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Subject-specific musculo-skeletal models of the lower extremity are an important tool for investigating

various biomechanical problems, for instance the results of surgery such as joint replacements and
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tendon transfers. The aim of this study was to assess the potential effects of errors in musculo-skeletal

geometry on subject-specific model results. We performed an extensive sensitivity analysis to quantify

the effect of the perturbation of origin, insertion and via points of each of the 56 musculo-tendon parts

contained in the model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall

Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by

only the perturbed musculo-tendon parts and by all the remaining musculo-tendon parts, respectively,

during a simulated gait cycle. Results indicated that, for each musculo-tendon part, only two points

show a significant sensitivity: its origin, or pseudo-origin, point and its insertion, or pseudo-insertion,

point. The most sensitive points belong to those musculo-tendon parts that act as prime movers in the

walking movement (insertion point of the Achilles Tendon: LSI¼15.56%, OSI¼7.17%; origin points of

the Rectus Femoris: LSI¼13.89%, OSI¼2.44%) and as hip stabilizers (insertion points of the Gluteus

Medius Anterior: LSI¼17.92%, OSI¼2.79%; insertion point of the Gluteus Minimus: LSI¼21.71%,

OSI¼2.41%). The proposed priority list provides quantitative information to improve the predictive

accuracy of subject-specific musculo-skeletal models.

& 2012 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Accurate knowledge of lower limb muscle and joint reaction
forces is fundamental to explore several biomechanical problems.
Musculo-skeletal (MS) models have previously been used to
simulate the effects of surgery such as joint replacements (Delp
et al., 1994; Piazza and Delp, 2001) and tendon transfers (Piazza
et al., 2003; Reinbolt et al., 2009). In these cases, subject-specific
MS geometry is essential to achieve reliable musculo-tendon (MT)
force predictions (Lenaerts et al., 2009). Unfortunately, it remains
unclear which parameters and which muscles are most sensitive
to potential errors.

Previous analyses on MS geometry focused on the sensitivity
of muscle moment arms (Hoy et al., 1990; Maganaris, 2004; Out
et al., 1996), whose estimation depends on the identification of
MT path (Pal et al., 2007; Rohrle et al., 1984). However, to our
knowledge no comprehensive analysis has been performed on
complex, multi-segment MS models.
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The aim of this study was to assess the potential effects of
errors in MS geometry on subject-specific models outcome. We
performed an extensive sensitivity analysis to quantify the effect
of perturbation of muscle origin, insertion and via points on the
model force predictions during gait. The results provided quanti-
tative information to draw up a priority list of the points that
need to be estimated most accurately, in order to obtain more
reliable subject-specific MS models.
2. Methods

We used the Twente Lower Extremity Model (TLEM) (Klein Horsman et al., 2007)

implemented in the AnyBody Modeling System ver. 4.2.1 (Damsgaard et al., 2006). The

model consisted of 12 body segments, 11 joints, and 21 degrees of freedom (Fig 1a).

Each leg contained 56 MT parts whose mechanical effect was described by 159 three-

element, Hill type MT elements (Zajac, 1989). Each MT element was described by the

origin and insertion points on the corresponding segments. In case of surrounding

structures, such as retinacula and tendon sheaths, via points were defined (Delp et al.,

1990). The most distal via point on the proximal segment, if present, was defined as

pseudo-origin. Similarly, the most proximal via point on the distal segment, if present,

was defined as pseudo-insertion.

Inverse dynamics simulations were based on 3D motion analysis and force-

plate data recorded during a trial of walking on a level walkway. Age, height and

mass of the one male subject were 26 years, 1.73 cm and 63 kg, respectively. The

model was scaled in order to match the subject’s anthropometry, derived from the

marker positions relative to each other. A static optimization problem was solved,
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Fig. 1. (a) TLEM model. It consisted of 12 body segments: HAT (head, arms and trunk), pelvis, and right and left femur, patella, tibia, talus and foot. The fibula was

considered as one unit in combination with the tibia. The model comprised 11 joints: L5S1 and left and right hip, knee, patella/femur, talocrural and subtalar. The L5S1 and

hip joints were modeled as a ball-and-socket, defined by a rotation center and three orthogonal axes. The knee, talocrural and subtalar joints were defined as a hinge, with

a fixed rotation center and axis. The patella could rotate with respect to the femur around a rotation axis with a fixed rotation center. The patellar tendon was defined as a

non-deformable element that connected the patella to the tibia. Thus, without introducing an extra Degree of Freedom (DOF), the orientation and position of the patella

depended solely on the knee flexion angle. The orientation and position of the center of mass of the pelvis with respect to a 3D global frame, together with the joint

rotations of the L5S1, hip, knee, talocrural and subtalar joints, resulted in a model with 21 DOFs. (b) Perturbations of the 3D location of the insertion point of the Achilles

Tendon from its nominal position. Perturbations of þ1 cm and �1 cm were performed along the posterior/anterior (X), distal/proximal (Y) and medial/lateral

(Z) directions of the local coordinate system of the foot.
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minimizing the sum of the cubes of muscle activations at each time step

(Crowninshield and Brand, 1981).

For each MT part, origin, insertion and via points were perturbed from their

nominal position. For each point, 6 perturbations were applied: þ1 cm and �1 cm

along the posterior/anterior (X), distal/proximal (Y) and medial/lateral (Z) directions of

the local segment coordinate systems (Wu et al., 2002) (Fig. 1a and b). MT parts sharing

a common point were perturbed simultaneously (Fig. 1b). For reasons of symmetry,

only the MT parts in the right leg were perturbed. In total, 55 origin points, 39 insertion

points and 39 via points (including pseudo-attachment points) were perturbed from

their nominal position, for a total of (55þ39þ39)n6¼798 perturbations.

For each perturbed MT element, tendon slack lengths were automatically

recalibrated maintaining the nominal optimal muscle fiber length. Then, a new

static optimization problem was solved. Sensitivity of the model was quantified by

computing two metrics:
1.
 Local Sensitivity Index (LSI), to quantify the effect of the perturbation on the

predicted force produced only by the perturbed MT parts:

LSI¼

P
i ¼ pert

R T
0 9FMT

new,iðtÞ�FMT
old,iðtÞ9dt

P
i ¼ pert

R T
0 FMT

old,iðtÞdt
100% ð1Þ
2.
 Overall Sensitivity Index (OSI), to quantify the effect of the perturbation on the

predicted force produced by all the remaining not-perturbed MT parts of the

right leg:

OSI¼

P
iapert

R T
0 9FMT

new,iðtÞ�FMT
old,iðtÞ9dt

P
iapert

R T
0 FMT

old,iðtÞdt
100% ð2Þ

where FMT
old,i tð Þ and FMT

new,i tð Þ are the nominal and perturbed values of force,

respectively, produced by the perturbed (i¼ pert) and not-perturbed (iapert)

MT parts at time step t, and T is the final time of the simulated gait cycle. Pilot

results showed that perturbations in the right leg had no influence on

predicted forces in the left leg.

For the three origin, insertion and via points that showed the highest OSI

values, we also performed perturbations of �1.5 cm, �0.5 cm, þ0.5 cm and

þ1.5 cm along the X, Y and Z directions, in order to check the linearity of the

sensitivity values.

3. Results

This study indicated that the model predictions were sensitive
to small changes in MS geometry. Tables A1, A2 and A3 show the
sensitivity results for perturbations of muscle origin, insertion
and via points, respectively.
LSI values, representing the sensitivity of the perturbed MT
parts, depended strongly on which point was perturbed and on
the direction of the perturbation (Figure 2a–c). Mean LSI values
ranged from a maximum of 39.10% (insertion point of the
Obturator Externus Superior (Table A2)) to negligible contributions
for the least sensitive points. The maximal LSI value was equal to
80.89% (insertion point of the Obturator Externus Superior,
þ1 cm along the Y direction (Table A2)).

Similarly, OSI values, representing the sensitivity of the not-
perturbed MT parts, depended strongly on which point was
perturbed and on the direction of the perturbation (Fig. 2d). Mean
OSI values ranged from a maximum of 7.17% (insertion point of
the Achilles Tendon (Table A2)), to negligible contributions for the
least sensitive points. The maximal OSI value was equal to 15.47%
(insertion point of the Achilles Tendon, þ1 cm along the Z
direction (Table A2)).

Moreover, LSI and OSI values showed a small Pearson linear
correlation coefficient (r¼0.3661). Hence, the points that showed
very high LSI values did not necessarily show very high OSI values
(Fig. 3).

Finally, for the three origin, insertion and via points that were
found to be the most sensitive, the OSI values showed a close-to-
linear pattern in the range of perturbations between �1.5 cm and
þ1.5 cm (Figure A1).
4. Discussion

The purpose of this study was to assess the sensitivity of
subject-specific models to potential errors in MS geometry.
Similarly to Redl et al. (2007), we quantified the sensitivity of
the model by computing two metrics. Local Sensitivity Index (LSI)
quantified the reaction of the perturbed MT parts to maintain
their nominal contribution to the joint moment, and depended
mainly on the variation of the moment arms. On the other hand,
Overall Sensitivity Index (OSI) quantified the reaction of all the
not-perturbed MT parts to balance the different contribution to



Fig. 2. Effect of perturbation of muscle points from their nominal position on the predicted MT forces during normal walking. Perturbations of þ1 cm and �1 cm were

performed along the posterior/anterior (X), distal/proximal (Y) and medial/lateral (Z) directions of the local segment coordinate systems. The black solid lines are the

nominal MT forces before the perturbation; the blue, red and green dashed lines are the predicted MT forces after the perturbation along the X, Y Z directions, respectively.

(a) Force produced by the Rectus Femoris after the perturbation of the origin points of the Rectus Femoris; (b) force produced by the Adductor Longus after the

perturbation of the origin points of the Adductor Longus; (c) sum of the force produced by the Gastrocnemius Lateralis and Medialis, Soleus Lateralis and Medialis, and

Plantaris after the perturbation of the insertion point of the Achilles Tendon; (d) sum of the forces produced by all the remaining not-perturbed MT parts after the

perturbation of the insertion point of the Achilles Tendon. Local Sensitivity Index (LSI) was calculated by integrating the absolute difference between the nominal and

perturbed MT forces over the simulated gait cycle, and then summing these integrated quantities across all the perturbed MT parts (see Eq. (1)). Overall Sensitivity Index

(OSI) was calculated by integrating the absolute difference between the nominal and perturbed MT forces over the simulated gait cycle, and then summing these

integrated quantities across all the non-perturbed MT parts (see Eq. (2)). Please note that different scales were used for subplots a, b and c, d. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Overall Sensitivity Index (OSI) values of the model to perturbations of

muscle points from their nominal position, plotted against their relative Local

Sensitivity Index (LSI) values. LSI and OSI values showed a small Pearson linear

correlation coefficient (r¼0.3661). The point that showed the highest LSI value

(I: insertion point of the Obturator Externus Superior, þ1 cm along the Y direction

(Table A2)) differs from the point that showed the highest OSI value (II: insertion

point of the Achilles Tendon, þ1 cm along the Z direction (Table A2)); III: origin

point of the Popliteus, þ1 cm along Y direction showed very high LSI value but

very low OSI value (Table A1); the insertion point of the Achilles tendon showed

the maximal LSI value for perturbation of þ1 cm along the X direction (II), while

the maximal OSI value for perturbation of þ1 cm along the Z direction (IV).
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the joint moments by the perturbed MT parts, especially for
biarticular MT parts.

For each MT part (the only exception was the Sartorius), only
two points showed significant sensitivity: its origin, or pseudo-
origin, point and its insertion, or pseudo-insertion, point. In fact,
muscle moment arms were affected only by perturbations of
attachment or pseudo-attachment points, while perturbations of
any other point would just affect the length of the MT element.

Moreover, points showing high LSI values but low OSI values
indicated large relative changes in MT parts contributing only
little to the joint moments: the effect of the perturbation was
limited to the perturbed MT part only and did not influence the
rest of the model. On the contrary, high OSI values indicated MT
parts with an important role during the gait and whose perturba-
tion would affect the remaining MT parts.

For these reasons, we decided to use OSI values as an index to
draw up a priority list of the points that need to be estimated
most carefully to create a more reliable subject-specific MS model
(Table 1). The most sensitive points belong to the MT parts that
act as prime movers in the walking movement (Triceps Surae,
Quadriceps Femoris, Hamstrings) and hip stabilizers (Gluteal
Muscles, Iliacus, Obturator Internus and Externus, and Piriformis).

Several limitations should be kept in mind before interpreting
our results. Firstly, the proposed sensitivity analysis was based on
the gait simulation of a single subject. Gait simulations of various
healthy subjects are likely to show great similarities in the force
predictions. Therefore, the ranking of the most sensitive points is
expected to remain similar.

Secondly, the sensitivity analysis was applied only to normal
walking. Since muscle function strongly depends on the task
performed (Liu et al., 2008), results are expected to change based
on the movement analyzed (Scovil and Ronsky, 2006).

Thirdly, the static optimization problem was solved using a
single performance criterion, specifically by minimizing the sum



Table 1
Priority list of the most sensitive attachment, or pseudo-attachment, points to perturbations from their nominal position. Perturbations of þ1 cm and �1 cm were

performed along the posterior/anterior (X), distal/proximal (Y) and medial/lateral (Z) directions of the local segment coordinate systems. For each point, mean values of

Local Sensitivity Index (LSI) and Overall Sensitivity Index (OSI) over X, Y and Z direction and over the six perturbations are indicated. Cells shading (blue for LSI, red for OSI)

is directly proportional to the OSI value. O., P.O., I. and P.I. indicate if the point represents an origin, pseudo-origin, insertion or pseudo-insertion, respectively.
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of cubes of muscle activation at each time step. It is likely that
sensitivity results depend on the performance criterion used, but
the ranking of the most sensitive points could be similar for other
criterions (De Groote et al., 2010).

In conclusion, this study showed that small errors in MS
geometry can have a significant impact on muscle force predic-
tions, and provided quantitative information to improve the
predictive accuracy of MS models. An expansion of the proposed
sensitivity analysis to several subjects and tasks, different perfor-
mance criterion and other model parameters related to MS
geometry and MT architecture could help to improve our under-
standing of the vulnerability of subject-specific models outcome
to potential measurement errors.
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