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1. INTRODUCTION 

The purpose of this paper is to develop a theory for best uniform 
copositive rational approximation of continuous functions. In Section 2 the 
basic definitions and notations needed for the problem are presented. 
Existence and characterization of best copositive rational approximants on a 
closed interval are discussed in Section 3 and uniqueness and strong 
uniqueness are developed in Section 4. The continuity of the best copositive 
rational approximation operator is discussed in Section 5 and finally, in 
Section 6, the interval [a, b] is replaced by a finite subset of it and some 
discretization results are given. This paper generalizes the work of [3]. 

2. BASIC DEFINITIONS AND NOTATIONS 

of all real Let m and n be fixed positive integers, let n,,, denote the class 
algebraic polynomials of degree <m, and fix f E C[a, b]. Define 
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R,[a, b] = {r E R,“[a, b]: r(x)f(x) Z 0, Vx E [a, b]}, 

the set of copositive rationals from Rr [a, b] with respect to J 
If r* E &[a, b] has the property that 

llf-r*ll= rsj;~bl If- 419 

where 

Ilhll = sup(l x E [a, bl}, 

then r* is a best copositive approximation to f from R,[u, b]. For 
r^ E R,[u, b] define 

s;= (p+?q:pE&,qElz,}. 

We note that SF is a Haar subspace in C[u, b] of dimension N = 1 + 
max{m f a$, n + a$}, where F = $14 and a$, ai denote the degree of fi and 4, 
respectively [ 1, p. 1621. Next, define 

LO = {XE [u,b]:f(x) <O}, L=P, 

vO= {xE [u,b]:f(x)>O}, u=V,s=LnU, 

where the overbar denotes the closure operator in the standard topology in 
the reals. 

If S contains more than m points then Rr[u, b] consists of just the zero 
function Thus assume that S contains k < m points. We say that f changes 
sign at t E (a, b) if and only if r E S. On the other hand, f changes sign on 
the interval [c, d] c (a, b) with c < d if and only if t E [c, d] implies that 
f(t) = 0 with c E CT and d E L (or c E L and d E U). If f does not change 
sign on any interval and S contains less than m + 1 points, then f is 
admissible. In what follows we shall assume that f is admissible. 

For fE C[u, b] - RF[u, b] (- denotes set subtraction) and for fixed 
r E R&r, b], x E [a, b] is said to be a positive extreme point for f-r 
provided f(x)- r(x)= Ilf- r-11 or x E U-S and r(x)=O. Likewise, 
x E [a, b] is said to be a negative extreme point for f- r provided 
f(x) - r(x) = - Ilf- r/l or x EL - S and r(x) = 0. Let X, denote the set of 
all positive and negative extreme points forf- r. Note that X, is a compact 
subset of [a, b]. Now define u on X, by 

u(x) = 1 

u(x) = -1 

if x is a positive extreme point, 

if x is a negative extreme point. 
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Also, define sg(f(x)) for f at each x E [a, b] as follows: 

%(f @)I = 0 ifxES, 

%(f(X)) = sgn(f(x)) iff(x) f 0, 

%U(X)) = 1 iff(x)=Oandx&Sand$>O3 

(x--,x+P)nL=dand(x-p,x+p)nU#~, 

sdf(x)) = - 1 iff(x)=Oandx&Sand$>O3 

(x--,x+P)nL##and(x-p,x+p)nU=#. 

3. EXISTENCE AND CHARACTERIZATION 

For copositive rational approximation the following existence theorem 
holds. 

THEOREM 3.1. Given f E C[a, b], then there exists r* E R,[a, b] such 
that 

If - r*1/ = r$bl IV - 41. 

We do not present the proof of this theorem as it is the same as that for 
the usual unconstrained rational approximation [ 1 ] with the additional 
observation that the copositive property is inherited by the limit rational 
function. 

Next, we shall show that best copositive approximations can be charac- 
terized by alternation and a Kolmogorov criterion. Unlike the classical 
theory, only partial results concerning a zero in the convex hull charac- 
terization are known. We start by defining the concept of an alternant and 
present two lemmas which are used to prove the alternation theorem. 

Let xi,yiEX, be such that xi<yi, (xi,~JnX,=#, (xi,y,)ns= 
{z~+~ ,..., z~+“~}, vi 20 for i= l,..., fl, and yi <xxi+, for i= l,..., ,D - 1. We 
shall say that f - r alternates once between xi and yi if a(xi) = (-1)“:’ ’ a(~~). 
Whereas f - r alternates twice between xi and yi, if sg(f(x,)) u(xi) = -1, 
a(Xi) = (-l)“i~(~J and there exists at least one zj E (xi,yi)n S at which 
r’(5) = 0. In addition, f - r is said to alternate once in each of the following 
cases: 

(i) On (a,~> if YEX,, [ad)nx,=f4 (w)ns= {z,,...,~,,}, v> 1, 
sg(f(y)) a(y) = -1 and r has at least v + 1 zeros in ]a,~] n (L u 17) 
counting multiplicities up to order 2. When this occurs, we write x, = a, 
y, =y, abusing our notation that xi E X,. 
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(ii) On (x,b) if xEX,, (x,b]nX,=#, (x,b)nS=(z,_,+,,,..,z,}, 
u 2 1, sg(f(x)) Q(X) = - 1 and r has at least v + 1 zeros in Ix, bJ n (L u U) 
counting multiplicities up to order 2. Here again we write x, =x, y# = b so 
that y, 6 X, in this special case. 

We say that the set of intervals ((xi,yi)}rC I is an alternant of length 2 for 
f - r if f - r alternates wi times on (xi,yi), where wi = 1 or 2 as defined 
above and CT=, wI = 1. 

LEMMA 3.2. If x,yEX,,, xcy, (x,y)nX,,=$ and (x,y)nS= 
{z , ,..., z,], u > 0 (v = 0 implies that (x,y) n S = $), then 

(i) WW = WY sgWh 
(ii) sg(f(x)) u(x) = - 1 and u(x) = (-1)’ a(y) i??lpIy that 

VmY)) U(Y) = -1, 
(iii) sg(f(x)) a(x) = -1 implies that If(x)/ < 1 r*(x)]. 

Proof. (i) We first note that sg(f(x)) # 0 on r= Ix, y) m S by 
definition. Furthermore, we claim that sg(S(x)) is constant on each 
connected subset of I’. To see this it suffkes to consider [x, z,). Thus, 
assume that there exists t, E (x, z,) such that sg(f(t,)) = -sg(j(x)). Without 
loss of generality we shall assume that sg(f(x)) = 1, then there exists 
pi ,p2 > 0 for which 

(X - pl, x f P,) f-7 u f 4, (x-~~,x+~,)nL=(b, 

(4d29~,fP2)n~=gi~ (to -pzy t, +PJ~L f 4. 

Let 1 i = inf{t E: [x, t, f pz]: t E L 1, then I, > x (since I, E L and x b? L). Also 
!i must be an element of U (if not thenfchanges sign on an interval, namely, 
[u,, 41, where u, = supit E [a, b]: f < II, I E U)). Hence 1, EL ~7 U = S, 
which is a contradiction since I, E (x, z,). Thus, sg(S(t)) = sg(J(x)) for all 
t E (x, z,). Finally, observe that sg(f(x)) changes sign at each point of S. 
Indeed, each point of S is a cluster point of Lo and V’ by definition and the 
above argument shows that the points of S locally separate Lo and V’. From 
this (i) follows. 

(ii) If sgdf(x)) u(x) = -1 and u(x) = (-1)” u(y), it follows from (i) that 

%(S(Y)) U(Y) = C-1)” sgu-(x)1 * C-1)” 44 = %(fW) u(x)= -1. 

(iii) We show that sg(f(x)) u(x) = -1 implies that If(x)\ < \r*(x)j. We 
consider the case of sgdf(x)) = 1 and u(x) = -1. Then either f(x) > 0 or 
f(x)=0 and there exists p > 0 such that (x -p, x + p) n U # $, 
(x - p, x + p) n L = $ and either J(x) - r*(x) = - IIf-- r* I\ or x E L - S, 
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r*(x) = 0. We notice that if f(x) > 0 or there exists p > 0 such that 
(x-p,x+p)nU##, (x-p,x+p)nL=d, x cannot be an element of 
L - S. Therefore, in both cases we have 

f(x) - r*(x) = - Ilf- r* (I* 0 (f(x) < r*(x). 

Similarly, if sg(f(x)) = -1 and a(x) = 1, we can show that 

r*(x) <f(x) < 0. I 

LEMMA 3.3. Assume that xi, yi E X,. , (xi, yi) n S = (zi+ I ,..., zi+ ,,) and 
f-r* alternates oi times between Xi and yi. Let r E Rf[a, b] satisfy 
I/f- r/l < Ilf- r* II, then: 

(i) Ifr*(xi) = r(xi) = 0 (or r*(y,) = r(yi) = 0), then r* - r has at least 
V + Wi + 1 zeros in [Xi, yi]. 

(ii) If r *(xi) # r(xi), r *( yi) # r( yi) and oi = 1, then r * - r has at feast 
v + wi zeros in (xi, yi). 

(iii) rf oi = 2, then r* - r has at least v + Wi zeros in (xi, y,). 

ProoJ (i) In this case wi must equal 1 by Lemma 3.2 since r*(xi) = 0 
implies ]f(xJ { Ir*(xJ which implies that sg(f(x,)) o(xi) # -1 and neither 
r* nor r can change sign at xi (as xi E L U U - S). Therefore r*‘(xi) = 
r/(x,) = 0 so that r* - r has at least v + 2 = v + wi + 1 zeros in [xi, yi]. (The 
same argument establishes this result when r*(yi) = r(y,).) 

(ii) Suppose that wi = 1 and consider the case where a(xi) = -1 and v is 
odd. In this case we must have o(yi) = -1, r*(xi) > r(xi) and r*(yi) > r(yi). 
Now, if r* - r has only zi+,,..., z~+~, as simple zeros then (r* - r)(xi) > 0 
and v odd implies that (r* - r)(y,) ( 0. Thus r* - r must have at least one 
Of zi+l,**., zi+u as a zero of order at least 2, or another zero in (xi, yi) 
different from zi+ I ,..., ziiU. Hence r* - r has at least v + Wi (= v + 1) zeros 
in (xi, y;). The other cases follow by similar arguments. 

For the two special cases where w, = 1 on (a, y) with [a, y) ~7 X,, = $ 
(that is, x, = a and y, = y) or w, = 1 on (x, b) with (x, b] nX,* = 4 (that is, 
x, = x and y, = b), consider the case of w, = 1 on (a, y) with 
[a,y)nX,, =Q (th e o th er case follows by a similar argument). In this case 
df(y)) 4~) = -1 and r * has at least v + 1 zeros in [a, y] n (L U V), 
where (a, y] n S = {z I ,..., z,) with v > 1. Now sg(f( y)) (T( y) = -1 implies 
that Ir*(~>l > IrWl ( since, for example, if sg(f( y)) = 1 then a(y) = - 1 only 
withf(y)-r*(y)=-]]f-r*(l). 

Also, r* has at least v + 1 zeros in the set [a, y] n (L U U) counting 
multiplicities up to order 2, which implies that r*‘(zj) = 0 for some 
j E {I,..., v} as [a, y) n.Y,, = 4 allows r*(x) = 0 for xE [a,~] n (L U U) 
only if xES. If r*- r has a zero in (Zj, y) other than zj+,,..., z, we are 
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done. On the other hand, if r* - r vanishes in (zj, y) only at zj+, ,..., z,, and 
each of these is a simple zero then we have ] r*(l)] > ) r(t)] in every interval of 
the form (zI-, , z,), 1 =j + l,..., V. Looking at (zj, zj+ I) this inequality implies 
that r’(zj) = 0 and hence r* - r has at least v + 1 zeros in (a,~). 

(iii) Suppose that wi = 2. Here we must have 

sg(f(xi)) a(xi> = sg(f(Yi)) a(Yi) = -I, 

and 

so that 

I r*(xil > I r(xiI and I r*(YJ > I r(YiI. 

Let zj be the first element of (xi, y,) n S for which r*‘(z)) = 0. Now, suppose 
that r* - r vanishes in (xi, z,) only on (zi+, ,..., zj-,} (set is empty if 
j = i + 1) and all the zeros are simple. Then, jr*(t)1 > Ir(t)l must hold in 
(5 -p, zi) for some p > 0. Thus, r’(z,) = 0 as r, r* E C’[a, b]. But r and r* 
change sign at zj and hence r”(zj) = r*“(.zi) = 0; that is, r* - r has zj as a 
zero of order at least 3 and the result follows. Now assume that r* - r has 
simple zeros at zi+ r ,..., zj- 1 and one additional zero in (xi, zj) N 
{zi+ 1 v**T lj- I }, This implies that (r(t)] > [ r*(r)1 holds on (zjel - E, zj) for 
some E > 0. Thus, if r* - r has only Zj+ I ,..., Zi+” as simple zeros and no 
other zeros in (z,, yi) then we must have ) r(yi)l > ] r*(y,)l, which is a 
contradiction. Hence r* - r must have an additional zero in (5, yi) proving 
that r* - r has at least v + wi zeros in (xi, y,). The proof of Lemma 3.3 is 
now complete. I 

THEOREM 3.4 (THE ALTERNATION THEOREM). LetfE C[a,b]-Rr[a,b] 
be an admissible function and S = (z , ,..., zk}, k < m as described earlier. 
Then r* E R,[a, b] is a best approximation to f if and only if there exists a 
set of open intervals ((xi, yJ}r=, which is an alternant of length N - k for 
f - r*, where 

N = 1 + max{n + ap*, m + aq*}, r* =p*/q*. 

Proof. (0 Suppose that ((xi, yi)}rE, is an alternant of length N - k 
for f - r* and there exists r E R,[a, b] for which ]] f - rJJ < ]]f- r*)]. Then, 
using Lemma 3.3, we show that r* - r has at least N zeros (counting 
multiplicities up to order 3). To that end, let ( l,...,,u} = Z, U Z, where i E Z, 
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if and only if (i) of Lemma 3.3 holds true on (xi, yi) and i E I, otherwise, 
i= 1 ,..., ,u. Now, assume that there are 

q elements of S in U (xi, y,), 
iEl, 

and 

6 elements of S in U (xi, yi), 
ieIB 

k-q--6elementsofSintherestof [a,!~]. 

It is now easy to observe that r* - r has at least 

q + C wi + card IA zeros in U (xi, yi), 
iel, iel,4 

6 + 1 wi zeros in U (xi, y,), 
isl, iela 

and 

k - 9 - 6 zeros in the rest of [a, b]. 

In addition, 

q+ c oi+cardI,+6+ c o,+k-V-6 
iEI, isia 

=k+ f wi+cardZ,=k+N-k+cardI,>N. 
i=l 

This shows that r* -r has at least N zeros in [a, b], which implies that 
r*sr (since r* - r = (p*q -pq*)/q*q with the degree .of the numerator 
<N - 1). 

(+) Suppose that f& RF[a, b] and r* ER,[a, b] is a best copositive 
approximation to f: Assume that ((xi,yi)}y=, is an alternant for f - r* with 
Cy=, wi = I < N - k where I is maximal. We shall construct a new function 
r E R,[a, b] for which ]]f- r/J < ]]f- r* ]I, thus contradicting the assumption 
that I < N-k. We assume that S # 4. The assumption that I is maximal 
requires that for each i = 1 ,..., ,B - 1 there are no alternations in [ yi,xi+ ,I. 
Specifically, for each x E (yi, xi+,] nX,. with [vi, x] n S = {zi+, ,..., zi+,,}, 
u> 0 we must have a(x) = (-1)” a(~~). Furthermore, if there exists 
zj E [yi,x] n S with r*‘(5) = 0 then we must also have Ir*(y,)l < If( 
(since ]f(ri)] < Ir*(yJl implies that sgdf(y,)) o(y,) = -1, which in turn 
implies that f - r* alternates twice between yi and x) and hence jr*(x)/ < 
I f(xI* 
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We begin by constructing a set of I + k distinct points in (a, b) and a 
function p + r*q E S,. that vanishes at these points. Then we can find a 
rational function belonging to R,[a, b] that gives the required contradiction. 

Consider the interval (xi, yi) for i = l,...,,u. If wi = 1 define a point 
si E (xi, yi) as follows: 

First, consider the case where (x,, yJ n S = 4. If r*(t) # 0 Vt E (Xi, yi), 
set si = (xi + y,)/2. On the other hand, if r*(t) = 0 for some t E (Xi, yi), set 
ri = min(t E (x,,y,): r*(t) = 0) and I,!’ = max{t E (x,,y,): r*(t) = O}. Now, if 
xi E X,, and sg(f(x,)) a(~,) = 1, set si = (t; + ~$2; if xi E X,. and 
sg(&,)) u(xi) = -1, set si = (tf + ~$2. Next, consider the case where 
(xi,Yi)nS= {zi+lv--,zi+v/’ D f e me tf and tf’ as above and note that 
t;,<zi**, f;>Zi+“. If Sg(f(Xj)) U(Xj) = 1 set Si = (t; +yi)/2; if 
sg(f(x,)) u(xi) = -1, set si = (r; + xi)/2; if x, = a, [a, y,) n X,, = 4, set s, = 
(t;’ +y,)/2. Observe that if ]f(xi)] < ] r*(xi)] and there exists Zj E (xi,yi) n S 
for which r*‘(.zj) = 0, we must have If( > ]r*(yi)] since wi = 1. 

Finally, consider the case where wi = 2. In this case (xi, yi) n S = 
(+“L v> 13 r*‘(z.)=O for at least one z. i+l<j,<i+v, 

;$.YY~; r/*(x )] and ]f(y )I < ]r*(y.)] With t; and t/ d&ned as before, set 
s( =‘(rf + x,)/i and s,!’ = &’ +y,)/2.’ ’ 

Let T denote the set of all the points (si} U isi} W is/} constructed above 
and set Z = TVS. Note that Z consists of precisely I + k < N distinct 
points. Since S,, is a Haar subspace of dimension N on an interval larger 
than [a, 61, there exist p E n,,, and q E n,, such that p + r*q has simple zeros 
only at the l+ k points of Z. We shall show that there exists E > 0 such that 
r, = r* - c(p + r*q)/(q* + eq) is copositive with f and /If-- rgJ1 < Ilf- r*/ 
(notice that rE= (p* - cp)/(q* + eq)). Suppose that u(y) = (p -t r*q)(y) 
satisfies sgn u(y,) = -a(yl) (this can be easily done by multiplying u by -1 
if necessary). Since u has simple zeros at the 1 + k points of Z and only at 
these points, it is easy to conclude that sgn v(xi) = -a(~,) and sgn U(pi) = 
-a(~,) for i= l,..., ,u provided that x, E X,, , y, E X,, . 

Now we consider the interval [ yi, xi+, ] for fixed i, i = l,..., ,u - 1 and we 
first show that there exists E> 0 such that for all E, 0 < E < E; we have 
maxXEIYi*Xi+Ll If(x) - r,Wl < IV- r*ll. S ince sgn u(y,) = -a(yi) and f-r* 
does not alternate on [ yi, xi+, 1, we must have sgn u(x) = -a(x) for all 
XE (Yi7Xj+l]nxr*- Thus, if [yi,xi+,]nS= (zi+ ,,..., z~+~,) and we set 
to =.YiY tj=zifj, j= l,..., V, c,,+,=x~+,, then for any tE Itj,tj+,], 
j = 0, I,..., v we have o(y,) u(t)(-ly <O and for any x E [tj, tj+,] nX,+, 
u(x) = (-l)jo(yi). Fix j, 0 <j< v, and without loss of generality assume 
that a(y,)= 1 and j is even. Then, for all t E [tj, fj+,], - IIf- r*ll < 
(f - r*)(t) < IIf- r* (I. Thus, by the continuity of f - r* and the 
compactness of [tj, ti+ ,I, there exists < > 0 such that 

(f- r*>(l) > - llf- r* II + CT VtE [~jJj+,]- 
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NOW let E’ > 0 be such that E’ ]q(t)] < q*(t) for all t E [tj, tj+ ,I, then for 
every E such that 0 < E < E’, q* + Eq is positive on [tj, tj+ ,] and rE converges 
uniformly to r* on [tj, tj+,] as E --) 0. Thus, noting that u(t) < 0 for all 
t E [ tj) tj+ , ] since j is even and U( vi) = 1, there exists Ej with 0 < cj < E’ such 
that for every E with 0 < E ( sj and t E [tj, tj+ ,I, 

df- r,)(t) = (f- r*)(t) + (q*&~~~)(t)~-llf-'*ll t$ -Il.!--r*u. 

Also, since u(t) < 0 on (tj, tj+ ,), then for E > 0 and t E (tj, tj+ l)r 

(f- rE)(f) = (f- r*>w + (q*y~;)(r) < If- r*ll. 
But (f- rJ(t,) = 0 for any I such that 0 < 1 < v t 1, u(t,) < 0, and 
w)“+’ et,+ I ) > 0 imply that 

(f- rJf) < IV- r* II for any t E [tj, tj+ ,],j even. 

Thus, we have 

- Ilf- r*ll < df- r#) c Ilf- r*Il, Vt E [tjY t,i+ ,],j even, 

which finally shows that 

,,~,a;+,, I(f- rN)l < IV- r*ll. 

A similar argument works for odd j such that 1 <j< V. Define 
8= min ,,cjGy Ed, then we have 

XEE,a;+ 1 Kf- rJ(x>l < Ilf- r*lI, VE30<&<E. 
I’ I I 

Next we show that there exists F > 0 such that for each E, 0 < E < i, r, is 
copositive with f on [yi,xi+,]. Note that both f and v change sign in 
[ yi, xi+ I] at the points of [ yi, xi+ ,] n S. Thus either u or -u is copositive 
with f on [vi, xi+,]. First, consider the case where there exists 
zj E [ yi, xi+ ,] n S with r*‘(zj) = 0. In this case jr*(yJj < ]f(vJ and we 
claim that f is copositive with --v. Indeed, suppose that a(~,) = -1, then 
either f(yi) - r*(yi) = - IIf - r*]], which implies that f(yi) < r*(y,) and 
hence Ir*(Yi>lGIf(YJI ’ im ~1 ies that f(yi) < 0, or r*(yi) =0 and yi E L, 
which shows that f and --v are copositive since sgn u(yi) = -a(y,) = 1. The 
case when a(yi) = 1 follows in the same manner. Thus, in this case, for any 
8 > 0 with Z(q(x)l < q*(x) for all x E [y,, xi+ I], we have rE and f are 
copositive (since ra = r* - w/(q* t cq)) on [yi,xi+,] for all E with 
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0 < E < E. Second, consider the case where [ yi, xi+ ,] n S = (zi+, ,..., z~+~,}, 
v 2 0 and r*‘(5) f 0 for all zj. Iffand -u are copositive we are done. Thus, 
assume that f and v are copositive on [y,, xi+ ,I. Suppose that 
x E (L U 17) n ([ yi, xi+ i] - S). Then we claim that r*(x) # 0. Indeed, if, for 
example, XELn([yi,xi+l]-S) and r*(x)=O, then xEX,* and 
0(x)=-l. But xEL- S implies that u(x) < 0 since u is copositive with f, 
which contradicts sgn(u(x)) = -a(x). Thus r* and u vanish only at the 
points of S in r = [ yi, xi+ 1] n (L u U) and they both change sign at these 
points. Also, sgn r*(x) = sgn u(x) for each x E r (since f, r* and u are 
copositive). Now, at each zj E I’n S we have r*‘(zj) # 0, thus there exists 
0, < 4 min{zi+, - zi: i = l,..., k - 1}, 0, > 0 such that r*‘(x) # 0 in lj = 
[z~~~,z~+I~,]. B y th e mean value theorem, for each x E Ii, there exists 6, 
and 6, between x and zj such that r*(x) = r*‘(&)(x- zj) and u(x) = 
u’(~,)(x - 5). Hence, we can select sj > 0 such that 0 < E < cj implies 
] r*(x)] > E ] u(x)] for all x E Zj (by choosing ej = min,,,j ) r*‘(t)/u’(t)J). Repeat 
this argument for each zj E rn S and let E’ = minj ej. Thus jr*(x)] > 
d)u(x)I for all xEUY=,Zj. NOW r-lJ;=l(zj-@j,zj+Oj) is a compact 
subset of [a, b] on which r* does not vanish,. hence there exists E” > 0 such 
that (r*(x)\ > E” ] U(X)\ for all x E r - UT= ,(zj - S,, zj + Sj). Choose E, > 0 
such that et, Iq(t)l < q*(r) for all tE (yi,xi,,] and let m= 
min rCIYi,Xi+,l~q*(O + eOq(f), q*(Ol- Note that q*(t) + NO 2 m for all 
t E [ yi, xi+ ,] and 0 < E Q E,. Define .6 by .?= min(e,, E’, E”, mc’, mc”}. Then 
for any t E [ yi,xi+ i] we have that ]r*(t)] 2 ~((u(t)))/(q* + &q)(t) for any E 
satisfying 0 < E Q E. From this it follows that rE is copositive with f on 
(yi,xi+i] for every E with O<E<.E 

Next, we consider an interval of the form (xi, yi], i fixed, 1 < i Q p. Select 
6 > 0 sufficiently small such that f - r* does not alternate on either 
[xi3Xi+6] or [Yi-6,yi]* S ince sgn u(xi) = -U(Xi), sgn U( yi) = -U( vi), by 
using continuity and compactness as before, we can show that there exists 
E’ > 0 such that 0 < E < E’ implies 

max 
X~lXi,Xi+Gl”tYi-S,Yil 

If@) - r&I < IV- r* Il. 

Also, for E > 0 sufficiently small, 

XerX~f~, -s, If(x) - 44l < IV- I* II I ., 

since (x,, yi)nX,, = 4, which implies that If(x) - r*(x)] < ]]f-- r* (1 for all 
x E [xi + 6, y, - 61. (Note that this is also true if x1 = a and [a, y,) r7 X,. = 4 
ory,=band (x,,6]nX,,=$.) 

Now it remains to prove that for E > 0 sufficiently small, rs is copositive 
with f on [xi, yi]. First we note that if oi = 1 and sg(f(x,)) u(xi) = 1 so that 
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sg(f(xi)) sgn u(xi) = -1 then the facts that si > zj for each zj E [xi, yi] f7 S 
and S, v change sign only at the points of 2 imply that f and -v are 
copositive on [xi, si]. Thus, rs is copositive with/ on [xi, si] for every E > 0 
satisfying E Is(t)/ < q*(t) for all t E [xi,yi]. Now, consider the interval 
(si, yi) and note that si = (t; +yi)/2 implies that r*(t) # 0 for any 
t E [si,yi). Also, a(~,) = (-l)“+i U(Yi> and sg(f(xJ) = C-1)” Sg(f(Yi)) (by 
Lemma 3.2(i)) imply that Sg(f(yi)) I = -1, hence Ir*(yi)l > If( (by 
Lemma 3.2(iii)) (that is, r*(y,)# 0). Thus r*(t) # 0 for all t E [si,yi] and 
by continuity and compactness arguments as before we can find E, > 0 such 
that 0 ( E <E, implies rr: and f are copositive on [si, yiJ and hence on 
[xi, yi]. Similar arguments hold in the case of oi = 1 and sg(f(xi)) c(xi) = 
-1 or w, = 1, x, =a and sg(f(y,))o(y,)= -1, or w, = 1, y, = b and 
sg(f(x,)) u(xJ = -1. Now assume that oi = 2. In this case there exists 
zj E [xi,yi] n S such that r*‘(zj) = 0 and v vanishes at sl < zitl < *a. < 
zi+” < sf’ and only at these points in [xi, yi]. Also sg(f(x,)) a(~,) = 
%U(Yi)) a+> = - 1. Hence Sg(f(Xi)) w V(Xi) = sg(f(Yi)) en V(Yi) = 1 

and f and -v are copositive on [si, sf]. For the intervals [xi, sl] and [sy, yi], 
r* is never zero (by choice of s,! and s; and the fact that If( < jr*(xi)l 
and jf( yi)l ( 1 r*( y,)l). Using the same argument as given before,f and rE are 
copositive on these intervals for a proper choice of E > 0. Thus ra is 
copositive with f on [xi, vi]. 

Finally, consider the case where y, < b. Here, using the same argument 
given for the [yi, xi+i] case we can show that maxxe,yW,bl If(x) - r,(x)/ < 
(If - r* I( for F > 0 sufficiently small. Moreover, if sg(f(y,)) u(y,) = 1 then 
sg(f(y,)) sgn v(y,,) = -1 implies that f and -v are copositive on [ y,, bj 
and hence re is copositive with f on [y,, b] for any E > 0. On the other hand, 
if sg(f(y,)) a(~,,) = -1, then f and v are copositive and r* vanishes in 
[ yfl, b] only at [ y,, b] f? S and each of these is a simple zero. Then, by the 
same argument used for the [ yi,xi+,] case with r*‘(zJ # 0 for all 
zj E [ yi, xi+ ,] n S, we can show that for E > 0 sufficiently small, re is 
copositive with f on [y,, b]. Similarly, we can show that ra is copositive with 
fon [a,x,]ifx,>a. 

This covers all possible cases and shows that for a proper choice of E > 0 
sufficiently small, rs is copositive with f on [a, b] and l/f - r,l( < I( f - r*ll, 
which is a contradiction, and the proof of the alternation theorem is now 
complete. I 

The second type of characterization for a best approximation, r*, is a 
modified Kolmogorov-type characterization. Define 

S,*= {p+r*q:pEZI,,qEn,,pcopositive withf}, 

S, = Ix E Ia, bl: If(x) - r*(x)/ = Ilf - r*ll}, 
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S,={xE [a,b]:r*(x)=O,xE(LuU-S)}, 

o(x) = sgndf(x) - r*(x)) for x GC S, U S, 

(o(x) is defined as before for x E S, U S,). Thus, we have 

THEOREM 3.5 (KOLMOGOROV CRITERION [5]). LetfE C[a,b]-Ry[a,b] 
and r* E R,[a, b], then r* is a best approximation to ffrom R,[a, b] if and 
onfy iffor each h E g,., , min,,,,,,z o(x) h(x) < 0. 

The proof of this result follows via the usual arguments. Note that, 
comparing this Kolmogorov criterion for copositive rational approximation 
with that of rational approximation with interpolation [4], one might expect 
that Si.= {p+r*q: p~l7,, q E ZI,, , p(x) = 0, Vx E S ) could be used 
instead of s,., = (p + r*q: p E LY,, q E i7,, p copositive withf}. Indeed, the 
Kolmogorov criterion holding for S;, is a sufficient condition for r* to be a 
best copositive rational approximation. However, with r* being a best 
approximation to f from R,[a, b], the condition minx.S,.+s2 o(x) h(x) < 0 for 
each h E S;, need not hold whenever there exist x,y E X,. such that x < y, 
(x, v) n X,., = 4, and f - r* alternates twice on (x, v). This can be shown by 
considering simple examples. Thus, the copositiveness assumption in s,.* is 
essential for Theorem 3.5. 

As the final type of characterization for a best approximation r* we 
consider the possibility of an “origin in the convex hull” type of charac- 
terization. Here, the results are not as complete as that for the standard case. 
Once again, we simply state these theorems without proofs as the standard 
arguments suffice. 

THEOREM 3.6 (SUFFICIENCY [S]). If the origin of Euclidean l-space, Q,, 
belongs to the convex hull of the set (a(x)k x E Xr,}, A?= (4,(x),..., o,(x)) 
where 14, ,..., #(/ is a basis for 17,-,0(x) + r*(x) 17,, w(x) = (x - z,) .a. 
(x - zk), then r” is a best approximation to f from R,[a, b]. 

It is worth mentioning that the conclusion in Theorem 3.6 can be made 
stronger by replacing Rf[a, b] by I?: = (r E Rf[u, b]: r(zJ = 0, i = l,..., k) 
without any vital change in the proof. On the other hand, the converse of 
Theorem 3.6 does not hold true and to prove necessity, more restrictions are 
needed that make the origin belong to the convex hull of a smaller set as 
shown in the following theorem. 

THEOREM 3.1 (NECESSITY 151). Suppose that r* is a best approximation 
to f from R,[a, b], then Q, belongs to the convex hull-of (a(x)Z: x e X,. }, 9 = 
(4,(x) ,..., 4,(x)) where (4 ,,..., $,} is a basis for S,., = {p + r*q: p E Z7,, 
q E zZ,, p has same zeros as p* and of at least the same orders}. 
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4. UNIQUENESS AND STRONG UNIQUENESS 
OF BEST APPROXIMATIONS 

We start this section with a lemma which plays an essential role in the 
uniqueness and strong uniqueness for best copositive rational approximation. 

LEMMA 4.1. Let r* = p*/q * E R,[a, b] be a best approximation to 
fE C[a, b] - Ry[a, b]. rf there exists r =p/q E R,[a, b] such that 
a(~)[ p(x) - r*(x) q(x)] > 0 for all x E X,, , then p - r*q E 0. 

Proof: Suppose that there exists r =p/q E R,[a, b] such that a(~)[ p(x) - 
r*(x) q(x)] > 0 for all x E X,, . Further, assume for a proof by contradiction 
that p - r*q $0. Under this assumption, we show that there exists an 
h E s,* with Q(X) h(x) > 0 for all x E X,, which is a contradiction to the 
Kolmogorov criterion given in Theorem 3.5. To that end define 

p’=p tp*, i=q+q*, F = j/G, 

and note that 

4x)11Xx) - r*(x) 4(x)1 > 0, vx E x,* 

(since j- r*cf= (l/q*)[(p +p*) q* -p*(q + q*)] =p - r*q). Now, our 
object is to find p, E II,, q, E Z7, such that 

(i) p’ + lp, is copositive withf, 
and 

(ii) ~(x)[(fi + Ap,) - r*(q t nq,)](x) > 0, Vx E X,., , where 1 is a positive 
constant. 

First, observe that 

(~+~pI)-r*(BtIq,)=~[(ptp*+~p,)q*-p*(qtq*tdq,)] 

=+ IPq* tLp,q* -P*q-AP*q,] 

= (P - r*q) t A(p, - ‘“4,). 

Thus, 

+)[(F+ h) - r*(C + hAI 
= O>(p - r*q)@) + Wx)(p, - r*q,)(x). 
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Hence for I > 0 chosen sufficiently small, conditions (i) and (ii) stated above 
become equivalent to: 

Find p, E IT,,, and q, E l7, such that 

(i’) p,(z) = 0 f or all z E S and p, is locally copositive with f at every 
z E S at which d’(z) = 0 (we say that g is locally copositive with f at 
x E [a, b] if there exists 6 > 0 such that g is copositive with f on 
[x - 6, x + 61 n [a, b]). 

(ii’) a(x)(pi - r*q,)(x) > 0 at every x E X,, at which (p - r*q)(x) = 0, 
say (pi - r*q,)(x) = a(x) at these points. 

It is worth noting that if xES,=(xEX,,: :(x)=0, xE(UUL)-S) 
then (ii’) implies that p, is locally copositive with f at x. This is because 
x E S, implies that p’(x) =p(x) +p*(x) = 0 so that p(x) =p*(x) = 0 
implying that (p - r*q)(x) = 0 and hence p,(x) = a(x) by (ii’). 

Now, if (i’) is to be satisfied then we may write (p, - r*q,)(x) in the form 

(pl - r*q,)(x) = (x - zl) ..a (x - zk)l(pz - hJ413 

where pz =p,/JJf=,(x - zi), P=b/q* with i =p*/n:=r(x - zi). Thus 
pz - ?qi E L?m.k + LZI,,, which is a Haar subspace of C[a, b] of dimension 

d= 1 fmax(m--k+aq*,nt@} 

= 1 + max{m -k + aq*, n -k + 3p*} 

= 1 tmax(m+aq*,n+ap*}-k=N-k. 

Assume that i , ,..., I, are the elements of S at which b’(z) = 0 and f, ,..., Zt 
are the zeros of p - r*q in X,, . Thus, our problem reduces to finding 
nonzero polynomials p2 E IZmWk and q, E ZZ, such that 

pz(;j) = f l, j = l,..., 1, 

and 

fj t?j - zi)I(P2 - Fq*)(fj)l = u<2j), j = l,..., t, 

which can be done if 1 t t < d (by definition of Haar subspace of dimension 
d). Now, if I + t < d, then there exists p2 - ?q, with the above properties 
implying that there exists an h =$ t Ap, - r*(@+ Aq,) E S,.* such that 
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u(x) h(x) > 0 for all x E X,,, a contradiction to Theorem 3.5. On the other 
hand, if I + t > d we claim that p - r*q has more than N zeros in [a, b] 
(since @‘(?J = 0 implies that p - r*q has a triple zero at every ij,j = I,..., 1; 
and X,. n S = d implies that p - r*q has at least 

3l+k-l+t=k+l+t+l>k+d+l=N+l 

zeros in [a, b]). But p - r*q E S,*, a Haar subspace of C[a, b] of dimension 
N. Thus, p - r*q s 0, again a contradiction, and the proof is now 
complete. I 

The following corollaries follow immediately. 

COROLLARY 4.2 (UNIQUENESS). LetfE C[a, b] - RT[u, b]. Thenfhus a 
unique best approximation from R,(u, b]. 

COROLLARY 4.3 (MODIFICATION OF THEOREM 3.5). Let r* be the best 
approximation to f from RJa, b]. Then for every h E S,* with ]]h]] = 1, 
minx EX,. u(x) h(x) < 0. 

Before stating the strong unicity theorem for copositive rational approx- 
imation we need to define the concept of normality which plays an essential 
role in the strong uniqueness result for the standard rational approximation 
theory. The proof of the theorem is not presented here as it is essentially the 
same as for standard rationals [ 11. 

DEFINITION 4.4. Let f E C[u, b] and r* =p*/q* be the best approx- 
imation to f from R,[u, b]. f is said to be copositive normal if either ap* = m 
or aq* = n. 

THEOREM 4.5 (STRONG UNIQUENESS). Let r* ER,[a,b] be the best 
approximation to ffrom R,(a, b] with (p*, q*) = 1, where f E C(u, b]. Iff is 
copositive normal then there exists a constant y = y(f) > 0 such that for all 
r E R,[a, bl 

Ilf- rll 2 Ilf- r* Ii + Y Ilr - r* II. 
The condition of copositive normality stated in Theorem 4.5 is essential 

for strong uniqueness to hold true. This is shown by the following theorem in 
which we assume, without loss of generality, that [a, b] = [0, 11. The proof is 
omitted for brevity and it can be found in 151. 

THEOREM 4.6. Let f E C[O, 1 ] - Rr [0, 1 ] be non-copositive normal and 
r* = p*/q* be the best copositive approximation to f from R,]O, 1 ], then the 
strong uniqueness theorem does not hold for J 
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5. CONTINUITY OF THE BEST COPOSITIVE RATIONAL 
APPROXIMATION OPERATOR 

As in the standard rational approximation theory, the strong uniqueness 
result implies Lipschitz continuity of the best approximation operator at 
copositive normal points. However, we need to restrict the domain of this 
operator to a subset of the continuous functions defined on [a, b] and 
copositive with f in order for this result to be true. 

Let fE C[a, b]. For any g E C[a, b], let r(g) be the best copositive 
rational approximation to g from R,[a, b]. Define 

C&, b] = {gE C[a,b]:g(x)f(x)> 0, VxE [a, b] 
1 

and 

@I, b] = {g E CJu, b]: g(x) = 0, Vx E [a, b] ‘y (L u U)). 

Then we have 

THEOREM 5.1. If f E R,[u, b] or f is copositive normal then 7 is 
continuous in the sense that there exists a p > 0 such that g E cf[u, b] 
implies that 

II 7(g) - $f II G P II g -f II. 

In the above theorem, the restriction of the domain of the operator to 
cf[u, b] is essential. An example to illustrate this fact is given in [S]. 

6. DISCRETIZATION 

In this section the set [a, b] is replaced by finite subsets of it and a brief 
summary of some results is presented. We assume that Xj, j = 1,2,..., is a 
finite subset of [a, b] containing j points, Xj c Xj+, for all j and that Xj 
becomes dense in [a, b] as j -+ co (that is, each point of [a, b] is either a limit 
point for lJ F= i Xj or belongs to Xj forj >j,). In this case, there may exist no 
r,? E R#,) such that rr is a best copositive rational approximation to f on 
Xj,whereRXXj)=(r=p/q:p~n,,q~n,,q>OonXjandr(x)f(x)>,O 
on Xj). However, we have 

THEOREM 6.1 [5]. Let f E C[u, b] an r* be the best rational copositive d 
approximation toffrom Rf[a, b]. If ej = inf,,,,,xj, Ilf - rllxj, e = Ilf - r*lllo,,,, 
then ej+ e us j+ 00. 



COPOSITIVE RATIONAL APPROXlMATlON 241 

A more general result about approximating on finite sets that are 
becoming dense in an interval is given in the following theorem. 

THEOREM 6.2 [5]. Let r* be the best approximation to f E C[a, b] from 
R,[a, bl. Let {fi} b e a sequence of functions defined and copositive with f on 
Xj and {rj} be a sequence of rationals such that rj =pj/qj E RXX,), 
II Pjll + llqjll = 1 and Il./j - rjIlxj G ej + I/!, where ej = inf,,,,,x,, 
Suppose that 

, llfi - rllx; 

0) xjcxj+l and Xj becomes dense in [a, b] as j+ 00, and 

(ii) fi-+fasj+ 00 (i.e.,Mj=j]f;.-f(],j-+Oasj--+ co). 

Then 

(4 llh -fllxj + If- r*ll and 
@I rj + r* in measure. 

Moreover, 

(c) iff is copositive normal then rj -+ r* uniformly. 

For characterization of best copositive rational approximations in this 
setting we refer to restricted range work by K. A. Taylor [ 61 and Loeb et al. 
[2]. This theory contains the theory of best copositive rational approx- 
imation on X whenever X is a finite subset of [a, b]. Here we state two of 
their theorems modified to our notation. As before the set S,, is defined by 

S,*={p+r*q:pElT,andqElT,). 

THEOREM 6.3 (KOLMOGOROV CRITERION 161). Let fGC(X) and 

infA,w, IIf- r(( s ( > 0. Th en r* is not a best copositive rational approx- 
imation to f if and only if there exists an h E S,, such that a(x) h(x) > 0 for 
all x E X,, . 

THEOREM 6.4 (origin in the convex hull characterization 121). Let 
f E C(X) and r* E R,(X), then r* is a best approximation to f from R,(X) if 
and only if the origin of Euclidean N-space lies in the convex hull of (a(x)& 
x E X,* ), where 2 = (gl(x) ,..., #N(x)), {ol ,..., o,} is a basis for S,, . 

Remark. It is worth noting that the property of the origin in the convex 
hull holds as a necessary and sufficient criterion for the best copositive 
rational approximation when approximating on a finite set. However, this 
property does not hold true on [a, b]. More work needs to be done to give an 
accurate mathematical illustration for this fact. 

640/35/3-4 
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