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Abstract 

This paper is concerned with maximum efficiency or power tracking for pneumatically-driven electric generator of a 
stand-alone small scale compressed air energy storage system (CAES). In this system, an air motor is used to drive a 
permanent magnet DC generator, whose output power is controlled by a buck converter supplying a resistive load. 
The output power of the buck converter is controlled power such that the air motor operates at a speed corresponding 
to either maximum power or maximum efficiency.  The maximum point tracking controller uses a linearised model of 
the air motor together with integral control action. The analysis and design of the controller is based on a small 
injected-absorbed current signal-model of the buck converter. The controller was implemented experimentally using 
a dSPACE system. Test results are presented to validate the design and demonstrate its capabilities. 
 
© 2013 The Authors. Published by Elsevier Ltd.  
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1. Introduction 

Small scale compressed air energy storage systems (CAES), such as shown in Fig. 1, have the 
potential to provide an alternative energy storage system for renewable sources [1-4]. Although its energy 
density and efficiency are lower than lithium batteries, it has the advantage of being more 
environmentally friendly. Improved performance of the discharging process, using maximum efficiency 
point tracking (MEPT) algorithm, has recently been the focus of research [1, 2]. The maximum efficiency 
of an air motor usually occurs at a different speed from the maximum power point, and if maximum 
power is desired, then a different strategy maximum power point tracking (MEPT) strategy needs to be 
used. 
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This paper discusses the design of both MEPT and MPPT for the CAES illustrated in Fig. 1. In this 
system, an air motor is used to drive a permanent magnet DC generator. The output power of the DC 
generator is controlled by a buck converter such that either MEPT or MPPT are achieved. 
 

 

Fig. 1. Configuration of the proposed discharging process with MEPT/MPPT strategies 

The paper starts by describing the modeling of a pneumatic to electrical energy conversion by 
modifying the existing curve fit equations of an air motor’s air consumption [1] and by adapting a suitable 
model for a buck converter with a PM DC generator. The stability of the system is analysed based on a 
small signal model of the buck and a linearised model of the air motor. Finally, the paper discusses the 
practical implementation of the controller and presents experimental results. 

2. System Model 

In the following sections we derive linearised models of the air motor and buck converter and develop 
a model of the system. 

2.1. Air motor model 

In this work, the air motor LZB 14 AR034 (100W)[5] is utilized under variable inlet pressure (pi). The 
motor can be characterised by toque (Mm), power (Pm) and air consumption (V̇a) using the following 
equations: 
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In these equations, the stall torque is Mo (pi) = ct1·pi +ct2, the free speed is No (pi) = cn1pi
2+cn2·pi +cn3, 

and the maximum air consumption is V̇max(pi)= ca1·pi + ca2 , where, ct1, ct2, cn1, cn2, cn3, ca1 and ca2 are real 
constants determined using curve fitting of the performance curves of the motor shown in Fig. 2. The 
maximum efficiency and maximum power lines clearly occur at different speeds as illustrated in Fig. 2. 
They are also strongly dependent on pressure. 
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Fig. 2. Maximum efficiency and power lines on air motor characteristic curves 

The derivative of shaft power of air motor (Pm) with respect to speed change is as below: 
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when the output power of the air motor is maximum. 
 

The conversion efficiency of the air motor ( pm) can be shown to be given by the ratio of the shaft 
power to the expanded air power at isentropic conditions[1], 
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The derivative of the conversion efficiency in (6) can be expressed as, 
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In the frequency domain (7) will be transformed to: 
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2.2. Model of permanent magnet DC generator and buck converter 

PM DC generator – buck converter equivalent circuit is shown in Fig. 3. The Figure also shows the 
equivalent circuits when the buck switch is either on or off. 

The dynamic behavior of the PM DC generator driven by a prime mover (air motor) is obtained by 
Newton’s 2nd law, as 

ram
am mam mg ram eg am g

d
T B B T J J

dt  (9) 

The back emf (torque) constant of the generator is given by 

ag m ramE K   (10) 
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The load torque for the air motor is the generator’s electromagnetic torque, i.e., 

eg e agT K i   (11) 

where iag is the generator armature current; ram is the angular velocity of the air motor and the 
generator; rag is the armature resistance; Lag is the inductance of the generator rotor winding, Vt is 
terminal voltage; Ke is torque constant; Km is speed constant; Bmam and Bmg are the viscous friction 
coefficients of the air motor and the generator respectively and Jam and Jg are the moments of inertia of 
the air motor and the generator. 
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Fig. 3. Circuit schematic of PM DC generator-buck converter and equivalent circuit state ON-OFF 

The average output voltage Vo of a buck converter is lower than its input voltage Vt depending on the 
duty cycle D of the switch S1, 

t

oV
D

V   (12) 

The Injected-absorbed current method [6] is applied to produce a small signal model of the buck 
converter as shown in Fig. 4. In this Figure G1(s), G2(s) and G3(s) are given by 

G1(s) = (D/ (2  Lt)) (  T (2-D) + ((2 -2DT+TD2)/ (s+ (D/ ))), 
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G2(s) = (-1/(2 ))[(  T( ((2D-D2)/Lt)+((1-D)2/Lbuck))+((D/Lt)+((1-D)/Lbuck))((2 -2DT+TD2)/ (s+ (D/ ))))], 

G3(s) = T [((2-D)/2) (((Eag-Vo)/Lt)-(Im/ )) + (D Im/2 )-D ((Eag-Vo)/2Lt) + (Vo (1-D)/Lbuck)] 
             + (1/ (2 )) [((Eag-Vo)/Lt) - (Im/ ) + (Vo/Lbuck)] [((2 -2DT+TD2)/ (s+ (D/ )))], 
 

 is the time constant (Lt/rag), Lt is the sum of Lbuck and Lag , Im is the minimum inductor current (>0) 
and T is time period of switching. 

The rate of power generation to storage conversion is then estimated based on equation (12) and 
further simplified in term of the armature and inductor currents, as given below 

( ) ( )ag bI s DI s   (13) 

The relationship between the inductor current and the combination of the storage capacitor Co and RL 
in parallel is 
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Fig. 4. Block diagram of the transfer function of PM-DC generator with buck converter 

3. The Maximum Point Controller 

The MEPT/MPPT controller is shown in Fig. 5. The user can select either MPPT or MEPT. When the 
MPPT is selected, the speed reference of the regulator is set to be half the free speed for the measured 
pressure according to equation (5). When the MEPT is selected, the reference speed is set such that the 
derivative of the efficiency is calculated using equations (7) and (8). 
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Fig. 5. The MEPT/MPPT controller 

The reference speed is used to set the duty cycle of the buck converter as shown in Fig. 6. The speed 
regulator has 3 feedback loops of the actual speed, buck inductor current and the load voltage. 
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Fig. 6. The speed regulator controller 

4. Experimental Implementation and Results 

The proposed discharging process with MEPT/MPPT strategies in stand-alone was implemented using 
a dSPACE MicroAutobox II System that can be programmed graphically using Matlab-Simulink. The 
PM DC generator used was a LEMAC/65167-008, (24V, 3000 rpm, 250 W). An Atlas Copco LZB 14 
AR034 (100W) was directly coupled to the generator. Data from the speed sensor, pressure transducer 
and flow sensor were sampled at a frequency of 20 kHz. A 100 VA the buck converter used a MOSFET 
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switching at 10 kHz. The load resistance RL was nominally 0.25 , but it can be switched to have that 
value during the test. The systems parameters are shown in Table 1. 

 
(1). Permanent Magnet DC Generator 

(2). Air Motor 

(3). Resistive Load 

(4). Buck Converter 

(5). Voltage and Current Sensors 

(6). Pressure Regulator 

(7). Pressure Transducer 

(8). Flow Sensor 

(9). Inlet Air Pressure 

(10). dSPACE 

(11). PC Computer 
 

 

Fig. 7. Experimental rig in discharging process with MEPT/MPPT strategies in stand-alone system 

The results in Fig. 8 show the response of the system under different load conditions for both MEPT 
and MPPT modes of operation. It is clear that the reference speed needed to achieve maximum efficiency 
is different from that needed to achieve maximum power. The results also show that the system is capable 
of coping with variable load conditions. Fig. 9 shows good agreement between the theoretical and 
experimental maximum power and maximum efficiency operating lines. 

 

Table 1. System parameter values 

Description Symbol Value 

Armature resistance rag 0.484  

Inductance of the generator  Lag 585 H 

Torque and speed constant Ke , Km 0.086 

Total moments of inertia Jt 0.001125 kg.m2 

Viscous friction coefficients Bt 0.001144 Nm s/rad 

Inductance of the buck converter[7] Lbuck 157 H 

Capacitor of the buck converter[7] Co 11 F 

Atmospheric pressure Pa 105 Pa 

Ratio of specific heat  1.4 
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Fig. 8. Response of the system under MPPT and MEPT strategies with different load at constant inlet pressure of 6 bar 
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Fig. 9. Experimental and theoretical maximum power and maximum efficiency operating lines 
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5. Conclusion 

To track maximum power, the reference speed of the air motor needs to be half of the free speed for a 
given pressure. The air motor speed corresponding to maximum efficiency can be also calculated from 
the motor characteristics and measurement of speed and pressure. These strategies were validated 
experimentally. However, these strategies require careful characterization of the air motor and require the 
use of speed and pressure sensors. Future work will investigate alternative strategies that do not require 
air motor characterization and use fewer sensors. 
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