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A necessary and sufficient condition for the linear independence of integer
translates of Box splines with rational directions is presented in terms of intrinsic
properties of the defining matrices. We also give a necessary and sufficient
condition for the space of linear dependence relations to be finite dimensional. A
method to compute the approximation order of these Box spline spaces is obtained.
All these conditions can be tested by finite steps of computations based on
elementary properties of the matrices. The method of proofs is from linear
diophantine equations. Q 1996 Academic Press, Inc.

1. INTRODUCTION AND MAIN RESULTS

Let J be an s = n matrix of nonzero columns called directions. The
Box spline M associated with J is the compactly supported distributionJ

defined by

² : ` sM , c [ c J x dx , c g C R . 1.1Ž . Ž . Ž .HJ
nw .0, 1

Its Fourier]Laplace transform is given by

1 y eyi j T v

sM̂ v s , v g C . 1.2Ž . Ž .ŁJ Tij vjgJ
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The first purpose of this paper is to characterize the linear indepen-
dence of integer translates of Box splines with rational directions. Define
the set of linear dependence relations among the integer translates of MJ

as

K [ f g CZ s
: f a M ?y a s 0 . 1.3Ž . Ž . Ž .ÝJ J½ 5

sagZ

Then we say that the integer translates of M are linearly independent ifJ

K contains only the zero sequence. In case J ; Z s=n, necessary andJ

sufficient conditions for K to be null or finite dimensional were given inJ

w x1, 3, 5, 8 ; see also the monograph of de Boor, Hollig, and Riemenschnei-¨
w xder 2 .

Initiated by his joint investigation with Jetter on cardinal interpolation
s w x w xon submodules of Z in 6 , Riemenschneider posed in his survey 10 the

problem of characterizing the linear independence of integer translates of
a Box spline with rational directions in terms of elementary properties of
the defining matrix J g Q s=n. Since then some partial results concerning

w xthis problem have been obtained in 9, 12 . The main results in the first
part of this paper, Theorems 1 and 2, give an answer to this problem.

Ž .We first note that any s = n rational matrix can be written as 1rP J
with P g N and J g Z s=n. So in what follows we always take such a form
for the defining matrix. For an l = m integer matrix A we also think of it
as the multiset of its column vectors and denote aA, d as its cardinalityA

Ž . Ž � 4. Ž � 4.and the greatest common divisor g.c.d. of all min l, m = min l, m
minors of A, respectively. For P, s g N, we denote

EE [ g s g , . . . , g : 0 F g F P y 1 for 1 F j F s 1.4Ž . Ž .� 4P , s 1 s j

and for 0 F k s Ýs g P jy1 F P s y 1 with 0 F g F P y 1 definejs1 j j

g k s g , . . . , g g EE .Ž . Ž .1 s P , s

The following concept of correlation sets plays an important role in the
statements and proofs of our main results.

DEFINITION. For J g Z s=n, we define the following sets:

&
� 41-1 J [ X ; J : rank X s aX ) 0, d ) 1 ; 1.5Ž . Ž .X

&
aX

T TFF J [ X , b : X g 1-1 J , b g Z , d / d ; 1.6Ž . Ž . Ž . Ž .½ 5X w X , b x

sT˜ xFF J [ X , b : X , b g FF J , b g X y1, 0 ; 1.7Ž . Ž . Ž . Ž . Ž .Ž� 4
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P sy1 sCor J , P [ X , b : X , b g FF J for 0 F j F P y 1 ;Ž . Ž .� 4Ž . Ž .½ 5j j j jjs0

1.8Ž .
& sP y1 s˜Cor J , P [ X , b : X , b g FF J for 0 F j F P y 1 .Ž . Ž .� 4Ž . Ž .½ 5j j j jjs0

1.9Ž .
&

Ž . Ž .We call Cor J, P and Cor J, P the correlation set and the fundamental
� 4correlation set of J, P , respectively.

�Ž .4P sy1 Ž . � 4For Y s X , b g Cor J, P , called a correlation of J, P , wej j js0
define its correlation matrix X and correlation vector b asY Y

T
sX s X , X , . . . , X , 1.10Ž . Ž .Y 0 1 P y1

TT T TT T s
s sb s yP b , . . . , b y g 0 X , . . . , g P y 1 X . 1.11Ž . Ž . Ž .Ž . Ž .Y 0 P y1 0 P y1

With these notations and definitions we can now state our main results
on linear independence and linear dependence relations as follows.

THEOREM 1. Let J g Z s=n and P g N. Then the integer translates of&
Ž .M are linearly independent if and only if for any Y g Cor J, P ,Ž1r P .J

w xrank X - rank X , b . 1.12Ž . Ž .Y Y Y

THEOREM 2. Let J g Z s=n and P g N. Then dim K - ` if andŽ1r P .J&
Ž . Ž . w x Ž .only if for any Y g Cor J, P , rank X s rank X , b implies rank XY Y Y Y

s s.
&

Ž̃ . Ž .Let us mention that FF J , hence Cor J, P , is a finite set. Therefore
the conditions in Theorems 1 and 2 can be tested by finite steps of
computations based on elementary properties of the defining matrix.

The second purpose of this paper is to give a method to compute the
approximation order of spaces of Box splines with rational directions. An

w xinteresting characterization was presented by Ron and Sivakumar in 13 ,
which states that in our case of rational directions, the approximation

Ž .order of the Box spline space S M is the numberŽ1r P .J

s � 4min aK J : a g Z _ 0 , 1.13� 4Ž . Ž .a , P

where
T � 4K J [ j g J : j a g PZ _ 0 . 1.14� 4Ž . Ž .a , P

Ž .Note that 1.13 concerns taking the minimum over an infinite set. We
give a method here to calculate this approximation order by finite steps of
elementary computations based on the defining matrix.
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w xTo this end, we use the following notations from 2, 14 :

� 41-1 J [ X ; J : rank X s aX ) 0 ; 1.15Ž . Ž .
Jc [ j g J : j Tg g PZ , g g EE . 1.16� 4 Ž .g P , s

Then our main result on approximation order can be stated as follows.

THEOREM 3. Let J g Z s=n with rank J s s and P g N. Then the
Ž .approximation order of the Box spline space S M is gï en byŽ1r P .J

min min a J _ Y : Y ; J , rank Y - s , min a Jc _ span X :� 4Ž . � Ž .g½
� 4ggEE _ 0P , s

X g 1-1 J , X ; Jc , d T s d T T . 1.17Ž . Ž .4g X w X , Ž1r P . X g x 5
The proofs of our main results depend mainly upon linear diophantine

equations which were first introduced to the investigation of multivariate
w x w xsplines by Dahmen and Micchelli 4 . In 7 Jia used a solvability condition

for linear diophantine equations to solve the problem of linear indepen-
w xdence of discrete Box splines. It is the nice paper of Jia 7 that leads the

author to solve the problems in this paper. For our purpose we need the
following solvability condition for linear diophantine equations which can

w xbe found, e.g., in 7, Theorem 3.2 .

LEMMA. Let A be an l = m integer matrix with full row rank and b g Z l.
Then the following system of linear diophantine equations

Ay s b 1.18Ž .

has an integer solution for y if and only if d s d .A w A, b x

2. CHARACTERIZATIONS AND PROOFS FOR LINEAR
INDEPENDENCE

Let J g Z s=n and P g N. The following sets are essential for the
proofs of the main results on linear independence,

&
s sN [ v g C : M v q 2pa s 0 for any a g Z ; 2.1Ž . Ž .½ 5J , P Ž1r P .J

ssÑ [ v g C : v g N , Re v g 0, 2p , 2.2. Ž .� 4J , P J , P

Ž .T s Ž .There for v s v , . . . , v g C , we denote Re v s Re v , . . . , Re v .1 s 1 s
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Ž .When P s 1, the set N can be characterized by FF J and theJ , 1
Lemma as follows.

THEOREM 4. Let J g Z s=n. Then

� s T 4N s 2pv g C : X v s yb . 2.3Ž .DJ , 1
Ž . Ž .X , b gFF J

Ž .Proof. From the Fourier]Laplace transform 1.2 we see that for
v g C s, 2pv g N if and only if for any a g Z s there is some j g JJ , 1 a

T Ž . � 4 T T Ž .such that j v q a g Z _ 0 , i.e., j v g Z and j v q a / 0. Ifa a a

2pv g N , we choose a greatest linearly independent subset X of theJ , 1 v

� s4 � T 4 sset j : a g Z ; j g J : j v g Z , then for any a g Z there existsa
T Ž .some j g X such that j v q a / 0, i.e., the following system of linearv

diophantine equations

X T y s yX Tvv v

has no integer solutions for y. Let X s X and b s yX Tv g ZaXv, byv v

the Lemma we have d T ) d T G 1, from which it follows that XX w X , b x&
s TŽ . Ž . Ž . � 4g 1-1 J . Hence X, b g FF J and 2pv g 2pv g C : X v s yb .

s Ž . Ž .On the other hand, if v g C and there exists X, b g FF J such that
T s T T ŽX v s yb, then by the Lemma for any a g Z , X a / b, hence X v q
. s T Ža / 0, i.e., for any a g Z we have some j g X ; J such that j v q$
. � 4 Ž .a g Z _ 0 which implies M 2pv q 2pa s 0. Therefore, 2pv g N .J J , 1
The proof of Theorem 4 is complete.

˜From Theorem 4, the following characterization for N is easy.J , 1

THEOREM 5. Let J g Z s=n. Then

ss TÑ s 2pv g C : X v s yb, Re v g 0, 1.� 4DJ , 1
˜Ž . Ž .X , b gFF J

� s T 4; 2pv g C : X v s yb . 2.4Ž .D
˜Ž . Ž .X , b gFF J

Ž . sWhen P g N is general, we know from 1.2 that for v g C , 2pv g
N if and only if for any a s g q Pb g Z s s EE q PZ s, i.e., anyJ , P P , s
g g EE and b g Z s, there exists some j g J such thatP , s
Ž . T Ž . T ŽŽ . . � 41rP j v q a s j v q g rP q b g Z _ 0 , which is equivalent to

ŽŽ . .the statement that for any g g EE , 2p v q g rP g N . Thus weP , s J , 1
conclude the following characterization for N .J , P
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THEOREM 6. Let J g Z s=n and P g N. Then

v q g
sN s 2pv g C : 2p g N for any g g EE . 2.5Ž .J , P J , 1 P , s½ 5P

Combining Theorems 4 and 6, for v g C s, 2pv g N if and only ifJ , P
�Ž .4P sy1 Ž .there exists a correlation Y s X , b g Cor J, P such thatj j js0

T ŽŽ Ž .. .X v q g j rP s yb , i.e., X v s b . Therefore, we have.j j Y Y

THEOREM 7. Let J g Z s=n and P g N. Then

N s 2pv g C s : X v s b . 2.6� 4 Ž .DJ , P Y Y
Ž .YgCor J , P

w . s Ž . w . sWe notice that for v g 0, 1 and g g EE , v q g rP g 0, 1 . ThenP , s
in the same way, from Theorems 5, 6, and 7, the characterization of NJ , P
follows.

THEOREM 8. Let J g Z s=n and P g N. Then

˜ sN ; 2pv g C : X v s b ; N . 2.7� 4 Ž .DJ , P Y Y J , P&
Ž .YgCor J , P

After presenting the above characterization and observing that N sJ , P
˜ s w xN q 2p Z , the proof of Theorem 1 follows from 11 , while the proof ofJ , P

w xTheorem 2 is obtained directly from 3 .
It is worth mentioning that unlike the case with integer directions, linear

independence of integer translates of Box splines with rational directions
is not equivalent to local linear independence as shown by the following

� 4 � Ž . 4simple example: s s 1, J s 3 , P s 2. Then M ?y a : a g Z areŽ1r P .J
Ž . Ž . Ž .linearly independent, while on 0, 1r2 , M ? y M ?q 1 s 0.Ž1r P .J Ž1r P .J

3. APPROXIMATION ORDER OF BOX SPLINE SPACES

In this section we prove the main result on approximation order.

Proof of Theorem 3. Let g g EE and b g Z s, thenP , s

K J s j g Jc : j T g q Pb / 0Ž . Ž .� 4gqPb , P g

1
c c T Ts J _ j g J : j b s y j g . 3.1Ž .g g½ 5P
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Ž . c
T T TIf X g 1-1 J , X ; J , and, d s d when g / 0; rank Xg X w X , Ž1r P . X g x

- s when g s 0. Then, by the Lemma, there exists some b g Z s when
s � 4g / 0; b g Z _ 0 when g s 0, such that

1
T TX b s y X g ,

P

Ž . c � 4which implies K J ; J _ span X. Hence for g g EE _ 0 ,gqPb , P g P , s

min aK J : b g Z s F min a Jc _ span X : X g 1-1 J ,Ž . Ž .� 4 � Ž .gqPb , P g

X ; Jc , d T s d T T ,4g X w X , Ž1r P . X g x

while for g s 0,

s � 4min aK J : b g Z _ 0 F min a J _ Y : Y ; J , rank Y - s .� 4Ž . Ž .� 4Pb , P

� Ž . s � 44Thus, min aK J : a g Z _ 0 is not more than the number given bya , P
Ž .1.17 .

On the other hand, for g g EE and b g Z s with b / 0 when g s 0, weP , s
� c T Ž .take a greatest linearly independent subset X of j g J : j b q grPg

4 Ž . cs 0 . Evidently, X g 1-1 J , X ; J .g

If g s 0, then rank X - s since b / 0 while X Tb s 0. Hence

J _ span X ; K JŽ .Pb , P

and

s � 4min a J _ Y : Y ; J , rank Y - s F min aK J : b g Z _ 0 .� 4Ž . Ž .� 4Pb , P

If g / 0, then b is an integer solution to the following system of linear
diophantine equations

1
T TX y s y X g ,

P

which implies by the Lemma d T s d T T . Moreover,X w X , Ž1r P . X xg

Jc _ span X ; K J .Ž .g gqPb , P

Hence

min a Jc _ span X : X g 1-1 J , X ; Jc , d TŽ .� Ž .g g X

s d T T F min aK J : b g Z s .Ž .� 44w X , Ž1r P . X g x gqPb , P

Combining the above two cases, we know that the number given by
Ž . � Ž . s � 441.17 is not more than min aK J : a g Z _ 0 .a , P

The proof of Theorem 3 is complete.
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