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Abstract 

Quebbemann, H.-G., On even codes, Discrete Mathematics 98 (1991) 29-34. 

The notion of an even selforthogonal code is introduced over IF,, q = 2”, in such a way that 

codes with this property become ordinary even binary codes (i.e., all weights are multiples of 

4) when IF, is identified with ffy using a selfcomplementary basis. Extended Reed-Solomon 

codes of rate ~4 turn out to be even. Furthermore, it is shown that asymptotically good even 

selfdual codes arise from the class field tower method used by Serre to obtain curves with many 

If,-rational points. 

1. Introduction and first results 

Let t(x) and q(x) denote the linear and the quadratic elementary symmetric 
polynomial in x,, . . . , x,, 

T(X) = 2 xi, q(X) = C XiXj* 
I i<j 

Their values on an x E Fz of weight w are w and (y) mod 2, so that w is divisible 
by 4 if and only if T(X) = q(x) = 0. Now let q be a power of 2. 

Definition. A linear code over IF, which satisfies r(x) = &x) = 0 for all code- 
words x is called even (not to say doubly-even). 

An even code must be selforthogonal with respect to the inner product 
x . Y = C xiyi, as follows from the identity 

cp(x +y) - q(n) - V(Y) = r(x)r(y) --x ‘Y. (1.1) 

A special interest in selforthogonal codes over F, comes from the obvious fact 
that they remain selforthogonal over IF2 after identifying IF, with IF? by use of a 
selfcomplementary !F,-basis, i.e., a basis al, , . . , a, such that (I(eiaj)) for some 
FJinear map A : F, + IF2 is the unit matrix (such bases always exist). As even 
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selfdual binary codes are particularly interesting 

following may be noteworthy in this connection. 

(cf. [3, Chapter 19]), the 

Theorem 1. Let [F, be identified with [FY by using a selfcomplementary basis. Then 
the binary image of an even q-ary code is again an even code. 

Theorem 2. For 2k 6 q, q 3 4, the [q, k, q + 1 - k] extended Reed-Solomon code 
over [F, is even. 

Therefore RS codes of rate 1 give even selfdual binary codes of length m2” and 

minimum distance at least 2”-’ + 4 for m 2 3. This result had been conjectured 

by Pasquier [4] who verified it for m < 5, observing that ‘extremal’ codes of 

length 24 (the Golay code) and 64 arise. 

2. Details 

The same letter t (resp. (p) will be used to denote 

polynomials of degree 1 (resp. 2) in different numbers 

only a special case of the following. 

the elementary symmetric 

of variables. Theorem 1 is 

Lemma. Let [F, be a subfield of [F,, let a,, . . . , a,,, be a selfcomplementary [F,-basis 
of IF, for the functional A : IF, ---, F,, and let x E Ei be mapped to X E [Fyn with respect 
to this basis. Then, if z(x) = 0, we have z(X) = 0, and cp(Z) = A(Q~(x)). 

PrOOf. Let X = (Xl, . . . , X,), Xj =XljUl + . * - + +a,,, with xii E [F,, and put xi = 

(Xi17 . * . j xi,) for i = 1, . . . , m. Let t(x) = 0. Then clearly t(xi) = 0 for all i, and 

r(Z) = 0. Furthermore, 

= 7 (J’(Xi) = c c Xijxik 
i j<k 

= jz A(XjXk) = A(V(x)). q 

Recall that words of the [q, k] extended RS code correspond to polynomials 

f E [F,[X] of degree <k. The positions in the codeword are the elements of IF,, 

and the entries are the values f(a), a E [F,. For later purposes we prove the 

following generalization of Theorem 2. 

Theorem 2’. Let U be a subgroup of IF,* of order u = 3 (mod 4). For 2k c u + 1, 

the code of length u + 1 obtained by puncturing the [q, k] extended RS code at all 
positions a E FG \ U is even. 
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Proof. Let 

1 = 0 because IAl is even, and for 0 < j < k we have 

x1 . Xi = C J+i = 0 
ecu 

because i + j < u and U is cyclic. Therefore, our code is selforthogonal. By (l.l), 
it remains to show that q(xi) = 0 for all i. This holds for i = 0 because (Al is a 
multiple of 4. Now let i > 0, and j = gcd (i, u). Then ~?(_xj) is the coefficient of 
T”-’ in the polynomial 

~~~(T_a’)=(T”“-I~=T”_T”-“/‘-..._I. 

Since i < u, u odd, we have u/j > 2, and therefore q@) = 0. El 

Some other examples of even selfdual q-ary 
Maria Dyckhoff (Diplomarbeit , Munster 1986). 

3. Goppa codes 

codes have been worked out by 

We shall now deal with algebraic-geometric Goppa codes CL(D, G) associated 
with divisors D and G of an algebraic function field E in one variable over IF, (q a 
power of 2). See [l] for the algebraic background, and [2] for the definition of the 
codes. There is an evident criterion for such a code to be selforthogonal or 
selfdual; cf. 191. However, it appears to be difficult to say something about 
evenness in all generality. Instead we shall make rather restrictive assumptions 
under which this problem can be easily reduced to rational codes as considered in 
Section 2. 

Let E be a finite Galois extension of the rational function field K = [F,(X). It 
will be assumed that s = [E:K] is odd. Let A be a subset of [F, such that for each 
a EA there are s distinct prime divisors PaI, . . . , P, of E lying over pa = zero of 
X - a. We define the divisor D as the sum of these n = s IAl prime divisors Pai (all 
of degree 1 over [F,). For a prime divisor P of E let e(P) denote its ramification 
index over K (so e(P) - 1 is the differential exponent). We define ‘Goppa 
divisors’ 

G, = h . pz e(P)P + k C (e(P) - l)P 
m P 

for 0 g h s $ (Al - 1 (pm denotes the infinite prime of K with respect to X). If 
h = 1 IA( - 1, then 2G, - D is just the divisor of the differential 

fl (X-a)-‘dX, 
ClEA 

and we have an [n, S] code 

C,(D, Gh) = {(f(&)).,; If E UGh)l, 
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where L(G,,) = space of all f E E with divisor 3 - G,, (or f = 0). Let T : E + K be 
the trace, and let @: E-t K map f E E to Ci<jJ$, where fi, . . . , fs are the 
conjugates of 5 If f is in L(G,), the corresponding codeword f satisfies 

@> = Cf(L) = c (Tf)@), 
a,i CZEA 

& = aTA (W)(a) + Zb (Tf)(a)(TfW) 

(here A is ordered somehow). Furthermore, Tf (resp. q) is a polynomial in X of 
degree at most h (resp. 2h). Therefore, CL(D, G,J will be even as soon as the 
rational code 

is even. Theorem 2’ implies the following. 

Theorem 3. In the above situation, assume that 0 E A, and that U = A \ (0) is a 
subgroup of 5: with ( UI = 3 (mod 4). Then the code CL(D, G,,) is even for 
hs+IAI--1. 

Recently Scharlau [7] has shown that there exist asymptotically good selfdual 
algebraic-geometric codes. Here we shall apply the above theorem to prove such 
a result for even selfdual codes. After Serre [8], infinite class field towers will be 
used to obtain the required function fields. 

Assume that we have a function field E/F, of genus g, and that a set S of prime 
divisors of degree 1 is used to construct the Goppa code C of length n = ISI and 
rate $. Then the minimum distance d of C is at least n/2 - g + 1. Assume that this 
number is positive, i.e., 

c=n>2. 
g-1 

(3.1) 

Now let E’/E be an unramified extension of degree t in which all P E S are totally 
decomposed. Then the genus g’ of E’ and the set S’ of prime divisors lying over 
some P E S satisfy 

g’ - 1 = t(g - l), IS’] = t IS(. 

Therefore we obtain a Goppa code C’ of length n’ = tn, rate $, and d’ 3 
tn(i - l/c). It follows that asymptotically good codes arise if the degree t can be 
made arbitrarily large. We shall review how this can be achieved. 

Let [F, have a proper subfield IF,, q = re (Serre treats the more difficult general 
case). Let 1 be a prime which divides (q - l)/(r - 1). Let B be a subset of IF, 
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which is stable under Gal(FJlF,), so that we can write 
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with irreducible polynomials fi E ff,[X]. Assume that I does not divide ]B]. Then 
the field 

EB = K(a) 

is ramified over K = IF,(X) at all X - b, b E B, and at infinity; its genus is 

g =; (I - l)((B( - 1). 

Furthermore, Eh = compositum of all K(G), i E Z, is unramified over EB. Each 
X - a with a E ff,, a $ B, is totally decomposed in E;1 (because i(a) E FF for all i, 
and IF: c (ff,*)’ by the choice of Z). Let A be a subset of IF, which is disjoint from 
B, and let S be the set of prime divisors of Es lying over primes X - a, a E A. 
Then the maximal unramified elementary-abelian Z-extension of EB in which all 
P E S are totally decomposed (cf. Rosen [6]) has Z-rank L 111 - 1 (it contains EA). 
After Golod-Shafarevich, repeated construction of Hilbert Z-class fields leads to 
arbitrarily large unramified extensions of EB with all P E S totally decomposed, if 
the following condition is satisfied: 

ISI + (III - 1)2 - (jr1 - 1). (3.2) 

(See Roquette [5, p. 2351. The 
completely if ‘infinite prime’ is 
the condition (3.1) saying 

proof given there for number fields carries over 
translated into ‘P E S’.) Recall that we also had 

ISI 3 (Z- l)(lB] - 1) - 1. (3.1’) 

Of course, (S( = Z IAI. Let us now specialize to the case 4 = r2 and take Z = 3, 
which requires r = 2” with m odd. If we forget about the restriction on A from 
Theorem 3, the best choice of A and Z3 would be as complementary subsets of IF,. 
But in conformity with that restriction we shall take A = [F, and B c IF, \ IF,, so that 
all j have degree 2 and IBI = 2 ]Zl. Then it is checked at once that (3.1’) and (3.2) 
can be satisfied for m 2 5. 

Theorem 4. For q = r2, r = 2”, m 2 5 odd, asymptotically good families of even 
selfdual Goppu codes arise over IF, by the method above. More precisely, if 111 is 
chosen us small us (3.2) (with ISI = 3r) allows, the codes have Zength N = 3rt, 
t+ 00, and reZutive minimal distance 

d~1__1 
N 2 c’ 

.=&-$,. 



34 H.-G. Quebbemann 

Remarks. (1) After Theorem 1 we can also obtain asymptotically good even 
selfdual codes over F2. The best lower bound found in this way for the binary 
relative minimal distance is, however, only about 0.02 (using r = 29, IZ( = 82). 
Even if the better modular curves could be used, one would stay around 0.05 
which is still far below the Gilbert-Varshamov bound. 

(2) The choice B = b + F, with some b E F,\F, (possible for m 2 7) has the 
peculiarity that fs is invariant under the automorphisms X H X + a, a E F,, of K. 
So these automorphisms extend to EB and, moreover, to the whole class field 
tower. One then obtains group codes (i.e., codes with a group of automorphisms 
acting regularly on the positions) which are asymptotically good. 

(3) Let us finally see what comes out for 9 = re where e is any fixed prime. 
Again we require that r = 2” with m not divisible by e. Let 1 be a prime factor of 
2” - 1. Then I divides (9 - l)/(r - l), and everything works as before: If m is 
sufficiently large, we can take A = ff,, IB( = e (I), lZl-2m = 2V’& to obtain 
asymptotically good curves and codes over F,. The ratio c again becomes a 
constant (depending only on 1) times fi. This is, of course, poor compared to the 
Drinfeld-Vladut bound c < J&Z - 1. 
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