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We study binormality, a separation property of the norm and weak topologies of a Banach
space. We show that every Banach space which belongs to a P -class is binormal. We also
show that the asplundness of a Banach space is equivalent to a related separation property
of its dual space.
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1. Introduction and main results

Let σ and τ be two topologies on a set X . We say that (X, σ , τ ) is binormal if, for every disjoint σ -closed A ⊂ X and
τ -closed B ⊂ X , there are disjoint σ -open D ⊂ X and τ -open C ⊂ X with A ⊂ C and B ⊂ D . We say that a Banach space X
is binormal if X is binormal with respect to its norm and weak topologies.

It is possible to meet the notion of binormality of (X, σ , τ ) in the real analysis where it is more likely called Lusin–
Menchoff property of τ in the case that the “second topology” τ is finer than σ . For example, it is known that both the
density topology and the fine topology have the Lusin–Menchoff property with respect to the Euclidean topology (see,
e.g., [10]). The situation in Banach spaces is somewhat opposite to that of real analysis because the finer topology is the
metrizable one.

The question whether the weak topology has the corresponding “Lusin–Menchoff property” with respect to the norm
topology was posed by L. Zajíček. This question was studied later by P. Holický who proved in [7] that every separable
Banach space is binormal and that the space �∞ is not binormal. But it was not possible to decide what was the answer for
many other non-separable Banach spaces, e.g. for non-separable Hilbert spaces.

In this paper, we show that many non-separable Banach spaces are binormal. We prove the following result (see Theo-
rem 5.2 and Theorem 4.2).

Theorem 1.1. Every Plichko space is binormal. Every dual to an Asplund space is binormal. Generally, any Banach space which belongs
to a P -class is binormal.

We give the necessary definitions below. Note that the class of Plichko spaces is quite wide and it contains all reflexive
spaces or, more generally, all weakly compactly generated spaces. On the other hand, we show that there is a Banach space
which admits a LUR norm but it is not binormal (Example 5.3).
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Some results in this paper are formulated for a general locally convex topology instead of the weak topology. If X is a
Banach space and τ is a locally convex topology which is weaker than the norm topology, we say that X is τ -binormal if
X is binormal with respect to its norm topology and τ . We prove characterizations of τ -binormality by another separation
property and by an in-between condition (Proposition 2.6).

We are interested in the case of the w∗-topology. We prove the following theorem (which is covered by Theorem 6.3).
Note that the separability of the set A cannot be dropped (Example 6.6).

Theorem 1.2. A Banach space E is Asplund if and only if, for every disjoint separable and closed A ⊂ E∗ and w∗-closed B ⊂ E∗ , there
are disjoint open D ⊂ E∗ and w∗-open C ⊂ E∗ with A ⊂ C and B ⊂ D.

Furthermore, our methods lead to the characterization of scattered compact spaces by a separation property (Theo-
rem 6.8).

2. A characterization of binormality

We start with a well-known variant of the Urysohn lemma. The lemma follows from [10, Theorem 3.11] in the case
that the topologies are comparable (which will be our case) but it holds in the general situation as well (see [10, exer-
cise 3.B.5(e)]).

Lemma 2.1. Let (X, σ , τ ) be binormal. If σ -closed A ⊂ X and τ -closed B ⊂ X are disjoint, then there is a lower σ -semicontinuous
and upper τ -semicontinuous function h on X such that

0 � h � 1, h = 0 on A, h = 1 on B.

We now prove an abstract version of our characterization.

Lemma 2.2. Let Y be a set with two topologies σY and τY with τY weaker than σY . Let

X = Y × R

and let the products of σY and τY with the standard topology on R be denoted by σ and τ .
If the condition

∀U ∈ τ , ∃{Un}n∈N, Un ∈ τ : U =
∞⋃

n=1

Un =
∞⋃

n=1

Un
σ (∗)

is satisfied, then the following assertions are equivalent:

(i) (X, σ , τ ) is binormal.
(iia) If F1 ⊃ F2 ⊃ · · · are σY -closed subsets of Y with

⋂∞
n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , τY -open subsets of Y , such that

Fn ⊂ Gn, n ∈ N, and
⋂∞

n=1 Gn
σY = ∅.

(iib) If F1 ⊃ F2 ⊃ · · · are σ -closed subsets of X with
⋂∞

n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , τ -open subsets of X , such that
Fn ⊂ Gn, n ∈ N, and

⋂∞
n=1 Gn

σ = ∅.
(iii) If f : X → (0,∞) is lower σ -semicontinuous, then there exists g : X → (0,∞), lower σ -semicontinuous and upper τ -

semicontinuous, such that g < f .

Remark 2.3. Binormality of (Y , σY , τY ) is not sufficient for binormality of (X, σ , τ ). If we take Y = [0,1], σY the discrete
topology on Y and τY the standard topology, then (Y , σY , τY ) is clearly binormal. Let us show that it does not satisfy (iia).
Take pairwise distinct numbers a1,a2, . . . ∈ [0,1] which form a countable dense subset of [0,1] and put

Fn = {an,an+1, . . .}, n ∈ N.

Note that Fn is dense in [0,1] for every n ∈ N. We have
⋂∞

n=1 Fn = ∅ but the Baire theorem guarantees that
⋂∞

n=1 Gn �= ∅
whenever G1, G2, . . . ⊂ [0,1] are open sets with Fn ⊂ Gn , n ∈ N.

We will use this simple idea in a general situation later (proof of Lemma 6.2).

Before proving the lemma, we prove

Claim 2.4. (Cf. proof of [7, Theorem 1].) Let σ and τ be two topologies on a set X and let the condition (∗) from Lemma 2.2 be satisfied.
Let A ⊂ X be σ -closed and B ⊂ X be τ -closed. If there are σ -open Dn ⊂ X, n ∈ N, such that B ⊂ ⋃∞

n=1 Dn and Dn
τ ∩ A = ∅ for all

n ∈ N, then there are disjoint σ -open D ⊂ X and τ -open C ⊂ X with A ⊂ C and B ⊂ D.
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Proof. By (∗), there are τ -open sets Cm ⊂ X,m ∈ N, such that X \ B = ⋃∞
m=1 Cm and Cm

σ ∩ B = ∅ for all m ∈ N. In particular,
A ⊂ ⋃∞

m=1 Cm . Define

D =
∞⋃

n=1

(
Dn \

n⋃
m=1

Cm
σ

)
,

C =
∞⋃

m=1

(
Cm \

m⋃
n=1

Dn
τ

)
.

It can be easily checked that C is τ -open, D is σ -open, A ⊂ C , B ⊂ D and C ∩ D = ∅. �
Proof of Lemma 2.2. (i) ⇒ (iia) Put

A =
∞⋃

n=1

Fn × [1/n,∞), B = Y × {0}. (1)

Clearly, A is σ -closed, B is τ -closed and A ∩ B = ∅. By the assumption, there are disjoint σ -open D ⊂ X and τ -open
C ⊂ X with A ⊂ C and B ⊂ D . We have A ∩ Dτ ⊂ A \ C = ∅. We define Hn as the set of points y ∈ Y such that there
is a σY -open neighbourhood U � y with U × [0,1/n] ⊂ D . Let Gn be defined as Y \ Hn

τY . We have
⋃∞

n=1 Hn = Y , and so⋂∞
n=1 Gn

σY ⊂ ⋂∞
n=1 Y \ Hn

σY = ⋂∞
n=1(Y \ Hn) = ∅. Clearly, G1 ⊃ G2 ⊃ · · · . For n ∈ N, we have Hn

τY × [0,1/n] ⊂ Dτ ⊂ X \ A,
and so Fn × {1/n} = A ∩ (Y × {1/n}) ⊂ (Y × {1/n}) \ (Hn

τY × [0,1/n]) = Gn × {1/n}.
(iia) ⇒ (iib) For n ∈ N and i ∈ Z, we define

F i
n = {

y ∈ Y : (y, r) ∈ Fn for some r ∈ [i − 1/2, i + 1/2]}. (2)

Due to the compactness of [i − 1/2, i + 1/2], the sets F i
n are σY -closed and

⋂∞
n=1 F i

n = ∅ for all i ∈ Z. By the assumption,

there are, for all i ∈ Z, τY -open Gi
1 ⊃ Gi

2 ⊃ · · · such that F i
n ⊂ Gi

n and
⋂∞

n=1 Gi
n
σY = ∅. Then the choice

Gn =
⋃
i∈Z

(
Gi

n × (i − 1, i + 1)
)
, n ∈ N,

works. (We have Fn ⊂ ⋃
i∈Z

F i
n ×[i − 1/2, i + 1/2] ⊂ Gn for n ∈ N. Suppose that (y, r) ∈ ⋂∞

n=1 Gn
σ . Put U = Y × (r − 1, r + 1).

We have U ∩ (Gi
n × (i − 1, i + 1)) = ∅ whenever |i − r| � 2. There is n ∈ N such that y /∈ Gi

n
σY for all i with |i − r| < 2. If

we take V = (Y \ ⋃
|i−r|<2 Gi

n
σY ) × R, then U ∩ V is a σ -open neighbourhood of (y, r) which does not intersect Gn . This

contradicts (y, r) ∈ Gn
σ .)

(iib) ⇒ (i) Let σ -closed A ⊂ X and τ -closed B ⊂ X satisfy A ∩ B = ∅. We need to find disjoint σ -open D ⊂ X and τ -open
C ⊂ X with A ⊂ C and B ⊂ D . By (∗), there are τ -open sets Hn ⊂ X , n ∈ N, such that X \ B = ⋃∞

n=1 Hn and Hn
σ ∩ B = ∅ for

all n ∈ N. We may assume that H1 ⊂ H2 ⊂ · · · . The sets Hn are σ -open in particular. We put

Fn = A \ Hn (3)

for n ∈ N. The sets Fn , n ∈ N, are σ -closed, F1 ⊃ F2 ⊃ · · · and
⋂∞

n=1 Fn = A \ ⋃∞
n=1 Hn = A \ (X \ B) = ∅. By the assumption,

there are τ -open G1 ⊃ G2 ⊃ · · · such that Fn ⊂ Gn , n ∈ N, and
⋂∞

n=1 Gn
σ = ∅. For n ∈ N, we put

Cn = Gn ∪ Hn, Dn = X \ Cn
σ .

We obtain A = Fn ∪ (A ∩ Hn) ⊂ Gn ∪ (A ∩ Hn) ⊂ Cn , and so Dn
τ ∩ A ⊂ (X \ Cn) ∩ Cn = ∅, for n ∈ N. Considering Claim 2.4,

it remains to prove that B ⊂ ⋃∞
n=1 Dn . For n ∈ N, we have

B \ Dn = B ∩ Cn
σ = (

B ∩ Gn
σ
) ∪ (

B ∩ Hn
σ
) = B ∩ Gn

σ ,

and so B \ ⋃∞
n=1 Dn = ⋂∞

n=1(B \ Dn) = ⋂∞
n=1(B ∩ Gn

σ ) = ∅.
(iib) ⇒ (iii) We have already proved (iib) ⇒ (i). Therefore, assuming (iib), we can assume (i) as well.
We put Fn = {x ∈ X: f (x) � 1/n}. By (iib), we take τ -open G1 ⊃ G2 ⊃ · · · such that Fn ⊂ Gn and

⋂∞
n=1 Gn

σ = ∅. By (i)
and Lemma 2.1, there is, for every n ∈ N, lower σ -semicontinuous and upper τ -semicontinuous function gn : X → [0,1]
such that gn = 0 on Fn and gn = 1 on X \ Gn . We have gn/n < f on X . Putting

g =
∞∑

n=1

gn

2nn
,

we have 0 < g < f on X .
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(iii) ⇒ (iib) We may assume F1 = X . We define f (x) = 1/n for every x ∈ Fn \ Fn+1 (this defines a lower σ -semicontinuous
function on whole space X ). By (iii), there exists g : X → (0,∞), lower σ -semicontinuous and upper τ -semicontinuous,
such that g < f . For n ∈ N, we take τ -open Gn = {x ∈ X: g(x) < 1/n}. We have Fn = {x ∈ X: f (x) � 1/n} ⊂ {x ∈ X :
g(x) < 1/n} = Gn . At the same time,

⋂∞
n=1 Gn

σ ⊂ ⋂∞
n=1{x ∈ X: g(x) � 1/n} = {x ∈ X: g(x) � 0} = ∅. �

By an inspection of the proof of Lemma 2.2, we get the following modification.

Lemma 2.5. Let Y , σY , τY , X, σ , τ be as in Lemma 2.2 and let (∗) be satisfied. Moreover, let σ be metrizable. Then the following
assertions are equivalent:

(i) For every disjoint σ -separable and σ -closed A ⊂ X and τ -closed B ⊂ X, there are disjoint σ -open D ⊂ X and τ -open C ⊂ X
with A ⊂ C and B ⊂ D.

(iia) If F1 ⊃ F2 ⊃ · · · are σY -separable and σY -closed subsets of Y with
⋂∞

n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , τY -open subsets
of Y , such that Fn ⊂ Gn, n ∈ N, and

⋂∞
n=1 Gn

σY = ∅.
(iib) If F1 ⊃ F2 ⊃ · · · are σ -separable and σ -closed subsets of X with

⋂∞
n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , τ -open subsets

of X , such that Fn ⊂ Gn, n ∈ N, and
⋂∞

n=1 Gn
σ = ∅.

Proof. The lemma can be proved in the same way as Lemma 2.2. The following should be mentioned.

• In the proof of (i) ⇒ (iia), we realize that the set A defined by (1) is σ -separable because F1, F2, . . . are assumed to be
σY -separable.

• In the proof of (iia) ⇒ (iib), we realize that the sets F i
n defined by (2) are σY -separable because F1, F2, . . . are assumed

to be σ -separable (we use the metrizability of σ ).
• In the proof of (iib) ⇒ (i), we realize that the sets Fn defined by (3) are σ -separable because A is assumed to be

σ -separable (we use the metrizability of σ again). �
The desired characterization and its variant follow.

Proposition 2.6. Let X be a Banach space and τ be a Hausdorff locally convex topology on X, weaker than the norm topology. Then
the following assertions are equivalent:

(i) X is τ -binormal.
(ii) If F1 ⊃ F2 ⊃ · · · are closed subsets of X with

⋂∞
n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , τ -open subsets of X , such that Fn ⊂ Gn,

n ∈ N, and
⋂∞

n=1 Gn = ∅.
(iii) If f : X → (0,∞) is lower semicontinuous, then there exists g : X → (0,∞), continuous and upper τ -semicontinuous, such that

g < f .

Proof. We may suppose that X �= {0}. Then, by the Hahn–Banach theorem, there is a τ -continuous linear functional f �= 0
on X . We define Y as the kernel of f , σ as the norm topology of X , σY as the norm topology of Y and τY as the restriction
of τ on Y . We want to show that we are in the situation of Lemma 2.2. Fix an x0 ∈ X with f (x0) = 1. We will identify a
couple (y, r) ∈ Y ×R with the point y + rx0 ∈ X (then x ∈ X is identified with (x − f (x)x0, f (x)) ∈ Y ×R). It is easy to check
that the mapping (y, r) ∈ Y × R �→ y + rx0 is (τY × | · |)-τ -continuous and (σY × | · |)-σ -continuous and that the mapping
x ∈ X �→ (x − f (x)x0, f (x)) is τ -(τY × | · |)-continuous and σ -(σY × | · |)-continuous. So the products of σY and τY with the
standard topology on R are σ and τ indeed.

It remains to show that (∗) is satisfied. Let U ⊂ X be τ -open. We prove first that every x ∈ U has a τ -open neigh-
bourhood V such that dist(V , X \ U ) > 0. There are τ -continuous seminorms p1, p2, . . . , pn and ε > 0 such that y ∈ U
whenever pi(y − x) < ε for all i ∈ {1,2, . . . ,n}. The seminorms are continuous in particular, so we can take C > 0 such that
pi(z) � C‖z‖ for all z ∈ X and i ∈ {1,2, . . . ,n}. We define τ -open

V = {
y ∈ X: pi(y − x) < ε/2 for i = 1,2, . . . ,n

}
.

We are going to show that dist(V , X \ U ) � ε/(2C). Let a ∈ V and b ∈ X \ U . By the choice of p1, p2, . . . , pn and ε, there
is i ∈ {1,2, . . . ,n} such that pi(b − x) � ε. We are computing ‖b − a‖ � (1/C)pi(b − a) � (1/C)(pi(b − x) − pi(a − x)) >

(1/C)(ε − ε/2) = ε/(2C). So dist(V , X \ U ) � ε/(2C).
Now, we define Un as the set of all x ∈ U for which there is a τ -open neighbourhood V � x such that dist(V , X \U ) � 1/n.

This is clearly a τ -open set. We know that every x ∈ U belongs to Un for a sufficiently large n. At the same time, Un ⊂ U
since dist(Un, X \ U ) � 1/n. This completes the verification of (∗). �
Proposition 2.7. Let X be a Banach space and τ be a Hausdorff locally convex topology on X, weaker than the norm topology. Then
the following assertions are equivalent:
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(i) For every disjoint separable and closed A ⊂ X and τ -closed B ⊂ X, there are disjoint open D ⊂ X and τ -open C ⊂ X with A ⊂ C
and B ⊂ D.

(ii) If F1 ⊃ F2 ⊃ · · · are separable and closed subsets of X with
⋂∞

n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , τ -open subsets of X ,
such that Fn ⊂ Gn, n ∈ N, and

⋂∞
n=1 Gn = ∅.

Proof. This has the same proof as Proposition 2.6 with the only difference that we use Lemma 2.5 instead of Lemma 2.2. �
3. A stronger property

We are going to introduce a property which is stronger than binormality. The notion of strong binormality plays a key
role for us because our only method how to prove that a space is binormal is to prove that it is strongly binormal. Although
we proved a characterization of binormality in the previous section, we still do not know too much about binormality itself.
For example, we do not know whether X × Y is necessarily binormal when X and Y are binormal. However, there is no
such a problem with strong binormality (Proposition 4.1).

Let X be a Banach space and τ be a locally convex topology on X , weaker than the norm topology. We say that X is
strongly τ -binormal if there exists a system of τ -open neighbourhoods Un

x � x, x ∈ X , n ∈ N, such that

∞⋂
n=1

(
Un

xn
+ εn B X

) �= ∅ ⇒ {xn: n ∈ N} is relatively compact

whenever εn ↘ 0. We say that a Banach space X is strongly binormal if it is strongly w-binormal (where w denotes the
weak topology of X ).

We prove three easy lemmata about strong binormality.

Lemma 3.1. If X is strongly τ -binormal, then it is τ -binormal.

We do not know anything about the converse implication. The problem of the existence of a binormal space which is
not strongly binormal does not seem to be easy.

Proof. We will use Proposition 2.6. Let F1 ⊃ F2 ⊃ · · · be closed in X with
⋂∞

n=1 Fn = ∅. We need to find τ -open Gn ⊃ Fn

with
⋂∞

n=1 Gn = ∅ (the inclusions G1 ⊃ G2 ⊃ · · · can be arranged by taking
⋂

m�n Gm instead of Gn). Let Un
x � x, x ∈ X ,

n ∈ N, be a system witnessing the strong τ -binormality of X . Put

Gn =
⋃

x∈Fn

Un
x , n ∈ N.

If now a ∈ ⋂∞
n=1 Gn , then we find an ∈ Gn with ‖a − an‖ � 1/n for every n ∈ N. For some xn ∈ Fn , we have an ∈ Un

xn
. By the

triangle inequality,

a ∈
∞⋂

n=1

(
Un

xn
+ (1/n)B X

)
.

It follows that {xn: n ∈ N} is relatively compact. So we have a convergent subsequence xn(k) . Its limit is an element of⋂∞
n=1 Fn , which is a contradiction. �

Lemma 3.2. Assume that there exist a dense subset Z of X and a system of τ -open neighbourhoods Un
z � z, z ∈ Z , n ∈ N, such that,

for any sequence zn, n ∈ N, in Z ,

∞⋂
n=1

(
Un

zn
+ εn B X

) �= ∅ ⇒ {zn: n ∈ N} is relatively compact

whenever εn ↘ 0. Then X is strongly τ -binormal.

In other words, in the definition of strong τ -binormality, it is possible to require the neighbourhoods U n
x for the elements

of a dense set only.

Proof. Let x ∈ X and n ∈ N. There is some z(x,n) ∈ Z for which ‖x − z(x,n)‖ � 1/n. Put

V n
x = Un

z(x,n) + (1/n)B X .
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This is a τ -open neighbourhood of x. Now, suppose that εn ↘ 0 and that a ∈ X and a sequence xn ∈ X , n ∈ N, satisfy

a ∈
∞⋂

n=1

(
V n

xn
+ εn B X

)
.

We obtain

a ∈
∞⋂

n=1

(
Un

z(xn,n) + (εn + 1/n)B X
)
.

By the property of the system Un
z , z ∈ Z , n ∈ N, the set {z(xn,n): n ∈ N} is relatively compact. Since ‖xn − z(xn,n)‖ � 1/n,

the set {xn: n ∈ N} is relatively compact, too. �
Lemma 3.3. If X is separable and B X is τ -closed, then X is strongly τ -binormal.

Proof. Let B1, B2, . . . be closed balls such that their interiors form a basis of the norm topology. Put

Un
x = X \

⋃
m�n, x/∈Bm

Bm, x ∈ X, n ∈ N.

These sets are τ -open, as B1, B2, . . . are τ -closed. Assume

a ∈
∞⋂

n=1

(
Un

xn
+ εn B X

)
.

We have to show that {xn: n ∈ N} is relatively compact. We show that even xn → a. Let m ∈ N be such that a lies in the
interior of Bm . Then there is n0 such that xn ∈ Bm for n � n0. Indeed, take n0 with n0 � m and εn0 < dist(a, X \ Bm). Let
n � n0. There is b ∈ Un

xn
such that ‖b − a‖ � εn . Since ‖b − a‖ � εn � εn0 < dist(a, X \ Bm), we have b ∈ Bm . Also, xn ∈ Bm (in

the other case, b ∈ Un
xn

⊂ X \ Bm because n � n0 � m). So the choice of Un
x works. �

4. Binormality via decomposition

Let X be a non-separable Banach space, and let μ be the first ordinal with cardinality dens(X). We call a transfinite
collection {Pα}ω�α�μ of projections in X a projectional resolution of identity (PRI) if

• ‖Pα‖ � 1 for α ∈ [ω,μ],
• dens(Pα X) � card(α) for α ∈ [ω,μ],
• Pα Pβ = Pβ Pα = Pmin{α,β} for α,β ∈ [ω,μ],
• Pω = 0 and Pμ is the identity on X ,
• α �→ Pαx is continuous on [ω,μ] for every x ∈ X .

If the first condition is weakened to sup{‖Pα‖: ω � α � μ} < ∞, we obtain the notion of a bounded projectional resolution
of identity.

Our main tool for proving that a non-separable Banach space is binormal follows.

Proposition 4.1. Let X be a Banach space and let {Pα}ω�α�μ be a bounded PRI in X. If (Pα+1 − Pα)X is strongly binormal for every
α ∈ [ω,μ), then X is strongly binormal.

Proof. We will denote

Xα = (Pα+1 − Pα)X, α ∈ [ω,μ),

Z =
⊕

ω�α<μ

Xα,

x(α) = (Pα+1 − Pα)x, x ∈ X, α ∈ [ω,μ),

where the direct sum ⊕ is meant in the algebraic sense (so Z is the linear span of
⋃

ω�α<μ Xα). We take some M > 0
such that ‖Pα‖ � M for any α ∈ [ω,μ]. By the assumption, there is, for every α ∈ [ω,μ), a system of weak neighbourhoods
Un

x,α � x, x ∈ Xα , n ∈ N, in Xα , such that
∞⋂

n=1

(
Un

xn,α + εn B Xα

) �= ∅ ⇒ {xn: n ∈ N} is relatively compact

whenever εn ↘ 0.
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Since Z is dense in X , considering Lemma 3.2, it is enough to find appropriate neighbourhoods on Z . Put

Un
x =

⋂
α∈S(x)

(Pα+1 − Pα)−1(Un
x(α),α

) ∩
⋂

γ �β;β,γ ∈S(x)

(Pβ+1 − Pγ )−1(X \ (∥∥(Pβ+1 − Pγ )x
∥∥/2

)
B X

)

for x =
∑

α∈S(x)

x(α) ∈ Z , n ∈ N,

where S(x) = {α: x(α) �= 0} is finite.
Let us prove that the choice works. Let εn ↘ 0, let xn , n ∈ N, be a sequence in Z and let a ∈ X satisfy

a ∈
∞⋂

n=1

(
Un

xn
+ εn B X

)
.

To show that {xn: n ∈ N} is relatively compact, we prove by induction on λ ∈ [ω,μ] that {Pλxn: n ∈ N} is relatively compact.
This is clear for λ = ω because then Pλxn = 0 for n ∈ N.

Let λ = α + 1 for some α ∈ [ω,μ) and let {Pαxn: n ∈ N} be relatively compact. We have to show that {Pλxn: n ∈ N} is
relatively compact. It is sufficient to show that {xn(α): n ∈ N} is relatively compact because Pλxn = Pαxn + xn(α) for n ∈ N.
Let us verify that, for every n ∈ N,

xn(α) �= 0 ⇒ a(α) ∈ (
Un

xn(α),α + (2Mεn)B Xα

)
.

Assume xn(α) �= 0, i.e., α ∈ S(xn). Choose b ∈ Un
xn

satisfying ‖b − a‖ � εn . We have b ∈ (Pα+1 − Pα)−1(Un
xn(α),α), and so

b(α) ∈ Un
xn(α),α . Since ‖b(α)−a(α)‖ = ‖(Pα+1 − Pα)(b −a)‖ � 2M‖b −a‖ � 2Mεn , we get a(α) ∈ Un

xn(α),α + (2Mεn)B Xα , and
the verification is completed. Now, for n ∈ N, we put

yn =
{

xn(α), xn(α) �= 0,

a(α), xn(α) = 0.

We obtain

a(α) ∈
∞⋂

n=1

(
Un

yn,α + (2Mεn)B Xα

)
.

Therefore, {yn: n ∈ N} is relatively compact. As {xn(α): n ∈ N} ⊂ {0} ∪ {yn: n ∈ N}, the set {xn(α): n ∈ N} is relatively
compact, too. The inductive step α → α + 1 is finished.

Let λ ∈ (ω,μ] be a limit ordinal number and let {Pαxn: n ∈ N} be relatively compact for every α ∈ [ω,λ). We have
to show that {Pλxn: n ∈ N} is relatively compact. It is sufficient, given an ε > 0, to find n0 and a sequence x′

n such that
‖Pλxn − x′

n‖ < ε for n � n0 and {x′
n: n ∈ N} is relatively compact. We show that the choice x′

n = Pαxn , n ∈ N, for an α < λ

so that

‖Pλa − Pβa‖ < ε/8, α � β � λ,

works. Fix such an α. We know that {Pαxn: n ∈ N} is relatively compact. It remains to find n0 such that ‖Pλxn − Pαxn‖ < ε
for n � n0. We choose n0 so that εn0 � ε/(8M). Let n � n0 be given. If S(xn) ⊂ [ω,α) ∪ [λ,μ], then Pαxn = Pλxn , and so
‖Pλxn − Pαxn‖ = 0 < ε. Assume that S(xn) ∩ [α,λ) �= ∅ and denote by β and by γ the greatest and the least element of
S(xn) ∩ [α,λ). We have

Pλxn − Pαxn =
∑

ν∈S(xn),α�ν<λ

xn(ν)

=
∑

ν∈S(xn), γ �ν<β+1

xn(ν) = Pβ+1xn − Pγ xn.

Since a ∈ Un
xn

+εn B X , we can choose b ∈ Un
xn

satisfying ‖b−a‖ � εn . We have b ∈ (Pβ+1 − Pγ )−1(X \(‖(Pβ+1 − Pγ )xn‖/2)B X ),
i.e., ‖(Pβ+1 − Pγ )b‖ > ‖(Pβ+1 − Pγ )xn‖/2. We obtain

‖Pλxn − Pαxn‖ = ∥∥(Pβ+1 − Pγ )xn
∥∥

< 2
∥∥(Pβ+1 − Pγ )b

∥∥
� 2

∥∥(Pβ+1 − Pγ )a
∥∥ + 4Mεn
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� 2‖Pλa − Pβ+1a‖ + 2‖Pλa − Pγ a‖ + 4Mεn

< 4(ε/8) + 4Mεn0

� ε.

The inductive step for a limit ordinal λ is finished. �
We say that a class C of Banach spaces is a P -class if, for every non-separable X ∈ C , there exists a PRI {Pα}ω�α�μ such

that (Pα+1 − Pα)X ∈ C for every α < μ, where μ is the first ordinal with cardinality dens(X).
There are several classes which are known to be P -classes (see, e.g., [6]).

Theorem 4.2. Let C be a P -class. Then every space in C is strongly binormal. In particular, every space in C is binormal.

Proof. We prove by induction on the density of X that every X ∈ C is strongly binormal. If dens(X) � ℵ0, then X
is separable, and thus strongly binormal by Lemma 3.3. Let X ∈ C satisfy dens(X) > ℵ0 and let every Y ∈ C with
dens(Y ) < dens(X) be strongly binormal. Let μ be the first ordinal with cardinality dens(X). There is a PRI {Pα}ω�α�μ

such that (Pα+1 − Pα)X ∈ C for every α < μ. The block (Pα+1 − Pα)X is strongly binormal for every α ∈ [ω,μ) because
dens((Pα+1 − Pα)X) � card(α) < dens(X). Now, X is strongly binormal by Proposition 4.1.

The second part of the statement follows from Lemma 3.1. �
5. Examples

Example 5.1. The space C([0,μ]) is binormal for every ordinal μ.

This can be proved directly from Proposition 4.1. We may assume that μ is an initial ordinal and that μ � ω1 (recall
that every separable Banach space is strongly binormal by Lemma 3.3). To define a suitable PRI, we take Pω = 0 and, for
α ∈ (ω,μ], the projection

Pα f (ν) =
{

f (ν), 0 � ν < α,

f (α), α � ν � μ

(then every block (Pα+1 − Pα)C([0,μ]) is strongly binormal – for α > ω, it is one-dimensional, for α = ω, it is isometric to
C([0,ω + 1])).

Theorem 5.2. Every Plichko space is binormal. Every dual to an Asplund space is binormal.

For the definition of a Plichko space, see, e.g., [9]. For the definition of an Asplund space, see below.

Proof. We use Theorem 4.2. The class of 1-Plichko spaces is a P -class by [9, Theorem 4.14]. Note that every Plichko space
can be renormed to be 1-Plichko [9, Theorem 4.16]. The class of duals to Asplund spaces is a P -class by [2]. �

We say that a norm ‖ · ‖ is locally uniformly rotund (LUR) if xn → x whenever ‖xn‖ → ‖x‖ and ‖x + xn‖ → 2‖x‖. One may
expect that every Banach space with a LUR norm is binormal because the norm and weak topologies coincide on the unit
sphere. We are going to disprove this conjecture.

Example 5.3. There is a locally compact space T such that the function space C0(T ) is Asplund and admits a LUR norm but
it is not binormal.

The presented example is the set

T =
( ∞⋃

n=1

Nn

)
∪ NN

endowed with the coarsest topology in which {s ∈ T : s ⊂ t} is clopen for every t ∈ T (we write s ⊂ t if s is an initial
segment of t).

In fact, our space T is a tree. Function spaces on trees were widely studied in the article [5]. The fact that T is a tree is
sufficient for C0(T ) to be Asplund. By [5, Theorem 4.1], C0(T ) has a LUR norm.

We denote by χ(0,t] the characteristic function of the set {s ∈ T : s ⊂ t}. To show that C0(T ) is not binormal, we put

Fn = {
χ(0,t]: n � length(t) < ∞}

, n ∈ N.
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The sets Fn are closed because the functions χ(0,t] form a discrete set. It is clear that F1 ⊃ F2 ⊃ · · · and that
⋂∞

n=1 Fn = ∅.
Considering Proposition 2.6, it is sufficient to prove the following claim. Note that the weak and the pointwise topologies
coincide on the unit ball of C0(T ) (this can be easily proved from [3, Theorem 12.28] which implies that the linear span of
the Dirac measures is dense in the dual of C0(T )).

Claim 5.4. If Gn ⊂ C0(T ), n ∈ N, are open sets in the pointwise topology such that Fn ⊂ Gn, n ∈ N, then BC0(T ) ∩ ⋂∞
n=1 Gn �= ∅.

Proof. We construct a sequence s1, s2, . . . of natural numbers such that

(s1, s2, . . . , sn+1) ⊂ t ⇒ χ(0,t] ∈ Gn

for every n ∈ N. Choose s1 ∈ N arbitrarily. Assume that s1, s2, . . . , sn are constructed. We have χ(0,(s1,s2,...,sn)] ∈ Fn ⊂ Gn .
There are finite R ⊂ T and ε > 0 such that

∀r ∈ R:
∣∣ f (r) − χ(0,(s1,s2,...,sn)](r)

∣∣ < ε ⇒ f ∈ Gn.

It is sufficient to choose sn+1 such that (s1, s2, . . . , sn+1) �⊂ r for any r ∈ R . Indeed, if (s1, s2, . . . , sn+1) ⊂ t , then χ(0,t](r) �=
χ(0,(s1,s2,...,sn)](r) is possible only for r with (s1, s2, . . . , sn+1) ⊂ r, and thus χ(0,t](r) = χ(0,(s1,s2,...,sn)](r) for every r ∈ R . Hence
χ(0,t] ∈ Gn .

So the construction is done. Now, the function χ(0,s] , where s = (s1, s2, . . .), belongs to Gn for every n ∈ N. This proves
the claim. �
6. Asplund spaces and w∗-binormality

A Banach space E is said to be an Asplund space provided every continuous convex function defined on a non-empty
open convex subset D of E is Fréchet differentiable at each point of some dense Gδ subset of D .

A topological space (X, τ ) is said to be fragmented by a metric � if, for every ε > 0 and every non-empty Y ⊂ X , there is
a non-empty relatively τ -open subset of Y of �-diameter less than ε.

Further, a topological space (X, τ ) is said to be scattered if every non-empty subset Y ⊂ X has an isolated point in Y . In
other words, (X, τ ) is scattered if and only if it is fragmented by the discrete metric.

A metric � on a topological space (X, τ ) is said to be lower τ -semicontinuous if the set {(x, y) ∈ X × X: �(x, y) � r} is
closed in (X, τ ) × (X, τ ) for each r � 0.

We start with a separable reduction for non-fragmentability. The result may be known but we were not able to find a
reference for it.

Proposition 6.1. Let (X, τ ) be a compact Hausdorff space and � be a lower τ -semicontinuous metric on X. If (X, τ ) is not fragmented
by �, then there are an ε > 0 and a countable set Y ⊂ X such that

(1) �(x1, x2) � ε whenever x1, x2 ∈ Y and x1 �= x2 ,
(2) Y ∩ U is infinite whenever U ⊂ X is τ -open and Y ∩ U is non-empty.

Proof. (Cf. proof of [8, Lemma 4.4].) By the implication (d) ⇒ (c) of [8, Theorem 4.1], there are an ε > 0, a τ -compact
set H ⊂ X and a continuous surjective mapping p : (H, τ ) → {0,1}N with the inverse images of distinct points of {0,1}N

separated by �-distance at least ε.
By the Zorn lemma, we can take some minimal (in the sense of the inclusion) τ -compact set K ⊂ H with p(K ) = {0,1}N .

Let Σ be a countable dense subset of {0,1}N . For every σ ∈ Σ , we choose some x(σ ) ∈ K ∩ p−1(σ ). Let us verify that the
choice

Y = {
x(σ ): σ ∈ Σ

}
works. The property (1) is an immediate consequence of the properties of p. Let us verify the property (2). Take a τ -open
U ⊂ X with Y ∩ U non-empty. From the minimality of K , we have p(K \ U ) � {0,1}N . There are infinitely many pairwise
distinct points σ1, σ2, . . . ∈ Σ which are elements of the open set {0,1}N \ p(K \ U ). Now, the points x(σ1), x(σ2), . . . are
pairwise distinct and they are elements of U . �
Lemma 6.2. Let (X, τ ) be a compact Hausdorff space and � be a lower τ -semicontinuous metric on X. If (X, τ ) is not fragmented
by �, then there are F1 ⊃ F2 ⊃ · · · , �-separable and �-closed subsets of X with

⋂∞
n=1 Fn = ∅, such that

⋂∞
n=1 Gn �= ∅ whenever

G1, G2, . . . are τ -open subsets of X with Fn ⊂ Gn, n ∈ N.

Proof. Let ε and Y be as in Proposition 6.1. Denote by y1, y2, . . . the elements of Y (in such a way that every element of Y
occurs exactly one time in the sequence y1, y2, . . .). We claim that the choice
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Fn = {yn, yn+1, . . .}, n ∈ N,

works. The sets Fn are �-closed due to the property (1) and they are �-separable because they are countable. Clearly,⋂∞
n=1 Fn = ∅. Moreover,

Y ⊂ Fn
τ , n ∈ N.

Indeed, the set Y \ Fn
τ , being a subset of {y1, y2, . . . , yn−1}, is finite, and so it is empty by the property (2).

Now, let G1, G2, . . . be τ -open subsets of X with Fn ⊂ Gn , n ∈ N. The sets Fn , n ∈ N, are dense in (Y τ , τ ), so the sets
Gn ∩ Y τ , n ∈ N, are dense as well. Using the Baire theorem, we obtain

⋂∞
n=1 Gn ∩ Y τ �= ∅. This proves the lemma. �

There is a connection between asplundness and w∗-binormality. We are ready to prove it now.

Theorem 6.3. For a Banach space E, the following assertions are equivalent:

(i) For every disjoint separable and closed A ⊂ E∗ and w∗-closed B ⊂ E∗ , there are disjoint open D ⊂ E∗ and w∗-open C ⊂ E∗ with
A ⊂ C and B ⊂ D.

(ii) If F1 ⊃ F2 ⊃ · · · are separable and closed subsets of E∗ with
⋂∞

n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , w∗-open subsets of E∗ ,
such that Fn ⊂ Gn, n ∈ N, and

⋂∞
n=1 Gn = ∅.

(iii) E is an Asplund space.

Proof. (i) ⇔ (ii) This follows from Proposition 2.7.
(ii) ⇒ (iii) Assume that E is not Asplund. It means that (B E∗ , w∗) is not fragmented by the norm [1, Theorem I.5.2].

By Lemma 6.2, there are F1 ⊃ F2 ⊃ · · · , separable and closed subsets of B E∗ with
⋂∞

n=1 Fn = ∅, such that
⋂∞

n=1 Gn �= ∅
whenever G1, G2, . . . are relatively w∗-open subsets of B E∗ with Fn ⊂ Gn , n ∈ N. This clearly disproves (ii).

(iii) ⇒ (ii) There is a separable closed linear subspace M of E such that

‖ f − g‖ = sup
{∣∣( f − g)(x)

∣∣: x ∈ M, ‖x‖ � 1
}
, f , g ∈ F1.

Indeed, we can take M = span{x( f , g,k): f , g ∈ P , k ∈ N} where P is a countable dense subset of F1 and x( f , g,k) ∈ B E is
chosen so that |( f − g)(x( f , g,k))| > ‖ f − g‖ − 1/k. Denote by r the restriction map r : E∗ → M∗ , r( f ) = f |M . By the choice
of M , we have

‖ f − g‖ = ∥∥r( f ) − r(g)
∥∥, f , g ∈ F1.

It follows that r(F1), r(F2), . . . are closed in M∗ and
⋂∞

n=1 r(Fn) = ∅. As E is Asplund, M∗ is separable by [1, Theorem I.5.7].
So M∗ is w∗-binormal (Lemma 3.3 and Lemma 3.1). There are G ′

1 ⊃ G ′
2 ⊃ · · · , w∗-open subsets of M∗ , such that r(Fn) ⊂ G ′

n ,

n ∈ N, and
⋂∞

n=1 G ′
n = ∅ (Proposition 2.6). Now, the choice

Gn = r−1(G ′
n

)
, n ∈ N,

works, as
⋂∞

n=1 r−1(G ′
n) ⊂ ⋂∞

n=1 r−1(G ′
n) = r−1(

⋂∞
n=1 G ′

n) = ∅. �
Corollary 6.4. If the dual E∗ of a Banach space E is w∗-binormal, then E is Asplund.

Proof. The condition (i) in Theorem 6.3 is evidently weaker than w∗-binormality of E∗ . �
One may ask whether the converse implication holds. Before proving that the answer is negative, we mention a positive

result suggested by O. Kalenda.

Remark 6.5. It can be shown that E∗ is w∗-binormal whenever E is an Asplund and weakly countably determined Banach
space. To prove this, we can use the same method by which we proved Theorem 4.2 with the difference that we use the
fact that the class of the duals to Asplund WCD spaces forms a P -class with the special property that the projections are
continuous with respect to the w∗-topology [1, Theorem VI.4.3].

Example 6.6. The space C([0,ω1]) is an Asplund space but its dual is not w∗-binormal.

The space C([0,ω1]) is Asplund because [0,ω1] is scattered [3, Theorem 12.29]. To see that C([0,ω1])∗ is not
w∗-binormal, it is sufficient to prove the following lemma. Indeed, the sets F1, F2, . . . from the lemma form a counterex-
ample to (ii) in Proposition 2.6 if we identify every point of [0,ω1] with the appropriate Dirac measure (note that [0,ω1]
embeds topologically to (C([0,ω1])∗, w∗) by this identification).
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Lemma 6.7. There are F1 ⊃ F2 ⊃ · · · , subsets of [0,ω1] with
⋂∞

n=1 Fn = ∅, such that
⋂∞

n=1 Gn �= ∅ whenever G1, G2, . . . are open
subsets of [0,ω1] with Fn ⊂ Gn, n ∈ N.

Proof. Let us recall a definition first. We say that a set S ⊂ [0,ω1) is stationary if S ∩ A �= ∅ for any A ⊂ [0,ω1), unbounded
and closed in [0,ω1).

By the Fodor theorem [4], there are pairwise disjoint stationary sets S1, S2, . . . ⊂ [0,ω1). We define

Fn =
∞⋃

i=n

Si, n ∈ N.

Suppose that Gn , n ∈ N, are open sets in [0,ω1] for which Fn ⊂ Gn , n ∈ N. We show that
⋂∞

n=1 Gn �= ∅. Assume the opposite,
i.e. that

⋂∞
n=1 Gn = ∅. If we denote An = [0,ω1) \ Gn , then we obtain

⋃∞
n=1 An = [0,ω1). We have that An is closed and

unbounded for some n ∈ N. As Sn is stationary, we have ∅ �= Sn ∩ An ⊂ Fn ∩ An ⊂ Gn ∩ An = ∅, which is a contradiction. �
Theorem 6.8. For a compact Hausdorff space X, the following assertions are equivalent:

(i) If F1 ⊃ F2 ⊃ · · · are countable subsets of X with
⋂∞

n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ · · · , open subsets of X , such that
Fn ⊂ Gn, n ∈ N, and

⋂∞
n=1 Gn = ∅.

(ii) X is scattered.

Proof. (i) ⇒ (ii) Assume that X is not scattered. It means that X is not fragmented by the discrete metric. Now, Lemma 6.2
disproves (i).

(ii) ⇒ (i) Assume that X is scattered. It means that C(X) is an Asplund space [3, Theorem 12.29]. If we identify ev-
ery point of X with the appropriate Dirac measure, (i) follows straightforwardly from Theorem 6.3 (note that X embeds
topologically to (C(X)∗, w∗) by this identification). �
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[10] J. Lukeš, J. Malý, L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math., vol. 1189, Springer-Verlag, Berlin,
1986.


	On binormality in non-separable Banach spaces
	Introduction and main results
	A characterization of binormality
	A stronger property
	Binormality via decomposition
	Examples
	Asplund spaces and  w* -binormality
	Acknowledgment
	References


