JOURNAL OF APPROXIMATION THEORY 65, 22-31 (1991)

Integral Representation of Markov Systems and the Existence of Adjoined Functions for Haar Spaces

R. A. ZALIK

Department of Algebra, Combinatorics and Analysis, Division of Mathematics, 120 Mathematics Annex Building, Auburn University, Auburn, Alabama 36849-5307

Communicated by D. S. Lubinsky

Received February 17, 1988; revised August 17, 1988

Let A be a set of real numbers, and let $Y_n := \{y_0, ..., y_n\}$ be a Cebyšev system on A. Assume, moreover, that if inf A or sup A belongs to A, then it is a point of accumulation of A at which all y_i are continuous. We find necessary and sufficient conditions for the existence of a function y_{n+1} such that also $\{y_0, ..., y_n, y_{n+1}\}$ is a Čebyšev system on A. This theorem generalizes earlier results of Zielke and of the author. The proof is based on an integral representation of Markov systems that slightly extends a previous result of Zielke. C 1991 Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF RESULTS

In what follows, $n \ge 0$ is a fixed integer, A denotes a set of real numbers having at least n + 2 elements, and F(A) denotes the set of real functions on A; if A is an interval, C(A) denotes the set of continuous functions in F(A); if $Z_n := \{z_0, ..., z_n\}$ is a sequence of functions in F(A), by $S(Z_n)$ we denote the linear span of Z_n . Finally, S_n will stand for an n + 1-dimensional subspace of F(A).

We say that Z_n is a Čebyšev system (weak Čebyšev system) if dim $S(Z_n) = n + 1$, and for every sequence $\{t_0, ..., t_n\} \subset A$ such that $t_0 < t_1 < \cdots < t_n$, det $[z_i(t_j); i, j = 0, ..., n] > 0$ (≥ 0). If Z_k is a (weak) Čebyšev system for k = 0, ..., n, we say that Z_n is a (weak) Markov system, or a complete (weak) Čebyšev system; if $z_0 \equiv 1$, we say that Z_n is normalized. The linear span of a (weak) Čebyšev system is called a (weak) Haar space, and the linear span of a (weak) Markov system is called a (weak) Markov space. These definitions are consistent with Karlin and Studden [1].

If Z_n is a (weak) Čebyšev system, we say that Z_n has a (weak) Čebyšev extension, or, simply, a (weak) extension, if there is a function z_{n+1} such

that $Z_n \cup \{z_{n+1}\}$ is a (weak) Čebyšev system. We also say that z_{n+1} is (weakly) *adjoined* to $S(Z_n)$.

In this paper, we study the existence of Čebyšev extensions. The existence of weak extensions for weak Čebyšev systems, under very general hypotheses, follows trivially from a representation theorem of Zielke (see Theorem A below). As we show in Theorem 4 below, the existence of Čebyšev extensions and the existence of adjoined functions are equivalent problems.

The problem of existence of adjoined functions was apparently first studied by Laasonen [4], who showed that if S_n is an *n*-dimensional Haar space of *n*-times continuously differentiable functions defined on an interval, then it has an adjoined function.

In [5], Rutman asserted that if S_n is a Haar space of right-continuous functions defined on an open interval, then it has an adjoined function. However, he only sketched his proof; this proof is based on an integral representation of Markov systems which both Zielke and this author have shown to be false (cf. [6, 12]). Rutman also claimed that there is a Haar space of continuous functions defined on a closed interval for which no adjoined functions exist (cf. Krein [2, p. 21, footnote 2]). However, no such example seems to have been published, and indeed Krein and Nudel'man [3] attempted to show that the opposite is true: if S_n is a Haar space of continuous functions defined on a closed interval, then it has an adjoined function. However, their proof is based on Rutman's integral representation, and is therefore invalid.

In [12], Zielke essentially showed that if S_n is a Haar space defined on a set having "property (D)," then it has an adjoined function (a set A is said to have property (D) if it has no first nor last element, and between any two elements of A is a third element of A), whereas in [7] we showed that if S_n is a Haar space of continuous functions defined on an interval (closed, open, or semiclosed), then it has an adjoined function. Although Zielke's result is stronger, his method cannot be applied to a set that contains one or both of its enpoints, and indeed, in [13] he includes both his proof, and a simplified version of ours. (We believe, however, that this simplified proof is incorrect.)

The purpose of this paper is to combine some of the ideas of [7] with a refinement of Zielke's representation theorem [14, Theorem 3] to obtain necessary and sufficient conditions for the existence of Čebyšev extensions and of adjoined functions that contain the results of [7, 12] as particular cases. But we must first introduce some additional definitions that will be used in the sequel.

A finite-dimensional subspace S of F(A) is called *endpoint nondegenerate* (END) provided that for every c in A the restrictions of the elements of S to $A_1 := A \cap (-\infty, c)$ and to $A_2 := A \cap (c, \infty)$ form subspaces S_1 of $F(A_1)$ and S_2 of $F(A_2)$ that have the same dimension as S. (This term was coined by D. J. Newman in 1980 to describe a concept introduced by Zwick (see [15]). It was also used by Zielke in [14], where it is referred to simply as "nondegeneracy.") We say that $Z_n \subset F(A)$ is an END system, if the elements of Z_n are linearly independent in F(A), and $S(Z_n)$ is END.

Let $f \in F(a, b)$, and $c \in (a, b)$. We say that f is not constant at c if for every $\varepsilon > 0$ there are points $x_1, x_2 \in (a, b)$, $c - \varepsilon < x_1 < c < x_2 < c + \varepsilon$, such that $f(x_1) \neq f(x_2)$. (In particular, if f(x) is increasing on (a, b), we have $f(x_1) < f(x_2)$.)

Let $n \ge 1$ and let $W_n := \{w_1, ..., w_n\} \subset F(a, b), h \in F(A)$, and $h(A) \subset (a, b)$. We shall say that W_n satisfies property (M) with respect to h, provided that, for every choice of points $x_0 < x_1 < \cdots < x_n$ in h(A), there is a double sequence $\{t_{i,j}; i=0, ..., n, j=0, ..., n-i\}$ such that:

(a)
$$x_j = t_{0,j}; j = 0, ..., n.$$

(b)
$$t_{i,j} < t_{i+1,j} < t_{i,j+1}; i = 0, ..., n-1, j = 0, ..., n-i-1.$$

(c) For i = 1, ..., n, $w_i(x)$ is not constant on $\{t_{i,j}; j = 0, ..., n - i\}$.

If these conditions are satisfied for a specific set of points $x_0 < \cdots < x_n$ in h(A), we say that W_n satisfies property (M) with respect to h at $\{x_0, ..., x_n\}$. We shall also say that W_n satisfies property (N) with respect to h, if for every choice of points $x_0 < \cdots < x_{n+1}$ in h(A) there is a double sequence $\{t_{i,j}; i=0, ..., n+1, j=0, ..., n-i+1\}$ such that:

(a)
$$x_i = t_{0,i}; j = 0, ..., n + 1.$$

(b)
$$t_{i,j} < t_{i+1,j} < t_{i,j+1}; i = 0, ..., n, j = 0, ..., n - i.$$

(c) For
$$i = 1, ..., n, w_i(x)$$
 is not constant on $\{t_{i,j}; j = 0, ..., n - i + 1\}$.

If $Z_n \subset F(A)$ we say that (h, c, W_n, U_n) is a representation for Z_n on A, provided that h(x) is a strictly increasing function in F(A), $c \in h(A)$, h(c) = c, the functions $w_i(x)$, i = 1, ..., n, are increasing and continuous in $j(h) := (\inf h(A), \sup h(A)), U_n := \{u_0, ..., u_n\}$, where $u_0 \in F(A)$ is positive, $\{u_0, ..., u_i\}$ is a basis of $S(Z_i)$, i = 0, ..., n, and for every x in A, and i = 1, ..., n,

$$u_{i}(x) = u_{0}(x) \int_{c}^{h(x)} \int_{c}^{t_{1}} \cdots \int_{c}^{t_{i-1}} dw_{i}(t_{i}) \cdots dw_{1}(t_{1}).$$

Note that if Z_n is normalized then u_0 must be a constant function. Finally, if (h, c, W_n, U_n) is a representation for some basis Z_n^* of $S(Z_n)$, we say that it is a quasi-representation for Z_n .

We can now state:

THEOREM A. If $Z_n \subset F(A)$ is an END normalized weak Markov system then it has a representation. This theorem is essentially [14, Theorem 3], although there are two differences: First Zielke does not mention that if (h, c, W_n, U_n) is a representation for Z_n then the functions $w_i(x)$ are nonconstant. That this must be so is obvious: If w_k is constant it is clear that $z_k = 0$; thus the elements of Z_n are not linearly independent, which is a contradiction. Second, in the statement of Zielke's theorem, no mention is made that $\{u_0, ..., u_k\}$, k = 0, ..., n, is a basis of $S(Z_k)$ (it is only asserted that U_n is a basis of $S(Z_n)$). That this stronger statement is true can be inferred by inspection of the proof of the theorem. Another (unpublished) proof of Theorem A was obtained by the author combining the Lemma of [8] with a new embedding property of weak Markov systems [10]. This proof was noted in [14, Remark (6)]. Theorem A also follows from [11, Theorem 1].

Using Theorem A we shall prove

THEOREM 1. Assume that A has neither a first nor a last point. Then $Z_n \subset F(A)$ is a Markov system if and only if it has a representation (h, c, W_n, U_n) such that W_n satisfies property (M) with respect to h.

If w_k is constant on an interval *I*, it is readily seen that u_k is proportional to u_{k-1} on $h^{-1}(I \cap h(A))$, and the elements of U_n are therefore linearly dependent on $h^{-1}(I \cap h(A))$. We thus have

COROLLARY 1. Let A have property (D). Then $Z_n \subset F(A)$ is a Markov system if and only if for every representation (h, c, W_n, U_n) of Z_n , the elements of W_n are strictly increasing in (h, A).

Corollary 1 is essentially due to Zielke (cf. [14, Corollary 3]). By the *endpoints* of A we mean sup A and inf A. As a consequence of Theorem 1 we also have:

THEOREM 2. Let $Z_n \subset F(A)$ be a Markov system on A, and $B := A \setminus \{\inf A, \sup A\}$. Assume, moreover, that if an endpoint of A belongs to A, then it is a point of accumulation of A at which $z_0, ..., z_n$ are continuous. Then Z_n has a Čebyšev extension if and only if there is a representation (h, c, W_n, U_n) for Z_n on B that satisfies property (N) with respect to h.

Let the set B be defined as in Theorem 2. We also have:

THEOREM 3. Let $Z_n \subset F(A)$ be a Čebyšev system on A. Assume, moreover, that if an endpoint of A is in A, then it is a point of accumulation of A, and all the functions in Z_n are continuous at that endpoint. Then $S(Z_n)$ has an adjoined function if and only if there is a quasi-representation (h, c, W_n, U_n) for Z_n on B that satisfies property (N) with respect to h.

Note that every Haar space defined on a set that has no first nor last element has a Markov basis (cf., e.g., [9]). In view of this result it is clear

that Theorem 3 is a straightforward consequence of Theorem 2 and the following proposition:

THEOREM 4. Let S_n be a Haar space. Then the following statements are equivalent:

- (a) S_n has an adjoined function.
- (b) Every Čebyšev system $Z_n \subset S_n$ has an extension.

The proof of Theorem 4 readily follows from, e.g., [7, Lemma 2], and will therefore be omitted.

A set A is said to have property (B) provided that between any two elements of A is a third element of A. As a consequence of Theorem 3 we shall prove the following proposition, which contains the main results of [7, 12] as particular cases.

THEOREM 5. Let A have property (**B**), and let $Z_n \subset F(A)$ be a Cebyšev system on A. Assume, moreover, that if an endpoint of A is in A, then it is a point of accumulation of A, and all the functions in Z_n are continuous at that endpoint. Then $S(Z_n)$ has an adjoined function in A.

2. PROOFS

Theorem 1 is a straightforward consequence of Theorem A and the following auxiliary proposition, of some independent interest:

LEMMA. Let $W_n := \{w_1, ..., w_n\}$ be a sequence of increasing and continuous functions defined on an open interval (a, b), let $c \in (a, b)$, $u_0 \equiv 1$, and for k = 1, ..., n, let $u_k(x) := \int_c^x \int_c^{t_1} \cdots \int_c^{t_k-1} dw_k(t_k) \cdots dw_1(t_1)$. Assume that $a < x_0 < \cdots < x_n < b$; then det $[u_i(x_j); i, j = 0, ..., n] > 0$ if and only if W_n satisfies property (M) with respect to the identity function at $\{x_0, ..., x_n\}$.

Proof of Lemma. We proceed by induction on *n*. Since $u_1(x) = w_1(x) - w_1(c)$, the assertion is trivially true for n = 1.

To prove the inductive step we proceed as follows: Let $v_0 :\equiv 1$ and, for $k = 2, ..., v_{k-1}(x) := \int_c^x \int_c^{t_1} \cdots \int_c^{t_{k-2}} dw_k(t_{k-1}) \cdots dw_2(t_1)$ if n > 2, or $v_1(x) := \int_c^x dw_2(t)$ if n = 2. Since $u_k(x) = \int_c^x v_{k-1}(t) dw_1(t)$, subtracting from each column the preceding one, we readily deduce that det $[u_i(x_j); i, j = 0, ..., n] = \int_{x_0}^{x_1} \cdots \int_{x_{n-1}}^{x_n} det[v_i(t_j); i, j = 0, ..., n-1] dw_1(t_{n-1}) \cdots dw_1(t_0)$. Since the functions $w_i(x)$ are continuous, and det $[v_i(t_j); i, j = 0, ..., n-1] \ge 0$ for any choice of points $a < t_0 < \cdots < t_{n-1} < b$, it is clear that det $[u_i(x_j); i, j = 0, ..., n-1, such that det[v_i(t_j); i, j = 0, ..., n-1] > 0$ and $w_1(t)$ is not constant in a

neighborhood of t_j , for j = 0, ..., n - 1. Also the converse is true. To see this we argue as follows: Let $I := [x_0, x_1] \times [x_1, x_2] \times \cdots \times [x_{n-1}, x_n]$, $t := (t_0, t_1, ..., t_{n-1})$, and $f(t) := det[v_i(t_j); i, j = 0, ..., n-1]$. Assume that for every $t \in I$ either f(t) = 0 or $w_1(x)$ is constant in a neighborhood of some component t_j of t. If A is the set of points t in I for which f(t) > 0, it is clear that

$$0 \leq \int_{x_0}^{x_1} \int_{x_1}^{x_2} \cdots \int_{x_{n-1}}^{x_n} f(t_0, ..., t_{n-1}) dw_1(t_{n-1}) \cdots dw_1(t_0)$$

= $\int_{\mathcal{A}} f(t_0, ..., t_{n-1}) dw_1(t_{n-1}) \cdots dw_1(t_0).$

Let $(t_0, ..., t_{n-1}) \in A$. Then there is an $\varepsilon > 0$ and some $j, 0 \le j \le n-1$, such that $w_1(t)$ is constant on $[t_j - \varepsilon, t_j + \varepsilon]$. If $J(\mathbf{t}, \varepsilon) := [t_0 - \varepsilon, t_0 + \varepsilon] \times [t_1 - \varepsilon, t_1 + \varepsilon] \times \cdots \times [t_{n-1} - \varepsilon, t_{n+1} + \varepsilon]$ and $I(\mathbf{t}, \varepsilon) := I \cap J(t, \varepsilon)$, it is clear that

$$\int_{I(t,\varepsilon)} f(\mathbf{t}) dw_1(t_{n-1}) \cdots dw_1(t_0) = 0$$

The sets $I(t, \varepsilon)$ form a covering of A, and therefore have a denumerable subcovering, say $\{I(m); m = 1, 2, 3, ...\}$. Since

$$0 \leq \int_{\mathcal{A}} f(\mathbf{t}) \, dw_1(t_{n-1}) \cdots dw_1(t_0)$$
$$\leq \sum \int_{I(m)} f(\mathbf{t}) \, dw_1(t_{n-1}) \cdots dw_1(t_0) = 0,$$

we have shown that $det[u_i(x_j); i, j=0, ..., n] = 0$. The proof of the Lemma now readily follows by the inductive hypotheses. Q.E.D.

Proof of Theorem 2. To prove the necessity, assume that z_{n+1} is an extension to Z_n . Then $Z_{n+1} := Z_n \cup \{z_{n+1}\}$ is a Markov system on B, and Theorem 1 yields the existence of a representation (h, c, W_{n+1}, U_{n+1}) for Z_{n+1} on B such that $W_{n+1} := \{w_1, ..., w_{n+1}\}$ satisfies property (M) with respect to h. Thus a fortiori $W_n := \{w_1, ..., w_n\}$ satisfies property (N) with respect to h.

To prove the sufficiency, let (h, c, W_n, U_n) be a representation for Z_n in B such that W_n satisfies property (N) with respect to h, let $w_{n+1}^*(t) :=$ $\arctan t$, $W_{n+1}^* := \{w_1, ..., w_n, w_{n+1}^*\}$, and $u_{n+1}^*(x) := u_0(x) \int_c^{h(x)} \int_c^{t_1} \cdots \int_c^{t_n} dw_{n+1}^*(t_{n+1}) dw_n(t_n) \cdots dw_1(t_1)$. Since $w_{n+1}^*(t)$ is strictly increasing, it is readily seen that W_{n+1}^* satisfies property (M) with respect to h. Applying the Lemma, we therefore conclude that u_{n+1}^* is adjoined to $S(U_n)$ on B. Assume now that $b := \sup(A) \in A$. Since $w_{n+1}^*(t)$ is bounded, we have $u_{n+1}^*(x) \leq [w_{n+1}^*(h(x)) - w_{n+1}^*(c)] u_n(x) \leq K$ for every x such that h(x) > c; thus, $u_{n+1}^*(b) := \lim_{x \to b} u_{n+1}^*(x)$ exists, and the continuity of the elements of $S(U_n)$ implies that $U_{n+1}^* := U_n \cup \{u_{n+1}\}$ is a weak Čebyšev system on $B \cup \{b\}$.

We claim that U_{n+1}^* is a Čebyšev system on $B \cup \{b\}$. Suppose the contrary; then there is a $u \in U_{n+1}^* \setminus \{0\}$ with n+2 zeros $x_0, ..., x_{n+1} \in B \cup \{b\}$, say $x_0 < \cdots < x_{n+1}$, and so $x_{n+1} = b$. Let $q \in A \cap (x_n, x_{n+1})$ be fixed, and without loss of generality, assume that u(q) > 0. Let $\{p_k\}$ be an increasing sequence in B with $\lim_{k \to \infty} p_k = b$. So for sufficiently large k, we have $q < p_k < b$ and $u(q) > u(p_k)$. Thus, using the terminology of [13, Chap. 8], $x_0, ..., x_n, q$, p_k form a weak oscillation of u of length n+3, in contradiction to Lemma 8.7a in [13].

Analogously, if $a := \inf(A) \in A$, then $u_{n+1}^*(a) := \lim_{x \to a} u_{n+1}^*(x)$ exists, and U_{n+1}^* is a weak Čebyšev system on A. A trivial modification of the argument for $B \cup \{b\}$ now yields that U_{n+1}^* is a Čebyšev system on A.

Q.E.D.

Proof of Theorem 5. Let $B := (\inf(A), \sup(A)) \cap A$. From, e.g., [9], we know that Z_n is a Markov space on B. Let $U_n := \{u_0, ..., u_n\}$ be a Markov basis of Z_n on B. Applying [14, Corollary 3] we conclude that U_n has a representation (h, c, W_n, V_n) such that the functions in W_n are strictly increasing in $(\inf h(B), \sup h(B))$. It is therefore clear that this representation satisfies property (N), and therefore Theorem 3 yields the existence of an adjoined function v for $S(V_n)$, whence the conclusion readily follows. O.E.D.

3. EXAMPLE

Let
$$I := (0, 5), A := (0, 1] \cup \{2, 3\} \cup [4, 5),$$

$$w_{1}(t) := \begin{cases} t, & 0 < t < 2.25 \\ 2.25, & 2.25 < t \leq 2.75 \\ t - 0.5, & 2.75 < t < 5 \end{cases} \quad w_{2}(t) := \begin{cases} 4t, & 0 < t \leq 1 \\ 4, & 1 < t \leq 2.25 \\ 4t - 5, & 2.25 < t \leq 2.75 \\ 6, & 2.75 < t \leq 4 \\ 4t - 10, & 4 < t < 5 \end{cases}$$

 $u_0 :\equiv 1$, $u_1(x) := \int_1^x dw_1(t)$, $u_2(x) := \int_1^x \int_1^t dw_2(s) dw_1(t)$, and $U_2 := \{u_0, u_1, u_2\}$. Since for every choice of points $x_0 < x_1 < x_2$ in A there are points t_0 , t_1 , $x_0 < t_0 < x_1 < t_1 < x_2$, such that $w_1(t)$ is increasing at t_0 and t_1 , and $w_2(t_0) < w_2(t_1)$, it is clear that W_2 satisfies property (M) with respect to the identity function. Thus, from Theorem 1 we deduce that U_2

is a Markov system on A. Note, however, that since $w_2(1) = w_2(2)$, W_2 is not strictly increasing on A. It is also easy to see that W_2 does not satisfy property (N) (choose, for example, $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, and $x_3 = 4$). We shall now show that U_2 has another representation on A, for which property (N) is satisfied.

A straightforward computation shows that

$$u_1(x) = \begin{cases} x - 1, & 0 < x \le 2.25 \\ 1.25, & 2.25 < x \le 2.75 \\ x - 1.5, & 2.75 < x < 5 \end{cases}$$

and

$$u_2(x) = \begin{cases} 2(x-1)^2, & 0 < x \le 1\\ 0, & 1 < x \le 2.75\\ 2x-5.5, & 2.75 < x \le 4\\ 2x^2-14x+26.5, & 4 < x < 5. \end{cases}$$

Let $v_0 :\equiv 1$,

$$v_1(x) := \begin{cases} x - 1, & 0 < x \le 2\\ 0.5x, & 2 < x \le 3\\ x - 1.5, & 3 < x < 5 \end{cases}$$

and

$$v_{2}(x) := \begin{cases} 2(x-1)^{2}, & 0 < x \le 1 \\ 0, & 1 < x \le 2 \\ 0.5(x-2), & 2 < x \le 3 \\ 2x-5.5, & 3 < x \le 4 \\ 2x^{2}-14x+26.5, & 4 < x < 5. \end{cases}$$

The functions v_i have been obtained by considering the restrictions of the u_i to A, and extending these restrictions to (0, 5) by linear interpolation. It is therefore clear that $V_2 := \{v_0, v_1, v_2\}$ is a normalized weak Markov system on (0, 5). It is also clear that V_2 is END.

Repeating the procedure outlined in the proof of [11, Theorem 1] we see that V_2 can be represented on (0, 5) as

$$v_1(x) = \int_1^{h(x)} dp_1(t), \qquad v_2(x) = \int_1^{h(x)} \int_1^t dp_2(s) dp_1(t),$$

where

$$h(x) := \begin{cases} x, & 0 < x \le 2 \\ x+1, & 2 < x \le 3 \\ x+2, & 3 < x < 5 \end{cases} \quad p_1(x) := \begin{cases} x-1, & 0 < x \le 2 \\ 1, & 2 < x \le 3 \\ 0.5(x-1), & 3 < x \le 4 \\ 1.5, & 4 < x \le 5 \\ x-3.5, & 5 < x < 7 \end{cases}$$

and

$$p_2(x) := \begin{cases} 4(x-1), & 0 < x \le 1\\ 0, & 1 < x \le 2\\ x-2, & 2 < x \le 3\\ 1, & 3 < x \le 4\\ x-3, & 4 < x \le 5\\ 2, & 5 < x \le 6\\ 4x-22, & 6 < x < 7. \end{cases}$$

(This assertion can, of course, be verified directly.) It is readily seen that $P_2 := \{p_1, p_2\}$ satisfies property (N) with respect to *h*. We have therefore shown that a Markov system may have a representation for which property (N) is not satisfied, and a different representation for which property (N) is satisfied.

From Theorem 3 we deduce that $S(U_n)$ has an adjoined function on A. Since A does not satisfy property (B), this example shows that although the conditions of Theorem 5 are sufficient, they are not necessary.

ACKNOWLEDGMENT

The author is grateful to Professor Roland Zielke for suggesting a considerable simplification in the proof of Theorem 2.

REFERENCES

- 1. S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
- M. G. KREIN, The ideas of P. L. Čebysěv and A. A. Markov in the theory of limiting values of integrals and their further development, *Amer. Math. Soc. Transl.* 12 (1951), 1-122 (Translation of Uspekhi Mat. Nauk (N. S.) 6, No. 4 (1951), 3-120).
- 3. M. G. KREIN AND A. A. NUDEL'MAN, The Markov moment problem and extreme problems, *in* "Transl. Math. Monographs," Vol. 50, Amer. Math. Soc. Providence, RI, 1977.

- 4. P. LAASONEN, Einige Sätze über Tschebyscheffsche Funktionen-Systeme, Ann. Acad. Sci. Fenn. 52 (1949), 3 24.
- 5. M. A. RUTMAN, Integral representation of functions forming a Markov series, *Dokl. Akad. Nauk SSSR* 164 (1965), 989–992.
- 6. L. L. SCHUMAKER, On Tchebycheffian spline functions, J. Approx. Theory 18 (1976), 278-303.
- 7. R. A. ZALIK, Existence of Tchebycheff extensions, J. Math. Anal. Appl. 51 (1975), 68-75.
- R. A. ZALIK, Smoothness properties of generalized convex functions, *Proc. Amer. Math. Soc.* 56 (1976), 118-120.
- R. A. ZALIK, On transforming a Tchebycheff system into a complete Tchebycheff system, J. Approx. Theory 20 (1977), 220-222.
- R. A. ZALIK, Embedding of weak Markov systems, J. Approx. Theory 41 (1984), 253-256; Erratum, J. Approx. Theory 43 (1985), 396.
- 11. R. A. ZALIK, Integral representation and embedding of weak Markov systems, J. Approx. Theory 58 (1989), 1-11.
- 12. R. ZIELKE, Alternation properties of Tchebyshev-systems and the existence of adjoined functions, J. Approx. Theory 10 (1974), 172-184.
- 13. R. ZIELKE, "Discontinuous Čebyšev Systems," Lecture Notes in Mathematics, Vol. 707, Springer-Verlag, New York, 1979.
- 14. R. ZIELKE, Relative differentiability and integral representation of a class of weak Markov systems, J. Approx. Theory 44 (1985), 30-42.
- 15. D. ZWICK, Degeneracy in WT-spaces, J. Approx. Theory 41 (1984), 100-113.