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Let A be a set of real numbers, and let Y, := ( r03 . . . . r.1 be a CebySev system 
on A. Assume, moreover, that if inf A or sup A belongs to A, then it is a point of 
accumulation of A at which all .I’, are continuous. We find necessary and sutlicient 
conditions for the existence of a function J.. , such that also { .~a. . . . . J,, ?‘n *I ; is 
a CebySev system on A. This theorem generalizes earlier results of Zielke and of the 
author. The proof is based on an integral representation of Markov systems that 
slightly extends a previous result of Zielke. (‘ IWI Academx Press. Inc 

1. INTRODUCTION AND STATEMENT OF RESULTS 

In what follows, n >, 0 is a fixed integer, A denotes a set of real numbers 
having at least n + 2 elements, and F(A) denotes the set of real functions 
on A; if A is an interval, C(A) denotes the set of continuous functions in 
F(A); if Z, := {zO, . . . . z,,} is a sequence of functions in F(A), by S(Z,) we 
denote the linear span of Z,,. Finally, S, will stand for an n + l-dimensional 
subspace of F( A ). 

We say that Z, is a &hykv system (weak CebySev system) if 
dim S(Z,) =n + 1, and for every sequence {t,, . . . . I,} c A such that 
t,<t,< ... <t,, det[zi(t,); i,j=O. . . . . n] >O (2 0). If Z, is a (weak) 
CebySev system for k = 0, . . . . n, we say that Z,, is a (weak) Markov system, 
or a complete (weak) CehySev system; if z0 = 1, we say that Z, is 
normalized. The linear span of a (weak) CebySev system is called a (weak) 
Haar spuce, and the linear span of a (weak) Markov system is called a 
(weak) Markov space. These definitions are consistent with Karlin and 
Studden [I]. 

If Z, is a (weak) CebySev system, we say that Z, has a (weak) CebySev 
extension, or, simply, a (weak) extension, if there is a function z,, + , such 
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EXISTENCE OF ADJOINED FUNCTIONS 23 

that Z,ru{~,+,) is a (weak) CebySev system. We also say that z,, , , is 
(weakly) udjoined to S(Z,,). 

In this paper, we study the existence of CebySev extensions. The existence 
of weak extensions for weak CebySev systems, under very general 
hypotheses, follows trivially from a representation theorem of Zielke (see 
Theorem A below). As we show in Theorem 4 below, the existence of 
CebySev extensions and the existence of adjoined functions are equivalent 
problems. 

The problem of existence of adjoined functions was apparently first 
studied by Laasonen [4], who showed that if S, is an n-dimensional Haar 
space of n-times continuously differentiable functions defined on an inter- 
val, then it has an adjoined function. 

In [S], Rutman asserted that if S,, is a Haar space of right-continuous 
functions defined on an open interval, then it has an adjoined function. 
However, he only sketched his proof; this proof is based on an integral 
representation of Markov systems which both Zielke and this author have 
shown to be false (cf. [6, 121). Rutman also claimed that there is a Haar 
space of continuous functions defined on a closed interval for which no 
adjoined functions exist (cf. Krein [2, p. 21, footnote 23). However, no 
such example seems to have been published, and indeed Krein and 
Nudel’man [3] attempted to show that the opposite is true: if S, is a Haar 
space of continuous functions defined on a closed interval, then it has an 
adjoined function. However, their proof is based on Rutman’s integral 
representation, and is therefore invalid. 

In [ 123, Zielke essentially showed that if S, is a Haar space defined on 
a set having “property (II),” then it has an adjoined function (a set A is said 
to have property (D) if it has no first nor last element, and between any 
two elements of A is a third element of A), whereas in [7] we showed that 
if S,, is a Haar space of continuous functions defined on an interval (closed, 
open, or scmiclosed), then it has an adjoined function. Although Zielke’s 
result is stronger, his method cannot be applied to a set that contains one 
or both of its enpoints, and indeed, in [ 131 he includes both his proof, and 
a simplified version of ours. (We believe, however, that this simplified proof 
is incorrect.) 

The purpose of this paper is to combine some of the ideas of [7] with 
a refinement of Zielke’s representation theorem [ 14, Theorem 33 to obtain 
necessary and sufficient conditions for the existence of CebySev extensions 
and of adjoined functions that contain the results of [7, 123 as particular 
cases. But we must first introduce some additional definitions that will be 
used in the sequel. 

A finite-dimensional subspace S of F(A) is called endpoint nondegenerate 
(END) provided that for every c in A the restrictions of the elements of S 
to A ,:=An(-,x,c)andtoA,:=An(~,x,)formsubspacesS,ofF(A,) 
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and S2 of F(A,) that have the same dimension as S. (This term was coined 
by D. J. Newman in 1980 to describe a concept introduced by Zwick (see 
[IS]). It was also used by Zielke in [ 141, where it is referred to simply as 
“nondegeneracy.“) We say that Z,, c F(A) is an END system, if the 
elements of Z,, are linearly independent in F(A), and S(Z,) is END. 

Let/E F(a, h), and c E (a, 6). We say thatfis not constun! at c if for every 
c>O there are points s,,.~~~(a,h), C--E<.Y, <c<.u,<c+~, such that 
f(x,) #S(x,). (In particular, if j’(s) is increasing on (a, 6). we have 
.f(-VI) <.0x*).) 

Let n2 1 and let W,,:= {VC ,,..., IV,,}CF(U,~), /zEF(A). and 
h(A) c (a, h). We shall say that W,, satisfies properry (M) with respect to h, 
provided that, for every choice of points xg < x, < . . . <x, in h(A), there 
is a double sequence { t,,,; i = 0, . . . . n, j = 0, . . . . n - i} such that: 

(a) x,=t,,,,; j=O, . . . . n. 

(b) 1,,,<r,+,.,<f,,,+,;i=O ,..., n-l,j=O ,..., n-i-l. 

(c) For i= 1, . . . . n, ~c,(.Y) is not constant on (r,,,;j=O, . . . . n - i). 

If these conditions are satisfied for a specific set of points x0 < . . < x, in 
h(A), we say that W,, satisfies property (M) with respect to h at 
{x0, . . . . x, }. W e s a h 11 a so say that W,, satisfies property (N) with respect to 1 
h, if for every choice of points x0 < ... -C-Y,, , , in h(A) there is a double 
sequence { 1,. , ; i = 0, . . . . n + 1, j = 0, . . . . n - i + 1 } such that: 

(a) -y/ = to,,; j=O, . . ..n+ 1. 

(b) r,,,<t,+,,,<t,,,+,;i=O ,..., n,j=O ,..., n-i. 

(c) For i = 1, . . . . II, U’,(X) is not constant on {I,.,; j= 0, . . . . n - i + 1 ). 

If Z, c F(A) we say that (h, c, W,, U,,) is a representation for Z, on A, 
provided that h(x) is a strictly increasing function in F(A), c E h(A), 
h(c) = C, the functions n,,(x), i = 1, . . . . n, are increasing and continuous in 
j(h) := (infh(A), sup II(. Ii, := { uO, . . . . u,, ), where u0 E F(A ) is positive, 
iu “3 . . . . u,} is a basis of S(Z,), i = 0, . . . . n, and for every .Y in A, and 
i = 1, . . . . n, 

u,(x)=u~(x).~~~“‘~~“‘. i,” ‘dW,(f,)“.dW,(f,). 

Note that if Z, is normalized then u0 must be a constant function. Finally, 
if (h, c, W,,, U,) is a representation for some basis Z,* of S(Z,), we say that 
it is a quasi-representation for Z,,. 

We can now state: 

THEOREM A. If Z, c F(A) is an END normalized weak Murkoc system 
then il has a representation. 
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This theorem is essentially [ 14, Theorem 33, although there are two dif- 
ferences: First Zielke does not mention that if (h, c, W,, 0’“) is a represen- 
tation for Z, then the functions \v,(x) are nonconstant. That this must be 
so is obvious: If wk is constant it is clear that zk = 0; thus the elements of 
Z,, are not linearly independent, which is a contradiction. Second, in the 
statement of Zielke’s theorem, no mention is made that {uo, . . . . u,}, 
k = 0, . . . . n, is a basis of S(Z,) (it is only asserted that I,‘,, is a basis of 
S(Z,)). That this stronger statement is true can be inferred by inspection 
of the proof of the theorem. Another (unpublished) proof of Theorem A 
was obtained by the author combining the Lemma of [8] with a new 
embedding property of weak Markov systems [lo]. This proof was noted 
in [ 14, Remark (6)]. Theorem A also follows from [I I, Theorem I]. 

Using Theorem A we shall prove 

THEOREM 1. Assume that A has neither a jirst nor a last point. Then 
Z, c F(A) is a Markoc s)*stem if and onI]> if’ it has a representation 
(h, c. W,,, U,,) such that W, satisfies property (M) with respect to h. 

If M’~ is constant on an interval I, it is readily seen that uk is proportional 
to u/, , on h - ‘(In h(A)), and the elements of U,, are therefore linearly 
dependent on k '(In h(A)). We thus have 

COROLLARY 1. Let A have property (D). Then Z,, c F(A) is a Markoc 
system $ and on& if .for ecerjq representation (h, c, W,, I!,‘,) of Z,, the 
elements of W, are strictQ increasing in (h, A). 

Corollary I is essentially due to Zielke (cf. [ 14, Corollary 31). 
By the endpoints of A we mean sup A and inf A. 
As a consequence of Theorem I we also have: 

THEOREM 2. Let Z,, c F(A) he a Markou .gwem on A, and 
B := A ii { inf A, sup A ). Assume, moreocer, that lf an endpoint of A belongs 
to A, then it is a point of accumulation of A at which zOr . . . . z, are continuous. 
Then Z,, has a C?ehy.fec extension if and on!, if there is a representation 
(h, c, W,,, U,,) for Z,, on B that satisfies property (N) with respect to h. 

Let the set B be defined as in Theorem 2. We also have: 

THEOREM 3. Let Z, c F(A) he a CiL’bJ-.?eL: system on A. Assume, 
moreover, that $an endpoint of A is in A, then it is a point of accumulation 
of A, and all the functions in Z, are continuous at that endpoint. Then S(Z,) 
has an adjoined function if and only if there is a quasi-representation 
(h, c, W,, U,,) for Z, on B that sat$es property (N) with respect to h. 

Note that every Haar space detined on a set that has no first nor last 
element has a Markov basis (cf.. e.g., [9]). In view of this result it is clear 
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that Theorem 3 is a straightforward consequence of Theorem 2 and the 
following proposition: 

THEOREM 4. Let S,, he a Haar space. Then the jtillowing statements ure 
equivalen I: 

(a) S, has an adjoinedfunction. 

(b) Every ceby.feec system Z,, c S, has an extension. 

The proof of Theorem 4 readily follows from, e.g., [7, Lemma 21, and 
will therefore be omitted. 

A set A is said to have property* (B) provided that between any two 
elements of A is a third element of A. As a consequence of Theorem 3 we 
shall prove the following proposition, which contains the main results of 
[7, 123 as particular cases. 

THEOREM 5. Let A have propertJt (B), and let Z, c F(A) be u ceby.fev 
system on A. Assume, moreover, that if an endpoint of A is in A, then it is 
a point of accumulation of A, and all the functions in Z, are continuous ut 
that endpoint. Then S(Z,,) has an adjoinedfunction in A. 

2. PRooFS 

Theorem 1 is a straightforward consequence of Theorem A and the 
following auxiliary proposition, of some independent interest: 

LEMMA. Lpt W, := {w,, . . . . wn } be a sequence of increasing and con- 
tinuous jiunctions defined on an open interval ((I, b), let c E (a, b), u,, = 1, and 
for k = I, . . . . n, let Us :=f: I:! ...J: ’ dwk(rk)...dw,(t,). Assume thur 
a<+,< . . . < xn < b; then det [ u,(x,); i, j = 0, . . . . n] > 0 if and only of W, 
satisfies property (M) with respect to the identity .function at {x0, . . . . x, ). 

Proof of Lemma. We proceed by induction on n. Since u,(x) = 
H:,(X) - u’,(c), the assertion is trivially true for n = 1. 

To prove the inductive step we proceed as follows: Let v0 :E 1 and, for 
k = 2, . . . . lik-,(x):=S,X5:!...5:~.?dwk(tk. ,)...dw,(r,) if n>2, or v,(x):= 
Jr dw,(t) if n = 2. S ince u,(x)=s: uk.. ,(f) dw,(t), subtracting from each 
column the preceding one, we readily deduce that det [u,(x,); i, j = 0, . . . . n] = 
J$...J;:-, det[ui(l,); i, j=O, . . . . n- l] dw,(t,. ,)...dw,(r,). Since the func- 
ttons w,(x) are continuous, and det[v,(r,); i, j = 0. . . . . n - 1 ] 2 0 for any 
choice of points a < t, < .. < 1, _, < 6, it is clear that det[u,(xj); 
i, j= 0, . . . . n] > 0 if there are points r,, x, < r, < .Y, + , ; j= 0, . . . . n - I, such 
that det[c,(r,); i,j=O, . . . . n - I] >O and ‘t*,(f) is not constant in a 
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neighborhood of I,, for i = 0, . . . . n - 1. Also the converse is true. To see 
this we argue as follows: Let I:= [x0,x,] x [x,. x2] x ... x [x,,- ,, x,,], 
t := (to, f,, . ..) rn-,), and f(t) :=det[r,(~,); i,~‘=0, . . . . n- I]. Assume that 
for every t E I either f(t) =0 or w,(x) is constant in a neighborhood of 
some component t, of t. If A is the set of points t in I for which f(t) > 0. 
it is clear that 

~~j~~j::...~[~” ftto ,..., f,r-,)dM~,(f, ,)...dMl,(fl~) 
n I 

= i ftt,, . . . . 2, ,)dW,(l, ,)...dfi!,(10). 
‘A 

Let (I,, . . . . r,, _ ,) E A. Then there is an E > 0 and some j, 0 <j < n - 1, such 
thatw,(t)isconstanton[1,-E,f,+&].IfJ(t,&):=[lo--,t,+c]x[1,--, 
1,+c]x ... x[t,, ,-c, t,,+, +E] and I(t, E) := In J(r, e). it is clear that 

I 

J f(t)dw,(r, ,)‘..dw,(r,)=o. 
II 1. E I 

The sets I(t, E) form a covering of A, and therefore have a denumerable 
subcovering, say {I(m); m = 1,2, 3, . . . ). Since 

0~ [ f(t)dw,(r,-,)...dw,(r,) 
4A 

a I 
f(t)dw,(t,,-,)...dw,,(r,)=O, 

I(m) 

we have shown that det[u,(x,); i, j= 0, . . . . n] =O. The proof of the Lemma 
now readily follows by the inductive hypotheses, Q.E.D. 

Proof of Theorem 2. To prove the necessity, assume that z,, + , is an 
extension to Z,. Then Z, + , := Z, u {z, + , } is a Markov system on B, and 
Theorem 1 yields the existence of a representation (h, c, W, + , , U, + , ) for 
Z “+, on B such that W,, , := (w,, . . . . w,+ ,} satisfies property (M) with 
respect to h. Thus a fortiori W, := {w,, . . . . w”} satisfies property (N) with 
respect to h. 

TO prove the sufficiency, let (h, c, W,,, U,) be a representation for Z, in 
B such that W, satisfies property (N) with respect to h, let w,*+,(r) := 
arctan f, Wn*+,:={w ,,..., w,,w,*+,}, and u,*+,(x):=u,(x)S~‘“‘S:l... 
5: m+ ,(fn+ I )dw,(l,)...dw,(t,). Since w:+,(t) is strictly increasing, it is 
readily seen that W,*+, satisfies property (M) with respect to h. Applying 
the Lemma, we therefore conclude that u,*+ , is adjoined to S( I/,) on B. 
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Assume now that b := sup(A) E A. Since MI,~+ ,(t) is bounded, we have 
ux+ 1(x) G re+ I(4.X)) - G* I (c)]u,,(x) < K for every .x- such that h(x) > c; 
thus, uf, ,(b) :=lim, -b uz+ ,(. Y exists, and the continuity of the elements ) 
of S( U,) implies that r/z+, := Cl,, u {u, + , ) is a weak CebySev system on 
Bu {b}. 

We claim that U,f+, is a CebySev system on Bu (b}. Suppose the con- 
trary; then there is a u E U,*+ 1 : { 0) with n + 2 zeros x,,, . . . . x, + , E B u (b 1, 
say x0 < . . . < x,, + , , and so X, + , = 6. Let y E A n (x,, x, + , ) be fixed, and 
without loss of generality, assume that u(q) > 0. Let { pk} be an increasing 
sequence in B with lim, _ x, pk = h. So for sufficiently large k, we have 
q <pk <b and u(q) > u(pk). Thus, using the terminology of [ 13. Chap. 81, 
x0, . . . . X,) 4, pk form a weak oscillation of II of length n + 3, in contra- 
diction to Lemma 8.7a in [ 133. 

Analogously, if u := inf(A)E A, then u,*+ ,(u) := lim,,. u,*+ ,(x) exists, 
and U* n+l is a weak CebySev system on A. A trivial modification of the 
argument for B u (h} now yields that fJ,*, , is a CebySev system on A. 

Q.E.D. 

Proof of Theorem 5. Let B := (inf(A), sup(A))n A. From, e.g., [93, we 
know that Z, is a Markov space on B. Let I/,, := {uO, . . . . u,,} be a Markov 
basis of Z, on B. Applying [ 14, Corollary 33 we conclude that U, has a 
representation (h, c, W,,, V,,) such that the functions in W, are strictly 
increasing in (inf h( B), sup h(B)). It is therefore clear that this representa- 
tion satisfies property (N), and therefore Theorem 3 yields the existence of 
an adjoined function L’ for S( V,), whence the conclusion readily follows. 

Q.E.D. 

3. EXAMPLE 

Let I := (0,5), A := (0, I] u {2,3} u [4,5), 

41, O<f<l 
t, 0 < t < 2.25 4, 1 < I < 2.25 

wl(t) := 2.25, 2.25 < t < 2.75 M’*(f) := 4r - 5, 2.25 < t < 2.75 
t - 0.5, 2.75 < I < 5 6, 2.75 < t d 4 

4r- 10, 4<r<5 

UO :c 1, u,(x) := J;‘&-,(f), U?(X) := J.; Ji dw,(s)dw,(l), and I!/* := 
‘u 9 Ulr u2}. Since for every choice of points x0 < X, <x2 in A there are 
AoYnts f,, f r, x0 < to < x, < r, < x2, such that w,(t) is increasing at to and 
t,, and wz(fo)<w,(r,), it is clear that W, satislies property (M) with 
respect to the identity function. Thus, from Theorem 1 we deduce that U, 
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is a Markov system on A. Note, however, that since \I*~( 1) = ids, Wz is 
not strictly increasing on A. It is also easy to see that W, does not satisfy 
property (N) (choose, for example, 1” = 1, s, = 2, .Y~ = 3, and .Y~ = 4). We 
shall now show that L’? has another representation on A, for which 
property (N) is satisfied. 

A straightforward computation shows that 

s - 1, 0 < x $2.25 
u,(x) = 1.25, 2.25 < .K d 2.75 

.K - 1.5, 2.75 < .K < 5 

and 

2(X - 1 )‘, O<x< 1 

u*(x) 0, 1 <.x62.75 = 
2.x - 5.5, 2.75 < .Y d 4 
2.x’ - 14.~ + 26.5, 4<s<5. 

Let 1;” :- 1, 

x- 1, O<.uQ2 
c,(s) := 0.5-Y. 2<.r<3 

s - 1.5. 3<.r<5 

and 

2(X - 1 )‘, O<.K< 1 
0, I <X62 

c2(s := 0.5(.u - 2) 2<s63 
2s - 5.5, 3 <x,<4 

2.~’ - 14s + 26.5, 4<.Y<5. 

The functions ci have been obtained by considering the restrictions of the 
U, to A, and extending these restrictions to (0, 5) by linear interpolation. It 
is therefore clear that V, := {uO, v,, c2} is a normalized weak Markov 
system on (0, 5). It is also clear that V, is END. 

Repeating the procedure outlined in the proof of [ 11, Theorem I] we see 
that V, can be represented on (0,5) as 

rh( ‘i) 
I’,(X) = ( h,(t), 

-1 
1.J.d = (“’ [; d&) dp&), 
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x- 1, O<x62 

-b O<xQ2 1, 2<x63 
h(x):= x+ 1, 2<x<3 p,(x) := 0.5(x - 1 ), 3<.Y<4 

x+2, 3<x<5 1.5, 4<.r65 
s- 3.5, 5<x<7 

and 

4(x- 11, o<x< 1 
0, 1 <X<2 
x- 2, 2<x<3 

PAX) := 1, 3<xQ4 
x - 3, 4<.u<5 

2, 5<x66 
4x-22, 6<.r<7. 

(This assertion can, of course, be verified directly.) It is readily seen that 
P, := {p,, pz} satisfies property (N) with respect to h. We have therefore 
shown that a Markov system may have a representation for which 
property (N) is not satisfied, and a different representation for which 
property (N) is satisfied. 

From Theorem 3 we deduce that S( U,) has an adjoined function on A. 
Since A does not satisfy property (B), this example shows that although the 
conditions of Theorem 5 are sufficient, they are not necessary. 
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