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1. Introduction

We consider the nonlinear Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + W (x)ψ − |ψ |p−1ψ, (t, x) ∈ R × R

N , (1)

which appears for instance in nonlinear optics or condensed matter physics. A standing wave solution
of (1) is a solution of the form

ψ(t, x) = e−iEt/h̄u(x),

where E is the energy of the wave. The function ψ is a standing wave solution of (1) if and only if u
is a solution of the semilinear elliptic equation

−ε2�u + V (x)u = |u|p−1u, x ∈ R
N , (2)

where ε2 = h̄2/2m and V (x) = W (x) − E . It is a bound state if u ∈ H1(RN ). From a physical point of
view, one expects to recover the laws of classical mechanics when h̄ → 0. It is thus interesting to
study the behavior of the solutions of (2) as ε tends to 0. The bound states of (2) with ε small are
referred to as semiclassical states.

It is well known that problem (2) possesses solutions which exhibit concentration phenomena as
ε → 0. More precisely, these solutions converge uniformly to 0 outside some concentration set, while
remaining uniformly positive in the concentration set. This concentration set can be either a point,
a finite set of points or a manifold.

The solutions concentrating around one or several isolated points have been intensively studied
(see for example [1,8] and their bibliographies).

On the other hand, one can ask if there exist solutions of (2) concentrating on a higher dimensional
set. This problem has been solved for some specific higher dimensional sets. Solutions concentrat-
ing on curves have been found recently in [13], see also [12] for the case N = 2 and [14,15] for a
Neumann singularly perturbed problem. Here we shall restrict ourselves to the problem of solutions
concentrating around spheres. In several recent papers [3–7,9], solutions concentrating on (N − 1)-
dimensional spheres have been found. In [16], solutions concentrating on (N −2)-dimensional spheres
are investigated.

We focus on solutions concentrating around a k-dimensional sphere in R
N , 1 � k � N − 1. The

existence of such solutions has been discussed in remarks in [1,2,9]. Particular problems arise in the
critical frequency case, namely when infRN V = 0. These problems have been tackled in [4] and [9].

Theorem 1. (See Ambrosetti and Ruiz [4].) Assume that p > 1, that V ∈ C1(RN ) is a positive bounded radially
symmetric potential, that ∇V is bounded and that

lim inf|x|→∞ V (x)|x|2 > 0.

If there exists r∗ such that the function M : (0,∞) → R defined for r > 0 by

M(r) := rN−1[V (r)
] p+1

p−1 − 1
2 (3)

has an isolated local maximum or minimum at r = r∗ , then, for ε > 0 small enough, Eq. (2) has a positive
radially symmetric solution uε ∈ H1(RN ) that concentrates at the sphere |x| = r∗ .
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The problem in [9] is rather different. The potential V vanishes and the solutions concentrate
around zeroes of V . The asymptotic behavior depends on the shape of V around 0.

Theorem 1 relies on a Lyapunov–Schmidt reduction method. The aim of this note is to examine
possible improvements in the previous results that can be obtained by using the penalization method,
a variational method originally due to Del Pino and Felmer [11] and adapted to our framework in
the papers [8,17]. This method permits us to treat superquadratically decaying potentials, or even
compactly supported potentials.

Our results include the following simple particular case.

Theorem 2. Let N � 3, p > N
N−2 and V ∈ C(RN \ {0},R

+) be a radial potential. If there exists r∗ > 0 such
that the function M(r) defined by (3) has an isolated local minimum at r = r∗ such that M(r∗) > 0, then
for ε small enough, Eq. (2) has a positive radially symmetric solution uε that concentrates on the sphere of
radius r∗ .

If N � 5, one has also that uε ∈ L2(RN ) (see Corollary 5.7).
In contrast with Theorem 1, we do not require any boundedness assumption on V or its deriva-

tives, and we treat potentials V which are singular at the origin or vanish superquadratically at
infinity.

Theorem 2 is a particular case of Theorem 3 below, which deals with a nonlinearity which is nei-
ther necessarily homogeneous nor autonomous, see Eq. (4) below. Furthermore, we will find solutions
concentrating on a k-dimensional sphere, 1 � k � N − 1. In this case, the critical exponent to be taken
into consideration is pk = N−k+2

N−k−2 if N −k � 3, pk = ∞ if N −k = 1,2. We also obtain results for N = 2
with a little more care, see Section 6.

Let us point out that if V is compactly supported and p � N
N−2 , then Eq. (2) has no positive

solution in the neighborhood of infinity, see the discussion in [17].
Assuming that the potential V is cylindrically symmetric, we can reduce (2) to a problem in R

N−k .
The single-peaked solutions of this problem can then be extended to R

N by symmetry. In this way, we
obtain a solution of (2) concentrating around a k-dimensional sphere. Observe that since the reduced
problem is in R

N−k , the critical exponent to be considered is the one in dimension N − k. This allows
for example to treat critical or supercritical problems by looking for cylindrically symmetric (non-
necessarily radial) solutions. Another kind of solutions to (2) with p supercritical and V decaying
superquadratically have been found in [10].

2. Assumptions and main result

We shall study the equation with a more general nonlinearity

−ε2�u + V (x)u = K (x) f (u), x ∈ R
N . (4)

Let k be a fixed integer such that 1 � k � N − 1. This number k is the dimension of the sphere on
which we want to construct concentrating solutions. Let us choose any (N −k − 1)-dimensional linear
subspace H ⊂ R

N . We denote by H⊥ the orthogonal complement of H.

2.1. The potentials

We consider a nonnegative potential V ∈ C(RN \ {0}) and a nonnegative competing function K ∈
C(RN \ {0}), K 	≡ 0. We assume that for every R ∈ O(N) such that R(H) = H, we have V ◦ R = V and
K ◦ R = K . This will be the case if for example V and K are radial functions. Notice that if we write
x = (x′, x′′) with x′ ∈ H and x′′ ∈ H⊥ , this assumption is equivalent to the fact that V and K depend
only on |x′| and |x′′|.
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2.2. The nonlinearity

We make classical assumptions on f that lead to a good minimax characterization of the infimum
on the Nehari manifold. Namely, we assume that f : R

+ → R
+ is continuous and that

( f1) there exists q > 1 such that f (s) = O (sq) as s → 0+ ,
( f2) there exists p > 1 such that 1

p+1 > 1
2 − 1

N−k and f (s) = O (sp) as s → ∞,
( f3) there exists 2 < θ � p + 1 such that

0 < θ F (s) � f (s)s for s > 0,

where F (s) := ∫ s
0 f (σ )dσ ,

( f4) the function

s → f (s)

s

is nondecreasing.

Notice that ( f2) is nothing but the subcriticality condition in dimension N − k.

2.3. The growth conditions

Following [8,17] we impose one of the three sets of growth conditions at infinity:

(G 1∞) there exists σ < (N − 2)q − N such that

lim sup
|x|→∞

K (x)

|x|σ < ∞;

(G 2∞) there exists σ ∈ R such that

lim inf|x|→∞ V (x)|x|2 > 0 and lim sup
|x|→∞

K (x)

|x|σ < ∞;

(G 3∞) there exist α < 2 and σ ∈ R such that

lim inf|x|→∞ V (x)|x|α > 0 and lim sup
|x|→∞

K (x)

exp(σ |x| 2−α
2 )

< ∞.

Note that in comparison with [8], in (G 2∞) and (G 3∞), V might vanish somewhere. We also impose
one of the three sets of growth conditions at the origin, which mirror those at infinity:

(G 1
0 ) there exists τ > −2, such that

lim sup
|x|→0

K (x)

|x|τ < ∞;
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(G 2
0 ) there exists τ ∈ R such that

lim inf|x|→0
V (x)|x|2 > 0 and lim sup

|x|→0

K (x)

|x|τ < ∞;

(G 3
0 ) there exist γ > 2 and τ ∈ R such that

lim inf|x|→0
V (x)|x|γ > 0 and lim sup

|x|→0

K (x)

exp(τ |x|− γ −2
2 )

< ∞.

By Kelvin transform, there is a duality between the conditions at the origin and the conditions at
infinity, at least in the case where f (t) = t p . If one defines û to be the Kelvin transform of u, i.e.,

û(x) = 1

|x|N−2
u

(
x

|x|2
)

and the transformed potentials

V̂ (x) = 1

|x|4 V

(
x

|x|2
)

and

K̂ (x) = 1

|x|N+2−p(N−2)
K

(
x

|x|2
)

,

the function uε solves (4) if and only if ûε solves the same problem with V̂ and K̂ in place of V
and K . One sees that V , K satisfy (G i

0) if and only if V̂ and K̂ satisfy (G i∞).
The problem at the origin is in a sense in duality with the one at infinity. Whereas a slow decay

of V at infinity does allow a lot of freedom for K , a strong singularity at the origin allows for very
singular K ’s too. The critical threshold growth is 1/|x|2 both at the origin and at infinity. This can
be made clearer if we observe that the optimal barrier functions at the origin are the optimal one at
infinity mapped by Kelvin transform.

2.4. The auxiliary potential

Before we can state our last assumption, we need a few preliminaries. Let a,b > 0. The equation

−�u + au = bf (u) in R
N−k (5)

is called the limit equation associated with (4). The weak solutions of (5) are critical points of the
functional Ia,b : H1(RN−k) → R defined by

Ia,b(u) := 1

2

∫

RN−k

(|∇u|2 + au2)dx − b

∫

RN−k

F (u)dx. (6)

Any nontrivial critical point u ∈ H1(RN−k) of Ia,b , belongs to the Nehari manifold

Na,b := {
u ∈ H1(

R
N−k) ∣∣ u 	≡ 0 and

〈
I ′

a,b(u), u
〉 = 0

}
.
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A solution u ∈ H1(RN−k) is a least-energy solution of (5) if

Ia,b(u) = inf
v∈Na,b

Ia,b(v).

The ground-energy function is defined by

E : R
+ × R

+ → R
+ : (a,b) → E (a,b) := inf

u∈Na,b

Ia,b(u),

and the auxiliary potential M : R
N → (0,+∞] by

(
x′, x′′) → M

(
x′, x′′) :=

{
|x′′|k E (V (x), K (x)) if K (x) > 0,

+∞ if K (x) = 0.

The following lemma states some properties of the ground-energy function, see [8, Lemma 3].

Lemma 2.1. Assume f : R
+ → R

+ is a continuous function that fulfills assumptions ( f1)–( f4). Then, for every
(a,b) ∈ R

+
0 × R

+
0 , E (a,b) is a critical value of Ia,b and we have

E (a,b) = inf
u∈H1(RN )

u 	=0

max
t�0

Ia,b(tu).

If u ∈ Na,b and E (a,b) = Ia,b(u), then u ∈ C1(RN ) and up to a translation, u is a radial function such that
∇u(x) · x < 0 for every x ∈ R

N \ {0}. Moreover, the following properties hold:

(i) E is continuous in R
+
0 × R

+
0 ;

(ii) for every b∗ ∈ R
+
0 , a → E (a,b∗) is strictly increasing;

(iii) for every a∗ ∈ R
+
0 , b → E (a∗,b) is strictly decreasing;

(iv) for every λ > 0, E (λa, λb) = λ1−N/2 E (a,b);
(v) if f (u) = up with 1

2 − 1
N−k < 1

p+1 < 1
2 , then

E (a,b) = E (1,1)a
p+1
p−1 − N

2 b− 2
p−1 .

If f (u) = up with 1
2 − 1

N−k < 1
p+1 < 1

2 , the last property of the preceding lemma implies the
following explicit form of the auxiliary potential:

M
(
x′, x′′) = E (1,1)

∣∣x′′∣∣k[
V (x)

] p+1
p−1 − N−k

2
[

K (x)
] −2

p−1 .

Due to the symmetry that we shall impose on the solution (see (14)), the concentration can only
occur in the space H⊥ . We assume that there exists a smooth bounded open set Λ ⊂ R

N such that

Λ̄ ∩ H = ∅, Λ ∩ H⊥ 	= ∅, (7)

for every R ∈ O(N) such that R(H) = H,

R(Λ) = Λ (8)

and
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0 < inf
Λ∩H⊥

M < inf
∂Λ∩H⊥

M. (9)

In the case where k = N − 2, we shall need the condition

inf
Λ∩H⊥

M < 2 inf
Λ

M. (10)

By continuity of M in Λ, this condition is not restrictive. Similarly, we can also assume that V > 0
on Λ and that M is continuous on Λ.

Our main result is the following theorem.

Theorem 3. Let N � 2, V , K ∈ C(RN \ {0},R
+) satisfy one set (G i

0) of growth conditions at the origin and one

set (G j∞) of growth conditions at infinity, and f satisfy assumptions ( f1)–( f4). Assume there exists an open
bounded set Λ ⊂ R

N such that (7), (8), (9) and, if k = N − 2, (10) hold. Then there exists ε0 > 0 such that
for every 0 < ε < ε0 , problem (2) has at least one positive solution uε . Moreover, for every 0 < ε < ε0 , there
exists xε ∈ Λ ∩ H⊥ such that uε attains its maximum at xε ,

lim inf
ε→0

uε(xε) > 0,

lim
ε→0

M(xε) = inf
Λ∩H⊥

M,

and there exist C > 0 and λ > 0 such that

uε(x) � C exp

(
−λ

ε

d(x, Sk
ε)

1 + d(x, Sk
ε)

)(
1 + |x|2)−(N−2)

2 , ∀x ∈ R
N ,

where Sk
ε is the k-sphere centered at the origin and of radius |x′′

ε |.

In the special case where x0 ∈ Λ ∩ H⊥ is the unique minimizer of M on Λ ∩ H⊥ , then xε → x0,
and the solution concentrates around a k-dimensional sphere of radius |x0| centered at the origin.

One should note that the theorem is valid in dimension 2, but the solutions that are obtained do
not decay at infinity in general.

Theorem 2 follows from Theorem 3 by taking K ≡ 1, f (u) = up and k = N − 1. Indeed, we notice
that the growth condition (G 1

0 ) is always satisfied whereas the condition (G 1∞) holds if and only if
(N − 2)p − N > 0, i.e. p > N

N−2 .
The sequel of the paper is devoted to the proof of Theorem 3. In Section 3, we introduce a pe-

nalized problem and prove that it has a least-energy solution. In Section 4, we study the asymptotics
of this solution and in Section 5, we obtain decay estimates of the solution and show that it also
solves the original problem. In all these sections, we assume that N � 3. The modifications for the
case N = 2 will be addressed in Section 6.

3. The penalization scheme

We assume that N � 3. The homogeneous Sobolev space D1,2(RN ) is the closure of the set of
compactly supported smooth functions D(RN ) with respect to the norm

( ∫
N

|∇u|2 dx

) 1
2

.

R
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Thanks to the Sobolev inequality, we have D1,2(RN ) ⊂ L2∗
(RN ). Let us also recall Hardy’s inequality

in R
N . One has

(
N − 2

2

)2 ∫

RN

|u(x)|2
|x|2 dx �

∫

RN

|∇u|2,

for all u ∈ D1,2(RN ).
Following [17], we define the penalization potential H : R

N → R by

H(x) := κ

|x|2((log |x|)2 + 1)
1+β

2

where β > 0 and 0 < κ < ( N−2
2 )2. Notice that for all x ∈ R

N , we have

H(x) � κ

|x|2 .

By Hardy’s inequality, we deduce that the quadratic form associated to −� − H is positive, i.e.

∫

RN

(|∇u|2 − Hu2) �
((

N − 2

2

)2

− κ

) ∫

RN

|u(x)|2
|x|2 dx � 0, (11)

for all u ∈ D1,2(RN ).
This inequality implies the following comparison principle.

Proposition 3.1. Let Ω ⊂ R
N \{0} be a smooth domain. Let v, w ∈ H1

loc(Ω)∩C(Ω) be such that ∇(w −v)− ∈
L2(Ω), (w − v)−/|x| ∈ L2(Ω) and

−�w − H w � −�v − H v, ∀x ∈ Ω. (12)

If ∂Ω 	= ∅, assume also that w � v on ∂Ω . Then w � v in Ω .

Proof. It suffices to multiply the inequality (12) by (w − v)− , integrate by parts and use (11). �
Fix μ ∈ (0,1). We define the penalized nonlinearity gε : R

N × R
+ → R by

gε(x, s) := χΛ(x)K (x) f (s) + (
1 − χΛ(x)

)
min

{(
ε2 H(x) + μV (x)

)
s, K (x) f (s)

}
.

Let Gε(x, s) := ∫ s
0 gε(x, σ )dσ . One can check that gε is a Carathéodory function with the following

properties:

(g1) gε(x, s) = o(s), s → 0+ , uniformly in compact subsets of R
N ,

(g2) there exists p > 1 such that 1
p+1 > 1

2 − 1
N−k and

lim
s→∞

gε(x, s)

sp
= 0,
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(g3) there exists 2 < θ � p + 1 such that

0 < θGε(x, s) � gε(x, s)s ∀x ∈ Λ, ∀s > 0,

0 < 2Gε(x, s) � gε(x, s)s �
(
ε2 H(x) + μV (x)

)
s2 ∀x /∈ Λ, ∀s > 0,

(g4) the function

s → gε(x, s)

s

is nondecreasing for all x ∈ R
N .

We look for a positive solution of the penalized equation

−ε2�u + V (x)u = gε(x, u) in R
N (Pε)

in the Hilbert space

H1
V

(
R

N) :=
{

u ∈ D1,2(
R

N) ∣∣∣
∫

RN

V u2 < ∞
}

endowed with the norm

‖u‖2
ε :=

∫

RN

(
ε2|∇u|2 + V u2). (13)

We will search for a solution of (Pε) in the closed subspace

H1
V ,H

(
R

N) := {
u ∈ H1

V

(
R

N) ∣∣ ∀R ∈ O(N) s.t. R(H) = H, u ◦ R = u
}
. (14)

In other words, if x = (x′, x′′) with x′ ∈ H and x′′ ∈ H⊥ , the functions in H1
V ,H(RN ) depend only on

|x′| and |x′′|.
Define Jε : H1

V ,H(RN ) → R by

Jε(u) := 1

2

∫

RN

(
ε2

∣∣∇u(x)
∣∣2 + V (x)

∣∣u(x)
∣∣2)

dx −
∫

RN

Gε

(
x, u(x)

)
dx.

The functional Jε is well defined and of class C1(H1
V ,H(RN ),R). By the principle of symmetric

criticality [18], critical points are weak solutions of (Pε). Furthermore, Jε has the mountain pass
geometry. It remains to show that Jε satisfies the Palais–Smale condition. The proof below is inspired
from [8]. Recall that a sequence (un)n ⊂ H1

V ,H(RN ) is a Palais–Smale sequence for Jε if

Jε(un) � C and J ′
ε(un) → 0, n → ∞.

Proposition 3.2. For ε sufficiently small, every Palais–Smale sequence for Jε contains a convergent subse-
quence.



950 D. Bonheure et al. / J. Differential Equations 252 (2012) 941–968
Proof. Let (un)n ⊂ H1
V ,H(RN ) be a Palais–Smale sequence for Jε . It is standard to check, using (g3),

that for ε sufficiently small, the sequence (un)n is bounded in H1
V ,H(RN ). We infer that, up to a

subsequence, un ⇀ u in H1
V ,H(RN ).

For λ ∈ R
+ , set Aλ := B(0, eλ) \ B(0, e−λ). Note that

H(x) � κ

|x|2| log |x||1+β
.

By Hardy’s inequality, we have for λ � 0,

∫

RN\Aλ

Hu2
n � κ

λ1+β

∫

RN

|un(x)|2
|x|2 dx � κ

λ1+β

(
2

N − 2

)2 ∫

RN

|∇un|2.

Since (un)n is bounded in H1
V ,H(RN ), for every δ > 0, there exists λ̄ � 0 such that

lim sup
n→∞

∫

RN\Aλ̄

Hu2
n < δ. (15)

Now we claim that for all δ > 0, there exists λ̃ > 0 such that

lim sup
n→∞

∫

RN\A
λ̃

V u2
n < δ. (16)

We only sketch the proof, since the arguments are similar to those in [8, Lemma 6]. Since Λ̄ ⊂ R
N \{0}

is compact, there exists λ0 � 0 such that

Λ̄ ⊂ Aλ0 .

Let ζ ∈ C∞(R) be such that 0 � ζ � 1 and

ζ(s) =
{

0 if |s| � 1
2 ,

1 if |s| � 1.

Define a cut-off function ηλ ∈ C∞(RN ,R) by

ηλ(x) := ζ

(
log |x|

λ

)
.

Since 〈 J ′
ε(un), ηλun〉 = o(1) as n → ∞, we deduce that

∫

RN

(
ε2|∇un|2 + V u2

n

)
ηλ =

∫

RN

gε

(
x, un(x)

)
un(x)ηλ(x)dx − ε2

∫

RN

un∇un · ∇ηλ + o(1), (17)

as n → ∞. If λ � 2λ0, ηλ = 0 on Λ and it follows from (g3) that
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∫

RN

gε

(
x, un(x)

)
un(x)ηλ(x)dx �

∫

RN

(
ε2 H + μV

)
u2

nηλ. (18)

On the other hand, using Hardy’s inequality, we can show as in [8] that

∣∣∣∣
∫

RN

un∇un · ∇ηλ

∣∣∣∣ � C

λ
‖un‖2

ε. (19)

Combining (17), (18) and (19), we get, for every λ � 2λ0,

∫

RN \Aλ

(
ε2|∇un|2 + (1 − μ)V u2

n

)
ηλ �

∫

RN

(
ε2|∇un|2 + (1 − μ)V u2

n

)
ηλ

�
∫

RN

ε2 Hu2
nηλ + C

λ
‖un‖2

ε + o(1).

By (15), for λ large enough,

lim sup
n→∞

∫

RN

Hu2
nηλ � lim sup

n→∞

∫

RN\Aλ̄

Hu2
n <

δ

2
;

the claim follows.
Conclusion. We can write

‖un − u‖2
ε = J ′

ε(un)(un − u) − J ′
ε(u)(un − u)

+
∫

RN

(
gε

(
x, un(x)

) − gε

(
x, u(x)

))(
un(x) − u(x)

)
dx. (20)

We notice that the first two terms in the right-hand side tend to 0 as n → ∞. Fix δ > 0 and let λ > 0
be such that (15) and (16) hold. We evaluate the integral in the third term of (20) separately on Λ,
Aλ \ Λ and R

N \ Aλ , where λ = max{λ̃, λ̄}.
By (g2), one has |gε(x, un(x))| � C |un(x)|p . By Rellich Theorem, the embedding H1

V ,H(Λ) ↪→ Lq(Λ)

is compact for all q > 1 such that 1
q > 1

2 − 1
N−k . We can thus assume that un → u in L p+1(Λ). We

deduce that gε(x, un) → gε(x, u) in Lq(Λ) as n → ∞, where q := p+1
p . We conclude from Hölder’s

inequality that

∫
Λ

(
gε

(
x, un(x)

) − gε

(
x, u(x)

))(
un(x) − u(x)

)
dx → 0, as n → ∞.

By (g3), one has |gε(x, un(x))| � (ε2 H(x) + μV (x))|un(x)| for x ∈ Aλ \ Λ. By Rellich Theorem, we
can assume that un → u in L2(Aλ \ Λ). We deduce that gε(x, un) → gε(x, u) in L2(Aλ \ Λ) as n → ∞.
We conclude as above that

∫
A \Λ

(
gε

(
x, un(x)

) − gε

(
x, u(x)

))(
un(x) − u(x)

)
dx → 0, as n → ∞.
λ
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Finally, using (g3), (15) and (16), we obtain

lim sup
n→∞

∫

RN\Aλ

∣∣gε

(
x, un(x)

) − gε

(
x, u(x)

)∣∣∣∣un(x) − u(x)
∣∣dx

� 2 lim sup
n→∞

∫

RN\Aλ

(∣∣gε

(
x, un(x)

)
un(x)

∣∣ + ∣∣gε

(
x, u(x)

)
u(x)

∣∣)dx

� 2 lim sup
n→∞

∫

RN\Aλ

(
ε2 H + μV

)(
u2

n + u2)

� 4(1 + μ)δ,

since λ � λ̄ and λ � λ̃.
Since δ > 0 is arbitrary, we conclude

lim
n→∞‖un − u‖ε = 0,

which ends the proof. �
We can now state an existence theorem for the penalized problem (Pε). The proof follows from

standard arguments.

Theorem 4. Let g : R × R
+ → R be a Carathéodory function satisfying (g1)–(g4) and V ∈ C(RN \ {0})

be a nonnegative function. Then, for all ε > 0, the functional Jε possesses a nontrivial critical point uε ∈
H1

V ,H(RN ), which is characterized by

cε := Jε(uε) = inf
u∈H1

V ,H(RN )\{0}
max
t>0

Jε(tu). (21)

The function uε found in Theorem 4 is called a least-energy solution of (Pε). By standard regularity
theory, if u ∈ H1

loc(R
N ) is a solution of (Pε), then u ∈ W 2,q

loc (RN ) for every q ∈ (1,∞). In particular,

u ∈ C1,α
loc (RN ) for every α ∈ (0,1). Since gε is not continuous, we cannot achieve a better regularity.

Notice also that, by the strong maximum principle, any nontrivial nonnegative solution u ∈ C1,α
loc (RN )

of (Pε) is positive in R
N .

4. Asymptotics of solutions

In this section we study the asymptotic behavior as ε → 0 of the solution found in Theorem 4. We
follow closely the arguments in [8, §6]. We first prove an energy estimate which is the counterpart of
[8, Lemma 12]. Let R

N−k+ := R
N−k−1 × R

+ .

Proposition 4.1 (Upper estimate of the critical value). Suppose that the assumptions of Theorem 4 are satisfied.
For ε small enough, the critical value cε defined in (21) satisfies

cε � εN−k
(
ωk inf

⊥
M + o(1)

)
as ε → 0,
Λ∩H
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where ωk is the volume of the unit sphere in R
k+1 . Moreover, the solution uε of (Pε) found in Theorem 4

satisfies, for some C > 0,

‖uε‖2
ε � CεN−k.

Proof. Let x0 = (0, x′′
0) ∈ Λ ∩ H⊥ be such that M(x0) = infΛ∩H⊥ M. Denote by I0 the functional

defined by (6) with a = V (x0) and b = K (x0) and w a ground state of (5). Take η ∈ D(RN−k+ ) to be a
cut-off function such that 0 � η � 1, η = 1 in a neighborhood of (0, |x′′

0|) and ‖∇η‖∞ � C . Consider
the test function

u(x) := η
(
x′,

∣∣x′′∣∣)w

(
x′

ε
,
|x′′| − |x′′

0|
ε

)
.

Setting

u
(
x′, x′′) =: v

(
x′

ε
,
|x′′| − |x′′

0|
ε

)
,

we compute by a change of variable

Jε(tu) = ωk
t2

2

∫

RN−k−1

∞∫

− |x′′0 |
ε

(|∇v|2 + V
(
εy′, ερ + ∣∣x′′

0

∣∣)v2)(ερ + ∣∣x′′
0

∣∣)k
ε dρ εN−k−1 dy′

− ωk

∫

RN−k−1

∞∫

− |x′′0 |
ε

G
(
εy′, ερ + ∣∣x′′

0

∣∣, tv
)(

ερ + ∣∣x′′
0

∣∣)k
ε dρ εN−k−1 dy′.

For ε small enough, we obtain

ε−(N−k) Jε(tu) � ωk
∣∣x′′

0

∣∣k
I0(t w) + o(1). (22)

We deduce from (21) that

ε−(N−k)cε � max
t>0

ε−(N−k) Jε(tu)

� ωk
∣∣x′′

0

∣∣k
max
t>0

I0(t w) + o(1)

= ωk M(x0) + o(1),

which is the desired conclusion. �
Proposition 4.2 (No uniform convergence to 0 in Λ). Suppose that the assumptions of Theorem 4 are satisfied
and let (uε)ε ⊂ H1

V ,H(RN ) be positive solutions of (Pε) obtained in Theorem 4. Then there exists δ > 0 such
that

‖uε‖L∞(Λ) � δ.
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Proof. Suppose by contradiction that ‖uε‖L∞(Λ) → 0 as ε → 0. Then, ( f1) implies that, for all ε
sufficiently small, K f (uε) � μV uε in Λ. By (g3), we deduce that

−ε2(�uε + Huε) + (1 − μ)V uε � 0 in R
N .

Proposition 3.1 then implies that uε ≡ 0 for all ε sufficiently small, which is impossible. �
By the symmetry imposed on uε , one can write uε(x′, x′′) = ũε(x′, |x′′|) with ũε : R

N−k+ → R. Since
the H1

V -norm of uε is of the order ε(N−k)/2, it is natural to rescale ũε(x′, |x′′|) as ũε(x′
ε + εy′, |x′′

ε | +
ε|y′′|) around a well-chosen family of points xε = (x′

ε, x′′
ε) ∈ R

N .
The next lemma shows that the sequences of rescaled solutions converge, up to a subsequence, in

C1
loc(R

N−k) to a function v ∈ H1(RN−k).

Lemma 4.3. Suppose that the assumptions of Theorem 4 are satisfied. Let uε ∈ H1
V ,H(RN ) be positive solutions

of (Pε) found in Theorem 4, (εn)n ⊂ R
+ and (xn)n ⊂ R

N be sequences such that εn → 0 and xn = (x′
n, x′′

n) →
x = (x′, x′′) ∈ Λ̄ as n → ∞. Set

Ωn := R
N−k−1 ×

]
−|x′′

n |
εn

,+∞
[

and let vn :Ωn → R be defined by

vn(y, z) := ũεn

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz
)
, (23)

where ũεn : R
N−k+ → R is such that uεn (x′, x′′) = ũεn (x′, |x′′|). Then, there exists v ∈ H1(RN−k) such that,

along a subsequence that we still denote by (vn)n,

vn
C1

loc(R
N−k)−−−−−−→ v.

Proof. First observe that each vn solves the equation

−�vn − εnk

z

∂vn

∂z
+ V

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz
)

vn = gεn

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz, vn
)
, (24)

in Ωn . We infer from Proposition 4.1 that for all n ∈ N,

∫
Ωn

(∣∣∇vn(y, z)
∣∣2 + V

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz
)∣∣vn(y, z)

∣∣2)
dy dz � C,

with C > 0 independent of n.
Define a cut-off function ηR ∈ D(RN−k) such that 0 � ηR � 1, ηR(x) = 1 if |x| � R/2, ηR(x) = 0 if

|x| � R and ‖∇ηR‖∞ � C/R for some C > 0. Choose (Rn)n such that Rn → ∞ and εn Rn → 0. Since
x̄ ∈ Λ and Λ̄ ∩ H = ∅, one has εn Rn � |x′′

n | if n is large enough. Define wn ∈ H1
loc(R

N−k) by

wn(y) := ηRn (y)vn(y).

On the one hand, we notice that
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∫

RN−k

w2
n �

∫
B(0,Rn)

v2
n � 1

infB(xn,εn Rn) V

∫
Ωn

V
(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz
)∣∣vn(y, z)

∣∣2
dy dz.

Since V is positive on Λ̄ and continuous on R
N , the convergence of xn to a point in Λ̄ implies that

∫

RN−k

w2
n � C . (25)

On the other hand, we compute in the same way as in [8, Lemma 13]
∫

RN−k

|∇wn|2 � C‖vn‖2
H1(B(0,Rn))

. (26)

Since

‖vn‖H1(B(0,Rn)) � C‖uεn‖ε,

we deduce from (25) and (26) that (wn)n is bounded in H1(RN−k). Since wn solves Eq. (24) on
B(0, Rn) for all n, classical regularity estimates yield that for every R > 0 and every q > 1,

sup
n∈N

‖vn‖W 2,q(B(0,R)) < ∞. (27)

Up to a subsequence, we can now assume that (wn)n converges weakly in H1(RN−k) to some
function v ∈ H1(RN−k). By (27), for every compact K ⊂ R

N−k , wn converges to v in C1(K ). Moreover,
for n large enough, wn = vn in K so that vn → v in C1(K ). �

In the next two lemmas, we will estimate from below the action of uε inside and outside neigh-
borhoods of points. Since we expect the concentration set to be a k-sphere in R

N , the following
distance will be useful. For x, y ∈ R

N , let

dH(x, y) :=
√∣∣x′ − y′∣∣2 + (∣∣x′′∣∣ − ∣∣y′′∣∣)2

.

Thus dH(x, y) represents the distance between the k-spheres centered at x′ and y′ , and of radius |x′′|
and |y′′| respectively. We denote by B H the balls for the distance dH , i.e.,

B H(x, r) = {
y ∈ R

N : dH(x, y) < r
}
.

Lemma 4.4. Suppose that the assumptions of Theorem 4 are satisfied. Let uε ∈ H1
V ,H(RN ) be positive solutions

of (Pε) found in Theorem 4, (εn)n ⊂ R
+ and (xn)n ⊂ R

n be sequences such that εn → 0 and xn = (x′
n, x′′

n) →
x = (x′, x′′) ∈ Λ̄ as n → ∞. If

lim inf
n→∞ uεn (xn) > 0, (28)

then we have, up to a subsequence,

lim inf
R→∞ lim inf

n→∞ ε
−(N−k)
n

( ∫
Tn(R)

1

2

(
ε2

n |∇uεn |2 + V u2
εn

) − Gεn(x, uεn )

)
� ωk M(x),

where Tn(R) := B H(xn, εn R).
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Proof. Let vn be defined by (23). Passing to a subsequence if necessary, we may assume that there
exists v ∈ H1(RN−k) such that vn → v in C1

loc(R
N−k). Since Λ is smooth, we can also assume that the

sequence of characteristic functions χn(y, z) = χΛ(x′
n + εn y, |x′′

n | + εnz) converges almost everywhere
to a measurable function χ satisfying 0 � χ � 1. We then deduce that v solves the limiting equation

−�v + V (x)v = g̃(y, v) in R
N−k,

where

g̃(y, s) := χ(y)K (x) f (s) + (
1 − χ(y)

)
min

{
μV (x)s, K (x) f (s)

}
.

By (28), we know that v(0) = limn→∞ vn(0) > 0, so that v is not identically zero.
It was shown in [8, Lemma 14] that

lim inf
R→∞ lim inf

n→∞

∫
B(0,R)

(
1

2

(∣∣∇vn(y, z)
∣∣2 + V

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz
)∣∣vn(y, z)

∣∣2)

− Gεn

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz, vn(y, z)
))

dz dy

� 1

2

∫

RN−k

(|∇v|2 + V (x)v2) −
∫

RN−k

G̃
(

y, v(y)
)

dy,

where G̃(x, s) := ∫ s
0 g̃(x, σ )dσ .

Set Bn(R) := B((x′, |x′′|), εn R) ⊂ R
N−k . By a computation similar to the one leading to (22), we

have ∫
Tn(R)

(
1

2

(
ε2

n

∣∣∇uεn (x)
∣∣2 + V (x)

∣∣uεn (x)
∣∣2) − Gεn

(
x, uεn (x)

))
dx

= ωk

∫
Bn(R)

(
1

2

(
ε2

n

∣∣∇ũεn

(
x′, r

)∣∣2 + V
(
x′, r

)∣∣ũεn

(
x′, r

)∣∣2) − Gεn

(
x′, r, ũεn

(
x′, r

)))
rk dr dx′

= ωk
∣∣x′′∣∣k

εN−k
n

∫
B(0,R)

(
1

2

(∣∣∇vn(y, z)
∣∣2 + V

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz
)∣∣vn(y, z)

∣∣2)

− Gεn

(
x′

n + εn y,
∣∣x′′

n

∣∣ + εnz, vn(y, z)
))

dz dy + o(1).

The conclusion follows. �
Lemma 4.5. Suppose that the assumptions of Theorem 4 are satisfied. Let uε ∈ H1

V ,H(RN ) be positive solutions

of (Pε) found in Theorem 4, (εn)n ⊂ R
+ and (xi

n)n ⊂ R
N be sequences such that εn → 0 and for 1 � i � M,

xi
n → xi ∈ Λ̄ as n → ∞. Then, up to a subsequence, we have

lim inf
R→∞ lim inf

n→∞ ε
−(N−k)
n

( ∫

RN \Tn(R)

1

2

(
ε2

n |∇uεn |2 + V u2
εn

) − Gεn(x, uεn )

)
� 0,

where Tn(R) := ⋃M
i=1 B H(xi

n, εn R).

Proof. See [8, Lemma 15]. �
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Proposition 4.6 (Lower estimate of the critical value). Suppose that the assumptions of Theorem 4 are satis-
fied. Let uε ∈ H1

V ,H(RN ) be positive solutions of (Pε) found in Theorem 4, (εn)n ⊂ R
+ and (xi

n)n ⊂ R
N be

sequences such that εn → 0 and for 1 � i � M, xi
n → xi ∈ Λ̄ as n → ∞. If for every 1 � i < j � M, we have

lim sup
n→∞

dH(xi
n, x j

n)

εn
= ∞

and if for every 1 � i � M,

lim inf
n→∞ uεn

(
xi

n

)
> 0,

then the critical value cε defined in (21) satisfies

lim inf
n→∞ ε

−(N−k)
n cεn � ωk

M∑
i=1

M
(
xi).

Proof. This is a consequence of the two previous lemmas, see [8, Proposition 16] for the details. �
The following proposition is the key result for the next section.

Proposition 4.7 (Uniform convergence to 0 outside small balls). Suppose that the assumptions of Theorem 4
are satisfied and that Λ satisfies the assumptions of Section 2.4. Let (uε)ε ⊂ H1

V ,H(RN ) be positive solutions
of (Pε) obtained in Theorem 4. If (xε)ε>0 ⊂ Λ is such that

lim inf
ε→0

uε(xε) > 0,

then

(i) limε→0 M(xε) = infΛ∩H⊥ M,

(ii) lim supε→0
dist(xε,H⊥)

ε < ∞,
(iii) lim infε→0 dH(xε, ∂Λ) > 0,
(iv) for every δ > 0, there exist ε0 > 0 and R > 0 such that, for every ε ∈ (0, ε0),

‖uε‖L∞(Λ\B H(xε,εR)) � δ.

Proof. The first assertion is a direct consequence of Propositions 4.1 and 4.6, see [8, Proposition 33]
for the details.

For the second assertion, since Λ̄ is compact, we can assume by contradiction that there exist
sequences (εn)n ⊂ R

+ and (xn)n ⊂ Λ such that εn → 0, xn → x̄ ∈ Λ̄,

lim inf
n→∞ uεn(xn) > 0,

and

lim sup
dist(xn, H⊥) = ∞.
n→∞ εn
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If k = N − 2, let R ∈ O(N) denote the reflexion with respect to H⊥ . By definition of H1
V ,H(RN ),

u ◦ R = u, and thus

lim inf
n→∞ uεn

(
R(xn)

)
> 0.

The preceding assumption implies that limn→∞ dH(xn,R(xn))
εn

= ∞. By Proposition 4.6, we obtain

lim inf
n→∞ ε

−(N−k)
n cεn � ωk

(
M(x) + M

(
R(x)

))
� 2ωk inf

Λ
M,

which, together with Proposition 4.1

lim inf
n→∞ ε

−(N−k)
n cεn � ωk inf

Λ∩H⊥
M

is in contradiction with (10).
In the case where k < N − 2, since infΛ M > 0, choose � ∈ N such that

inf
Λ∩H⊥

M < � inf
Λ

M. (29)

There exist isometries R1, . . . , Rl of R
N such that Ri(H) = H and Ri(x) 	= R j(x), for every i, j ∈

{1, . . . , �} with i 	= j. One has hence

lim sup
n→∞

dH(Ri(xn), R j(xn))

εn
= ∞.

By Proposition 4.6, we get

lim inf
n→∞ ε

−(N−k)
n cεn � ωk

�∑
i=1

M
(

Ri(x)
)
� lωk inf

Λ
M,

so that, in view of the upper estimate of Proposition 4.1, we have a contradiction with (29).
For the third assertion, suppose by contradiction that there exist sequences (εn)n ⊂ R

+ and (xn)n ⊂
R

N such that εn → 0,

lim inf
n→∞ uεn(xn) > 0,

and xn → x̄ ∈ ∂Λ. We have just proven that x̄ ∈ H⊥ . By Proposition 4.6, we have

lim inf
n→∞ ε

−(N−k)
n cεn � ωk M(x) � ωk inf

∂Λ∩H⊥
M.

This inequality, along with Proposition 4.1, contradicts (9).
In order to obtain the last assertion, suppose by contradiction that there exist sequences

(εn)n ⊂ R
+ , (xn)n and (yn)n ⊂ Λ such that εn → 0,

uεn (yn) � δ,

and
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lim
n→∞

dH(xn, yn)

εn
= ∞.

Up to a subsequence, we can assume that xn → x ∈ Λ and yn → y ∈ Λ. In view of the second asser-
tion, one has x̄ ∈ H⊥ and ȳ ∈ H⊥ . Therefore, by Proposition 4.6,

lim inf
n→∞ ε

−(N−k)
n cεn � ωk

(
M(x) + M(y)

)
� 2ωk inf

Λ∩H⊥
M.

In view of the assumption of (9), this would contradict Proposition 4.1. �
5. Barrier functions

5.1. Linear inequation outside small balls

In this section we prove that for ε small enough, the solutions of the penalized problem (Pε) are
also solutions of the initial problem (2). We follow the arguments of [17]. First we notice that the
solutions of (Pε) satisfy a linear inequation outside small balls.

Lemma 5.1. Suppose that the assumptions of Proposition 4.7 are satisfied and let (uε)ε>0 ⊂ H1
V ,H(RN ) be

positive solutions of (Pε) found in Theorem 4 and (xε)ε>0 ⊂ Λ be such that

lim inf
ε→0

uε(xε) > 0.

Then there exist ρ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0),

−ε2(�uε + Huε) + (1 − μ)V uε � 0 in R
N \ B H(xε, ερ). (30)

Proof. Set

η := inf
x∈Λ

μV (x)

K (x)
.

Since V and K are bounded positive continuous functions on Λ̄, η > 0. By ( f1), there exists δ > 0
such that

f (s)

s
� η for all s � δ.

By Proposition 4.7, we can find ε0 > 0 and ρ > 0 such that for all ε ∈ (0, ε0], one has

uε(x) � δ for all x ∈ Λ \ B H(xε, ερ).

Hence

K (x) f
(
uε(x)

)
� μV (x)uε(x) in Λ \ B H(xε, ερ).

We conclude that

−ε2�uε + (1 − μ)V uε � −ε2�uε + V uε − K f (uε) = 0 in Λ \ B H(xε, ερ).
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The fact that uε satisfies (30) in R
N \ Λ follows directly from the definition of the penalized nonlin-

earity. �
This lemma suggests that we can compare the solution uε with supersolutions of the operator

−ε2(� + H) + (1 − μ)V in order to obtain decay estimates of uε .

5.2. Comparison functions

The next lemma provides a minimal positive solution of the operator −� − H in R
N \ Λ̄.

Lemma 5.2. For every ε > 0, there exists Ψε ∈ C2((RN \ {0}) \ Λ) such that

{−ε2(�Ψε + HΨε) + (1 − μ)V Ψε = 0 in R
N \ Λ̄,

Ψε = 1 on ∂Λ,

and

∫

RN\Λ

(∣∣∇Ψε(x)
∣∣2 + |Ψε(x)|2

|x|2
)

dx < ∞. (31)

Moreover, there exists C > 0 such that, for every x ∈ R
N \ Λ and every ε > 0,

0 < Ψε(x) � C

(1 + |x|)N−2
. (32)

Proof. The function Ψε is obtained by minimizing

∫

RN\Λ

(
ε2(|∇u|2 − Hu2) + (1 − μ)V u2)dx

on the set

{
u ∈ H1

V

(
R

N)
: u = 1 on ∂Λ

}
.

By classical elliptic regularity theory, Ψε ∈ C2((RN \ {0}) \ Λ). The estimate (31) follows from (11).
In order to obtain the estimate (32) consider the problem

{
−�Ψ − HΨ = 0 in R

N \ Λ̄,

Ψ = 1 on ∂Λ.

We have just proved that this problem has a solution Ψ ∈ C2((RN \ {0}) \ Λ) such that

∫

RN\Λ

(∣∣∇Ψ (x)
∣∣2 + |Ψ (x)|2

|x|2
)

dx < ∞. (33)

Now set for ρ ∈ (0,1) and x ∈ B(0,ρ),

W (x) := (N − 2)β − κ

(
log

1

|x|
)−β

.
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We compute that

−�W (x) = κβ

|x|2
[
(N − 2)

(
log

1

|x|
)−(1+β)

+ (1 + β)

(
log

1

|x|
)−(2+β)]

.

Since for |x| � 1,

H(x) � κ

(|x|2 log 1
|x| )1+β

the function W is a supersolution of −� − H in B(0,1). Moreover, if one takes ρ < 1 such that

(N − 2)β

(
log

1

ρ

)β

> κ,

W is positive on ∂ B(0,ρ). In view of (33) Proposition 3.1 implies that Ψ is bounded from above by
a positive multiple of W in B(0,ρ). Since Ψ is continuous and W is bounded in B(0,1), we obtain
that Ψ is bounded in B(0,1). By similarly considering

W (x) := 1

|x|N−2

(
(N − 2)β − κ

(
log |x|)−β)

(see [17, Lemma 3.4]), we obtain that Ψ (x) ∼ |x|N−2. We have thus proven that

Ψ (x) � C

(1 + |x|)N−2
.

Now, note that since V is nonnegative,

−�Ψε − HΨε � 0.

In view of (33) and (31), Proposition 3.1 is applicable, and for every x ∈ R
N \ Λ,

Ψε(x) � Ψ (x) � C

(1 + |x|)N−2
. �

As explained in [17], the estimate (32) is the best one can hope for if V decays rapidly at infinity
or is compactly supported. However, if V decays quadratically or subquadratically at infinity, we can
improve (32).

Lemma 5.3. Let Ψε be given by Lemma 5.2.

(1) If lim inf|x|→∞ V (x)|x|2 > 0, then there exist λ > 0, R > 0 and C > 0 such that for every ε > 0 and
x ∈ R

N \ B(0, R),

Ψε(x) � C

(
R

|x|
) N−2

2 +
√

( N−2
2 )2−κ+ λ2

ε2

.
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(2) If lim inf|x|→∞ V (x)|x|α > 0 with α < 2, then there exist λ > 0, R > 0, C > 0 and ε0 > 0 such that for
every ε ∈ (0, ε0) and x ∈ R

N \ B(0, R),

Ψε(x) � C exp

(
−λ

ε

(|x| 2−α
2 − R

2−α
2

))
.

(3) If lim inf|x|→0 V (x)|x|2 > 0, then there exist λ > 0, r > 0 and C > 0 such that for every ε > 0 and x ∈
B(0, r),

Ψε(x) � C

( |x|
r

)√
( N−2

2 )2−κ+ λ2

ε2 − N−2
2

.

(4) If lim inf|x|→0 V (x)|x|α > 0 with α < 2, then there exist λ > 0, R > 0, C > 0 and ε0 > 0 such that for
every ε ∈ (0, ε0) and x ∈ B(0, r),

Ψε(x) � C exp

(
−λ

ε

(|x|− α−2
2 − r− α−2

2
))

.

Proof. For (1), there exist R > 0 and λ > 0 such that for x ∈ R
N \ B(0, R)

(1 − μ)V (x) � λ2

|x|2 .

One then checks that

W (x) =
(

R

|x|
) N−2

2 +
√

( N−2
2 )2−κ+ λ2

ε2

is a supersolution in R
N \ B(0, R).

For (2), there exist R > 0 and η > 0 such that for x ∈ R
N \ B(0, R)

(1 − μ)V (x) � η

|x|α .

One then checks that

W (x) = exp

(
−λ

ε

(|x| 2−α
2 − R

2−α
2

))

is a supersolution in R
N \ B(0, R) with λ2 < ( 2

2−α )2ν and ε small enough.
The proofs of the other assertions are similar. �
Another important tool is a function that describes the exponential decay of uε inside Λ.

Lemma 5.4. Let x̄ ∈ Λ and R > 0 be such that

B H(x̄, R) ⊂ Λ. (34)

Define
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Φ x̄
ε(x) := cosh

(
λ

R − dH(x, x̄)

ε

)
. (35)

There exist λ > 0 and ε0 > 0 such that for every ε ∈ (0, ε0), one has

−ε2�Φ x̄
ε + (1 − μ)V Φ x̄

ε � 0 in B H(x̄, R).

Proof. First one computes

−ε2�Φ x̄
ε(x) = −λ2 cosh

(
λ

ε

(
R − dH(x, x̄)

))

+ ελ

dH(x, x̄)

(
N − 1 − k

|x̄′′|
|x′′|

)
sinh

(
λ

ε

(
R − dH(x, x̄)

))
.

Let us choose λ > 0 such that λ2 < (1 − μ) infΛ V . In view of (34), one has for x ∈ B H(x̄, R),

−ε2�Φ x̄
ε(x) + (1 − μ)V Φ x̄

ε(x)

� ελ

dH(x, x̄)

(
N − 1 − k

|x̄′′|
|x′′|

)
sinh

(
λ

ε

(
R − dH(x, x̄)

))

+
(
(1 − μ) inf

Λ
V − λ2

)
cosh

(
λ

ε

(
R − dH(x, x̄)

))
.

This last expression is positive if ε is sufficiently small. �
Lemma 5.5. Let (xε)ε ⊂ Λ be such that

lim inf
ε→0

dH(xε, ∂Λ) > 0

and ρ > 0. Then, there exist ε0 > 0 and a family of functions (Wε)0<ε<ε0 ⊂ C1,1
loc ((RN \ {0}) \ B H(xε, ερ))

such that for all ε ∈ (0, ε0), one has

(i) Wε satisfies the inequation

−ε2(� + H)Wε + (1 − μ)V Wε � 0 in R
N \ B H(xε, ερ),

(ii) ∇Wε ∈ L2(RN \ B H(xε, ερ)) and Wε|x| ∈ L2(RN \ B H(xε, ερ)),
(iii) Wε � 1 on ∂ B H(xε, ερ),
(iv) for every x ∈ B H(xε, ερ),

Wε(x) � C exp

(
−λ

ε

dH(x, xε)

1 + dH(x, xε)

)(
1 + |x|)−(N−2)

, x ∈ R
N .

Moreover,

(1) if lim inf|x|→∞ V (x)|x|2 > 0, then there exist λ > 0, ν > 0 and C > 0 such that for ε > 0 small enough,

Wε(x) � C exp

(
−λ

ε

dH(x, xε)

1 + dH(x, xε)

)(
1 + |x|)− ν

ε ;
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(2) if lim inf|x|→∞ V (x)|x|α > 0 with α > 2, then there exist λ > 0 and C > 0 such that for ε > 0 small
enough,

Wε(x) � C exp

(
−λ

ε

dH(x, xε)

1 + dH(x, xε)

(
1 + |x|) 2−α

2

)
;

(3) if lim inf|x|→0 V (x)|x|2 > 0, then there exist λ > 0, ν > 0 and C > 0 such that for ε > 0 small enough,

Wε(x) � C exp

(
−λ

ε

dH(x, xε)

1 + dH(x, xε)

)( |x|
1 + |x|

) ν
ε

;

(4) if lim inf|x|→0 V (x)|x|α > 0 with α > 2, then there exist λ > 0 and C > 0 such that for ε > 0 small
enough,

Wε(x) � C exp

(
−λ

ε

dH(x, xε)

1 + dH(x, xε)

( |x|
1 + |x|

) α−2
2

)
.

Proof. Let Ψε be given by Lemma 5.2. Choose a set U ⊂ R
N such that Λ̄ ⊂ U , 0 /∈ Ū and Ū is compact.

Choose Ψ̃ε ∈ C2(RN \ {0}) ∩ H1
loc(R

N ) such that Ψ̃ε = Ψε in R
N \ U and Ψ̃ε = 1 in Λ. In view of the

estimate of Lemma 5.2, one can also ensure that supε>0 ‖Ψ̃ε‖L∞(U ) < ∞. Choose R > 0 such that

R < lim inf
ε→0

dist(xε, ∂Λ). (36)

Let Φ
xε
ε be given by (35) and set

wε(x) :=
{

Φ
xε
ε (x) if x ∈ B H(xε, R),

Ψ̃ε(x) if x ∈ R
N \ B H(xε, R).

By (36), for ε small enough, B H(xε, R) ⊂ Λ so that wε ∈ C1,1(RN ). Moreover, if ε is small enough,
Lemma 5.4 is applicable and in B H(xε, R) \ B H(xε, ερ), we have

−ε2(� + H)wε + (1 − μ)V wε � −ε2�Φxε
ε + (1 − μ)V Φxε

ε � 0.

In Λ \ B H(xε, R), one has

−ε2(� + H)wε + (1 − μ)V wε = −ε2 H + (1 − μ)
(

inf
Λ

V
)

� 0,

for ε small enough. In U \ Λ, one has

−ε2(� + H)wε + (1 − μ)V wε = −ε2(� + H)Ψ̃ε + (1 − μ)V Ψ̃ε � 0,

for ε small enough since V Ψ̃ε is positive on U . Finally, in R
N \ U , one has

−ε2(� + H)wε + (1 − μ)V wε = −ε2(� + H)Ψε + (1 − μ)V Ψε = 0.

We set

Wε(x) := wε(x)

cosh λ( R − ρ)
,

ε
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where λ is chosen as in the previous lemma. It is standard to see that Wε satisfies properties (ii)
and (iii). Statement (iv) follows from Lemma 5.2. The other conclusions follow from Lemma 5.3. �

Thanks to the previous lemma, we obtain an upper bound on the solutions (uε)ε>0 of (Pε).

Proposition 5.6. Suppose that the assumptions of Proposition 4.7 are satisfied. Let (uε)ε>0 ⊂ H1
V ,H(RN ) be

the positive solutions of (Pε) found in Theorem 4 and (xε)ε>0 ⊂ Λ be such that

lim inf
ε→0

uε(xε) > 0.

Then there exist C > 0, λ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0),

uε(x) � C exp

(
−λ

ε

d(x, Sk
ε)

1 + d(x, Sk
ε)

)(
1 + |x|)−(N−2)

, x ∈ R
N . (37)

Moreover, (1), (2), (3) and (4) in Lemma 5.5 hold with uε in place of Wε .

Proof. By Lemma 5.1, there exist ρ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0), the solution uε

satisfies inequation (30). Further, ‖uε‖L∞(B H(xε,ερ)) is bounded as ε → 0 in view of Lemma 4.3. Let
(Wε)ε be the family of barrier functions given by Lemma 5.5. By Proposition 3.1, we have

uε(x) � ‖uε‖L∞(B H(xε,ερ))Wε(x) in R
N \ B H(xε, ερ),

and the conclusion comes from Lemma 5.5. �
We are now in a position to prove Theorem 3.

Proof of Theorem 3. We know from Theorem 4 that the modified equation (Pε) possesses a positive
solution uε ∈ H1

V ,H(RN ). In order to prove that for ε small enough, this solution actually solves (2),

it suffices to show that, for every x ∈ (RN \ {0}) \ Λ, one has

K (x)
f (uε(x))

uε(x)
� ε2 H(x) + μV (x).

Assume that V and K satisfy (G 1∞) and (G 1
0 ), by Proposition 5.6 and assumptions ( f4) and ( f1), if

ε > 0 is small enough, we have for all x ∈ R
N \ Λ,

K (x)
f (uε(x))

uε(x)
� K (x)

f (Ce− λ
ε (1 + |x|)−(N−2))

Ce− λ
ε (1 + |x|)−(N−2)

� Ce− λ
ε (q−1)

(
1 + |x|)σ−(N−2)(q−1)

� ε2κ

|x|2((log |x|)2 + 1)
1+β

2

= ε2 H(x).

The other cases can be treated in a similar way. �
In some settings, it is interesting to determine whether the solutions are in L2. We obtain as a

byproduct the following
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Corollary 5.7. Let uε be the solution of (2) found in Theorem 3. If N � 5 or lim inf|x|→∞ |x|2 V (x) > 0, then,
for ε small enough, uε ∈ L2(RN ).

Proof. This follows immediately from Proposition 5.6. �
6. The two-dimensional case

In dimension N = 2, the method has to be modified because the classical Hardy inequality fails
on unbounded domains of R

2. Let us recall the Hardy-type inequality that was proved in [17,
Lemma 6.1]:

Lemma 6.1. Let R > r. Then there exists C > 0 such that for every u ∈ D(R2),

∫

R2

|∇u|2 + C

∫
B(0,R)\B(0,r)

u2 � 1

4

∫

R2\B(0,R)

u2(x)

|x|2(log |x|
r )2

dx.

We deduce therefrom

Lemma 6.2. If V ∈ C(R2 \ {0}) is nonnegative and non-identically 0, then there exists κ0 > 0 such that for
ε > 0 sufficiently small, for every u ∈ D(R2),

κ0

∫

R2

u2(x)

|x|2(1 + (log |x|)2)
dx �

∫

R2

ε2|∇u|2 + V u2.

Proof. One sees that by the conformal transformation x → x
|x|2 , Lemma 6.1 becomes

∫

R2

|∇u|2 + C

∫
B(0,R)\B(0,r)

u2 � 1

4

∫
B(0,r)

u2(x)

|x|2(log |x|)2
dx.

Therefore, one has

∫

R2

u2(x)

|x|2(1 + (log |x|)2)
dx � C

( ∫

R2

|∇u|2 +
∫

B(0,2)\B(0,1/2)

u2
)

.

Since V is continuous and does not vanish identically, there exist x̄ ∈ R
2 and r̄ > 0, such that

infB(x̄,r̄) V > 0. Hence, there exists C > 0 such that

∫
B(0,2)\B(0,1/2)

u2 � C

( ∫

R2

|∇u|2 + V |u|2
)

.

Bringing the inequalities together, there exists C > 0 such that

∫

R2

u2(x)

|x|2(1 + (log |x|)2)
dx � C

∫

R2

(|∇u|2 + V u2).

This brings the conclusion when ε > 0 is small enough. �
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The space H1
V (R2) can thus be defined as in the case N > 2 as the closure of D(R2) with respect

to the norm defined by (13).
The penalization potential H : R

2 → R is defined by

H(x) := κ

|x|2(1 + (log |x|)2)
2+β

2

,

where β > 0 and κ ∈ (0, κ0). We see that

H(x) � κ

|x|2(1 + (log |x|)2)
.

Together with Lemma 6.2, this ensures the positivity of the quadratic form associated to −ε2(� +
H) + V .

As in the case N > 2, this inequality implies the following comparison principle.

Proposition 6.3. Let Ω ⊂ R
2 be a smooth domain. Let v, w ∈ H1

loc(Ω) ∩ C(Ω) be such that ∇(w − v)− ∈
L2(Ω), (w − v)−/(|x|(1 + | log |x||)) ∈ L2(Ω) and

−ε2(� + H)w + V w � −ε2(� + H)v + V v, in Ω.

If ∂Ω 	= ∅, assume also that w � v on ∂Ω . Then w � v in Ω .

One continues the proof of Theorem 3 as in the case N > 2. In Proposition 3.2, one takes Aλ :=
B(0, eeλ) \ B(0, e−eλ

) and

ηλ(x) := ζ

(
log|log |x||

λ

)
.

One then obtains estimate (19) by using Lemma 6.2 instead of Hardy’s inequality. The only other
notable difference lies in the choice of the function W in the proof of Lemma 5.2, where one follows
the construction of [17, Lemma 6.3], i.e.

W (x) = β(β + 1) − κ
∣∣log |x|∣∣−β

.
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