φ = ∂φ(η, �x)/∂x (at fixed �x)
that allow a perfect fluid description, with dη = dt/a a conformal time. Solid lines
with an arrow represent perfect fluid evolution. At v = 0 the evolution of the scalar
field and the perfect fluid branch off: dashed lines represent scalar field evolution
with no perfect fluid analogue.

identity in Eq. (3). Since Vμ = ∂μΦ , this guarantees a fluid with no
vorticity, as we anticipated at the beginning of this section. Finally,
Eq. (9b) gives the evolution of the field λ in terms of the Taub
charge and the entropy density in the fluid.

When the equations of motion hold, Eq. (8) reduces to

Son-shell =
∫

d4x
√−g p(v, s̄i = const.), (10a)

with the square of the Taub charge

v2 = −∂μΦ∂μΦ (10b)

a kind of kinetic scalar. We can read this last identity from Eq. (9a),
using uμuμ = −1. The Lagrangian density on-shell coincides with
the pressure in the fluid, Eq. (10a), and we can arrive to the energy
density from the thermodynamic relations, ρ = (∂ p/∂v)s̄i v − p;
compare with the second and last identities in Eq. (3). The defini-
tion of the Taub charge, v = h/s, reproduces the identity in Eq. (5).

Since v2 is positive definite, the derivative terms cannot change
character, i.e. if they were born time-like, they will remain time-
like along fluid evolution. Eq. (10a) is the action for a shift-
invariant, k-essence-like velocity-potential, with the kinetic scalar
measuring the Taub charge in the fluid. We are then lead to the
same identifications as those reported in the Introduction, but now
starting from the action principle describing a perfect fluid in gen-
eral relativity.

4. Revisiting the example

Let us come back to the example in Section 2. There, at time
t0 we can fix φ(t0, �x) and φ̇(t0, �x) arbitrarily. This is no longer true
for the velocity-potential of a perfect fluid, where we can choose
Φ(t0, �x) and v(t0, �x) > 0, i.e. the 3-velocity and the Taub charge on
a Cauchy hypersurface, but the constraint in Eq. (10b) fixes

Φ̇(t0, �x) = −
[

v2(t0, �x) + 1

a2(t0)
∂2

i Φ(t0, �x)
]1/2

. (11)

The minus sign in the square root is chosen to guarantee u0 > 0.
The points in phase space that admit a perfect fluid description
are restricted, see Fig. 1. But even if we start from a state in the
subspace that allows such a description, shady region in Fig. 1, the
dynamics seems to bring the system into the space that does not
admit a perfect fluid analogue. Is then the dynamics of the scalar
field different to that of a perfect fluid?

Varying Eq. (10a) with respect to the velocity-potential, we ob-
tain
∇μ

[
1

v

(
∂ p

∂v

)
∂μΦ

]
= 0. (12)

In order to identify Eq. (12) with a shift-invariant, Klein–Gordon
equation, we must satisfy (we are using the notation in the Intro-
duction)

1

v

(
∂ p

∂v

)
= ∂L

∂ X
. (13)

This identification is possible as long as v > 0. For standard flu-
ids a vanishing Taub charge, v = 0, means vacuum (here we are
talking about a classical vacuum). There is nothing beyond the vac-
uum of a perfect fluid, and the state of the system freeze down at
that point in the evolution. In the context of the example in Sec-
tion 2, the expansion dilutes the matter content in the universe;
additionally, if the velocity of the matter fields with respect to the
expansion does not vanish, c1 �= 0, it is possible to leak out the
fluid at finite cosmological time.

As it is natural from Fig. 1, in order to reach the region in phase
space that does not admit a perfect fluid description, the scalar
field should go through the “vacuum divide”, v = 0. At that point
the Klein–Gordon equation does not describe the dynamics of a
perfect fluid anymore, and the evolution of the two systems, the
perfect fluid and the scalar field, branches off: whereas the perfect
fluid remains in vacuum, the scalar field follows an evolution that
does not admit a perfect fluid analogue, seeping through a region
with “imaginary Taub charge”.

5. Discussion

The identification of a scalar field with the velocity-potential
of a perfect fluid is possible, as long as the scalar field is shift-
invariant, φ → φ + const., and the perfect fluid isentropic and
rotation-less. However, actually not all the scalar field solutions
mimic hydrodynamic motion: only those that satisfy the constraint
X > 0 verify this identification. In general, for solutions with some
space dependency, the scalar field only mimics a perfect fluid for
a finite period in the evolution. After that period of time, the evo-
lution of the two systems, the scalar field and the perfect fluid,
branches off. In terms of the example we considered in Section 2,
the perfect fluid reaches the vacuum state at finite cosmological
time (unless c1 = 0), and it freezes down at that point. From there
on, the scalar field develops anisotropic configurations with no per-
fect fluid analogue, and the two systems start to differ, see Fig. 1.
(For a discussion on anisotropic scalar field configurations please
see Ref. [12].)

If the scalar field is not invariant under shift-transformations,
the identification with a perfect fluid is no longer possible. Even
though the relations in Eq. (3) are still allowed, there are no other
conserved charges apart form the energy and momentum to iden-
tify with the entropy density. Then, in general, the dynamics of a
scalar field and a perfect fluid differ.

However, a formal relation can be sometimes useful. For in-
stance, for static configurations the character of the derivative
terms does not change. Then, if they are time-like, we can use
Eq. (3) to identify a pressure and an energy density, and in some
cases with high symmetry even to obtain an effective barotropic
relation of the form p = p(ρ). Something similar happens for the
cosmological homogeneous and isotropic solutions, where there is
time evolution, but no spatial gradients. However, it is important to
remark that the existence of a relation of the form p(ρ) for partic-
ular solutions does not imply an “equation of state” for the scalar
field, and, contrary to what happens in these two cases above (and
others considered in the literature), the identifications reported in
this note are general, and not background-dependent.
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Let us conclude with some words about the quantum regime
of the scalar/perfect fluid field models considered in this Letter.
The quantization of a canonical scalar field is well understood, in
flat [13] as well as in curved [14] spacetimes; however, noncanon-
ical scalar fields are definitely more subtle. On the hydrodynamic
side, one could probably argue that the noncanonical fields de-
scribing the collective modes of a perfect fluid are restricted to the
classical world, and only the small perturbations (phonons) around
their background values are subjected to quantization; see for in-
stance Refs. [15] for a discussion along these lines in the context of
quantum gravity. A quantum description of a perfect fluid at zero
temperature has been recently considered in Ref. [16]; see also
Refs. [17]. Using an effective field theory approach, the authors in
Ref. [16] identify a number of interesting aspects (e.g. strong cou-
pling at low energies, an analog of Coleman’s theorem) that could
be relevant for the description of perfect fluids at very low tem-
peratures, when the thermal effects are still sub-dominant. Note
however that again the quantization of the perfect fluid is carried
out in the canonical (perturbative) way. This discussion is however
beyond the scope of this Letter, and we refer the interested reader
to [15–17] for further details.
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