
 Procedia CIRP   46  ( 2016 )  391 – 395 

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the International Scientific Committee of 7th HPC 2016 in the person of the Conference Chair 
Prof. Matthias Putz
doi: 10.1016/j.procir.2016.04.033 

ScienceDirect

7th HPC 2016 – CIRP Conference on High Performance Cutting 

Iterative learning for machine tools using a convex optimisation approach 

 Titus Haasa,*, Natanael Lanza, Roman Kellera, Sascha Weikertb , Konrad Wegenera   
aInstitute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland 

bInspire AG, Technoparkstrasse 1, 8005 Zurich, Switzerland  

* Corresponding author. Tel.: +41-44-632-4845 ; fax: +41-44-632-1159. E-mail address: haas@iwf.mavt.ethz.ch  

Abstract 

Dynamic, quasi-static and motion control deviations lead to nonlinear but systematic tracking errors. It is shown that these errors can be 
reduced significantly by adjusting the set points using an optimization based iterative learning approach. This method uses either values 
obtained from internal encoders or alternatively tool center point measurements. The approach is presented, discussed and validated using 
simulation and measurement results. 
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1. Introduction 

Dynamic, quasi-static and motion control deviations lead 
to nonlinear but systematic tracking errors of machine tools. 
The goal of iterative learning is to learn from systematic and 
repeatable errors of previous trials and to improve the 
following trial. Machine tools typically do not learn from 
previous experience. Especially in high-volume production, 
where a given part is produced multiple times, it is desirable 
to reduce tracking errors. A reduction of tracking errors would 
either allow higher feed rates, leading to the same dynamic 
deviations, or to reduce contour errors, using the same feed 
rate. According to Bristow et al. [1], iterative learning control 
(ILC) modifies the input of the controller of a system and not 
the controller itself, as for example adaptive control and 
neural network strategies do. Repetitive control is similar to 
ILC but for continuous operations, i.e. the next iteration 
follows immediately and the initial conditions are given by 
the final conditions of the previous trial.  

A lot of work has been done in the field of ILC; a good 
survey is given by Bristow et al. [1] and Ahn et al. [2]. 

The basic idea of ILC was published by Garden [3] in 
1971. The algorithm was presented for the first time in 

English by Arimoto et al. [4] in 1984, where an iterative 
learning scheme for a robot manipulator was proposed. 

Feedforward control can compensate tracking errors 
caused by lag and has good performance if the system is 
known accurately. Stiction, not modelled nonlinear behavior 
and disturbances can limit the performance of feedforward 
control [1]. ILC can compensate any nonlinear, but repeatable 
disturbance. The performance of ILC is limited by 
unrepeatable disturbances and noise. The influence of the 
latter can be reduced by zero-phase filtering, e.g. Butterworth, 
which is possible without lag. A combination of feedback 
control and ILC is recommended by [1]. 

Togai and Yamano [5], e.g., formulated the iterative 
learning control problem as a quadratic optimization criterion 
and therefore, reduced the error and additionally the input. 
Penalizing also the input, the error cannot be reduced to the 
minimal achievable error. Amann et al. [6], Lee et al. [7] and 
Barton et al. [8] extended the cost function by the input 
change instead of the input.  Therefore, the ILC algorithm has 
an integral action in the iteration domain and the minimal 
achievable error is attainable. It is possible to consider 
constraints, disturbances and model errors for example. 

Kim and Kim [9] presented the proportional, integral and 
derivative (PID) type ILC algorithm of [4] for a machine tool, 
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where the actual machined path was measured using a 
roundness measuring instrument. A decrease of 58% of the 
error between the measued and the desired path is shown for 
cutting circles with radius of 29.7 mm and a feed rate of 200 
mm/min. Tsai and Chen [10] applied the PID type ILC 
algorithm of [4] to reduce the deviation between the desired 
cutting and actual fracture trajectory for a CO2 laser machine 
tool. Tsai et al. [11] proposed a P-type ILC algorithm with 
predicted tracking and contour error and compared the 
performance of the error reduction for different weightings of 
those errors. An application for improving contour error 
tracking in precision motion control was presented by Altin 
and Barton [12]. The norm optimal framework was used to 
minimize the tracking error, contour error and input change. 
Using a model of the contour error, Wu et al. [13] proposed 
an A-type iterative learning cross-coupled control that was 
based on a contour error model and showed the convergence 
of it. Khong et al. [14] proposed an extremum seeking 
approach to iterative learning for nonlinear time-varying 
systems. 

In this paper, the optimization based ILC approach, 
proposed e.g. by Barton et al. [8], is used and compared to the 
commonly used PD-ILC algorithm presented by [1]. The 
quadratic optimization formulation is called convex 
optimization (CO) ILC in the remainder of this paper. 

2. Comparison of ILC algorithms 

2.1. Overview of ILC methods 

The general application scheme of the ILC algorithm is 
shown in Fig. 1. The plant P represents any dynamic system, 
e.g. a machine tool servo axis and C represents the controller. 
The tracking error of the iteration j, ej, is given by the 
deviation between the desired trajectory, yd, and the actual 
measurement, yj. The input of the iteration j is uj. Only 
asymptotically stable closed-loop systems are considered in 
this paper. Note that ej, yd, yj and uj are vectors of length N, 
where N is the number of time discrete trajectory samples. 
The computation of uj is repeated for each iteration. 
Therefore, ILC can be used online or offline. 

 

Fig. 1. General application scheme of the ILC algorithm. 

In this paper, two types of ILC algorithms have been 
implemented and compared: 

 PD-ILC with a Butterworth low pass filter as 
presented in [1] 

 CO-ILC with a second order model representing 
the closed loop servo axis behavior of each axis 

No model is needed for PD-ILC, whereas for CO-ILC a linear 
time invariant model of the closed loop system dynamics is 
required (1). For an initial state xj[0]=0, the servo loop 

dynamic matrix Pcl, using the state space closed loop 
dynamics in (2), can be derived as shown in (3). The indices j 
and n denote the iteration and time sample, respectively.  
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2.2. PD-ILC 

The PD-ILC algorithm is defined, using the nomenclature 
in Fig. 1, the gains ,  and the low pass filter Q, as 
follows: 
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A stability criterion and a condition for monotonic 
convergence is presented in [1]. It is shown that, in order to 
ensure convergence, a low pass filter, Q, is required. 

2.3. CO-ILC 

CO-ILC is a special case of the optimization based ILC 
framework presented in [8]. The difference of the input 
between subsequent iterations is given by 

jjj uuΔu 11 .              (5) 

The predicted error ej+1 of the next iteration, using the 
linear plant model Pcl, is given by 

11 jjj ΔuPee cl .              (6) 

The cost function of the optimization problem consists of 
two parts, the tracking error and the weighted velocity of the 
input difference: 

 11 jj ΔuPeJ cl and 12 jd ΔuDJ .                       (7) 

Minimizing J1
TJ1 + J2

TJ2, using (5) as state vector and the 
scalar weighting factor , the following quadratic program 
can be stated: 

1112
1

min
1

j
T

j
T
j

j

ΔufΔuHΔu
Δu

.                                (8) 

H and f are defined as 

j
T

TT d

ePf

DDPPH

cl

clcl
2

.              (9) 

The matrix D is given by  

1100

0110

0011

D ,                                    (10) 

which leads to smooth input signals. 

C P

ILC
+

-

+
+yd yj

uj

ej



393 Titus Haas et al.  /  Procedia CIRP   46  ( 2016 )  391 – 395 

Without boundary conditions on the states and the 
assumption that the matrix H is positive semidefinite, the 
solution of the convex optimization problem can be found as 

cl
T
jj PeHΔu 1

1 ,            (11) 

which is used for the input of the next iteration 

11 jjj Δuuu .                             (12) 

3. Numerical Results 

The presented ILC algorithms are tested and compared using 
a positioning movement. The simulation model consists of a 
proportional cascaded closed-loop controlled unit mass, 
representing a second order model with band width  and 
damping factor δ. The continuous transfer function is given by  
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 Later, the gantry test bench, used for the measurements, is 
introduced. Finally, the measurements without ILC and using 
the CO-ILC are presented. 

3.1. Simulation results 

The two ILC methods presented in section 2 are tested and 
evaluated for a 1-dimensional system with a trajectory that 
consists of two positioning movements from 0 to 100 and 
from 100 to 50 mm. The first positioning speed is limited to 
0.2 m/s, the second to 0.1 m/s. The trajectory used for the 
simulations is shown in Fig. 2. 

 

Fig. 2. 1-dimensional positioning. 

The specifications of the simulation model (13) are set to a 
bandwidth of ω0=157 rad/s and a damping factor of δ=0.5. 

The PD-ILC algorithm for tracking error reduction was 
used with a proportional gain of =1.0, a derivative gain of 

=3.25 and a low pass Q-filter (Butterworth) with cut-off 
frequency of =50 Hz. These parameters were defined by 
tuning the algorithm to be asymptotically stable. The 
difference of input velocity is punished by a factor =3 for the 
CO-ILC algorithm. 

The infinity norm of the tracking error over 50 iterations 
for both methods is shown in Fig. 3. The tracking error is 
reduced by both methods, but the CO-ILC algorithm reaches a 
bigger reduction. 

 

Fig. 3. Infinity norm of the tracking errors for the positioning for the PD- and 
CO-ILC. 

3.2. System description 

The test bench used for measurements in this paper is a 
two axes gantry stage, consisting of a gantry X-axis and a 
crossbeam Y-axis, shown in Fig. 4. All axes are driven by 
linear synchronous motors. 

The control bandwidth of the X- and Y-axis has been set to 
15 Hz using a cascaded loop velocity and position controller. 
The moving mass is 150 kg for the X-axes and 20 kg for the 
Y-axis. As internal measurement system, Heidenhain 
encoders were used. For the TCP measurement a Heidenhain 
cross grid was used. 

Further, it needs to be mentioned that the slides of the X- 
and Y-axis show high stiction and a low first natural 
frequency of the crossbeam at around 20 Hz. 

 

Fig.4. Two axes test bench used for measurements. 

3.3. Measurements 

Internal and external measurements, the encoder and the 
cross grid signals, respectively, are used and compared for the 
CO-ILC. The PD-ILC algorithm is not tested on the test bench 
due to better simulation results of CO-ILC. The test geometry 
is shown in Fig. 7. A feed rate of 0.1 m/s is used.  

First, the internal measurements are used for the CO-ILC 
algorithm. The tracking error of each axis, compared to 
tracking without ILC, is significantly reduced as shown in 
Fig. 5. The contour error, shown in Fig. 6, is reduced too.  
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Fig. 5. Infinity norm of the tracking errors of the test trajectory for both, the 
internal encoder (ENC) and the TCP (KGM) measurements, respectively. 
Internal encoder measurements are used for the learning procedure. 

 

Fig. 6. Infinity norm of the contour errors for the internal encoders (ENC) and 
the TCP (KGM) measurements of the test trajectory. Internal encoder 
measurements are used for the learning procedure. 

As expected, not the same amount of improvement can be 
reached for the TCP accuracy by using the internal encoder 
measurements for learning. The tracking and the contour 
errors of the TCP position are reduced, but errors due to not 
modelled dynamic effects cannot be compensated. On 
average, the contour error is reduced after 9 iterations, which 
is shown in Fig. 7 (green). An overshoot of the X-axis at the 
upper left corner of the test trajectory occurs, which is not 
seen by the internal measurement system and therefore, 
results in a bigger contour error. Due to reference deviations 
of the two X-axes, an orthogonality error occurs between the 
X- and Y-direction which leads to a contour error that can be 
clearly seen on the left part in Fig. 7. This deviation cannot be 
compensated using internal encoder measurements for 
learning.  

Using cross grid measurements at the TCP for the CO-ILC 
algorithm, the contour error at the TCP is reduced 
significantly, which can be seen in Fig. 7 (blue). 

 

Fig. 7. Contour errors without ILC and after 9 iterations using the CO-ILC 
algorithm with internal encoder (ENC) and external cross grid (KGM) 
measurements. The feed rate is 0.1 m/s. 

A comparison of the infinity norm of the tracking and 
contour error is given in Table 1. The best contour error 
reduction is possible by using TCP measurements. A 
reduction of 52% for the infinity norm of the contour error is 
possible by using internal encoder measurements and a 
reduction of 85%, by using TCP measurements. 

Table 1. Infinity norm of the tracking and the contour error without ILC, after 
9 iterations using internal (ENC) and TCP (KGM) measurements, 
respectively, for CO-ILC. 

Method ||Tracking error||∞ 

[µm] 
||Contour error||∞  

[µm] 
||Contour error||∞  

reduction  

Without ILC 1848 611 - 

CO-ILC (ENC) 337 296 52 % 

CO-ILC (KGM) 138 89 85 % 

4. Conclusion, Outlook 

Both ILC algorithms, PD-ILC and CO-ILC, are introduced 
first. It is shown by simulation that using PD-ILC results in 
less tracking error reduction, compared to cascaded loop 
trajectory control, than using CO-ILC. The tracking error and 
therefore, the contour error reduction using CO-ILC is shown 
on a gantry test bench using internal encoder and TCP 
measurements. The reduction of the contour error is 52% by 
using internal encoder and 85% by using TCP measurements 
for the CO-ILC algorithm. Dynamic effects and static errors, 
which are not detected by internal encoder measurements, are 
only compensated when using TCP measurements. 

The implementation of CO-ILC on commercial NC kernels 
needs further effort. Especially if the optimization is 
performed on the NC itself. 

Further studies with more accurate models of the machine 
tool and dynamic constraints on set points have to be made. 
An accurate measurement method for TCP measurements 
without using a cross grid has to be sought. 

Start 
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