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SUMMARY

Protein modification by O-linked b-N-acetylglucos-
amine (O-GlcNAc) is a critical cell signaling modality,
but identifying signal-specific O-GlcNAcylation
events remains a significant experimental challenge.
Here, we describe a method for visualizing and
analyzing organelle- and stimulus-specific O-GlcNA-
cylated proteins and use it to identify the mitochon-
drial voltage-dependent anion channel 2 (VDAC2)
as an O-GlcNAc substrate. VDAC2�/� cells resist
the mitochondrial dysfunction and apoptosis caused
by global O-GlcNAc perturbation, demonstrating
a functional connection between O-GlcNAc signaling
and mitochondrial physiology through VDAC2. More
broadly, our method will enable the discovery of
signal-specific O-GlcNAcylation events in a wide
array of experimental contexts.
INTRODUCTION

Modification of intracellular proteins by O-linked b-N-acetylglu-

cosamine (O-GlcNAcylation) has emerged recently as a ubi-

quitous cell signaling modality in a broad range of organisms,

influencing such core cell biological processes as transcription,

nutrient sensing, and cell-cycle progression (Hanover et al.,

2010; Hart et al., 2011). Analogous to phosphorylation,

O-GlcNAcylation is a dynamic, rapidly cycling posttranslational

modification that modulates substrate proteins’ location, func-

tion, or stability in response to physiological signals (Hanover

et al., 2010; Hart et al., 2011). Accordingly, it is of great interest

to identify which substrate proteins are O-GlcNAcylated in

response to a given biological cue. However, this goal poses a

substantial experimental challenge, in part because rare,

signal-dependent changes in O-linked b-N-acetylglucosamine
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(O-GlcNAc) are difficult to detect amidst the large number of

abundant, constitutively, and multiply glycosylated ‘‘back-

ground’’ proteins (e.g., nucleoporins). Although chemical (Wells

et al., 2002), chemoenzymatic (Khidekel et al., 2003), lectin-

(Vosseller et al., 2006), and antibody- (Teo et al., 2010) based

methods for identifying O-GlcNAcylated proteins have been

described, these approaches all rely on affinity purification to

enrich substrates and are therefore inherently biased toward

abundant, unchanging ‘‘background’’ O-GlcNAc, at the expense

of the comparatively rare, substoichiometric, signal-dependent

changes in O-GlcNAc. Therefore, new, complementary methods

are needed for identifying functionally relevant changes in pro-

tein O-GlcNAcylation.

We have previously described a strategy for identifying

O-GlcNAcylated proteins in living mammalian cells using the un-

natural azide-functionalized sugar N-azidoacetylgalactosamine

(GalNAz) as a metabolic label (Boyce et al., 2011). Briefly, we

showed that GalNAz is converted by endogenous metabolic en-

zymes to the nucleotide-sugar UDP-GalNAz and then epimer-

ized to UDP-N-azidoacetylglucosamine (GlcNAz), the azido

analog of natural UDP-GlcNAc (Boyce et al., 2011; Vocadlo

et al., 2003). O-GlcNAc transferase (OGT) accepts UDP-GlcNAz

as a nucleotide-sugar donor, resulting in the installation of

‘‘O-GlcNAz’’ on native OGT substrates (Figure 1A) (Boyce

et al., 2011; Vocadlo et al., 2003). The resulting azide-functional-

ized (‘‘O-GlcNAzylated’’) proteins can then be chemically tagged

using any of several classes of azide-reactive probes (Figure 1A)

(Boyce and Bertozzi, 2011; Boyce et al., 2011). Importantly, this

strategy allows for selective labeling of new O-GlcNAc moieties

(i.e., those formed after GalNAz is added to cells), affording time-

resolution control not provided by other methods of O-GlcNAc

detection. We have previously used affinity probes to purify

bulk endogenous, O-GlcNAzylated proteins, revealing numerous

knownO-GlcNAc substrates and demonstrating that GalNAz is a

faithful and robust metabolic reporter of cellular O-GlcNAc

(Boyce et al., 2011). Here, we build upon our GalNAz meta-

bolic-labeling strategy to create a proteomics platform for
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Figure 1. Glyco-DIGE System

(A) Endogenous O-GlcNAcylated proteins can be metabolically labeled by the conversion of GalNAz to UDP-GlcNAz, as described (Boyce et al., 2011). Such

O-GlcNAzylated substrates can then be detected by chemical tagging with one of several azide-reactive probes. CuAAC is depicted here. The yellow stars

represent a useful chemical moiety on the probe molecule, such as a fluorophore or affinity handle.

(B) Glyco-DIGE workflow is illustrated. First, protein extracts are made from two populations of cells (e.g., control and drug treated) that have been treated with

GalNAz to metabolically label O-GlcNAc substrates with an azidoglycan (O-GlcNAz), as described (Boyce et al., 2011). The two protein samples are then labeled

separately with azide-reactive Cy3- and Cy5-based dyes, mixed, and analyzed by 2D gel (horizontal dimension is for IEF; vertical dimension is for SDS-PAGE).

When the gel is scanned, protein spots unchanged between samples appear as dual-color overlap (yellow), whereas proteins unique to one sample appear as

single color spots (green indicates Cy3; red indicates Cy5), thereby permitting ready detection of sample-specific changes in O-GlcNAcylated proteins.

(C) Glyco-DIGE alkyne-functionalized fluorescent probes are shown.

(D) Glyco-DIGE probes specifically label azidosugar-tagged mammalian proteins. Jurkat cells were metabolically labeled with 100 mM peracetylated GalNAz

(Ac4GalNAz) or vehicle only for 24 hr. Whole-cell lysates were reacted with 1 or 2 via CuAAC and analyzed by standard SDS-PAGE and fluorescence scanning.

(E) 1 and 2 do not differentially affect protein migration in 2D gels. Jurkat cells were metabolically labeled with 100 mM Ac4GalNAz for 24 hr. Then, mitochondria

were purified and extracted into lysis buffer. Half the sample was labeled with 1 and half with 2, and labeled samples were analyzed by glyco-DIGE. 1 is indicated

in green, 2 in red, and 1+2 overlap in yellow.

See also Figure S8.
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identifying compartment- or stimulus-specific changes in

O-GlcNAcylated proteins across different samples, circumvent-

ing major, inherent disadvantages of affinity-based approaches.

Furthermore, we use our approach to identify a mitochondrial

glycoprotein and demonstrate its functional link to O-GlcNAc

signaling.

RESULTS

Glyco-DIGE Permits Simultaneous Detection and
Analysis of Hundreds of O-GlcNAcylated Proteins
To analyze sample-specific changes in O-GlcNAcylated pro-

teins, we turned to difference gel electrophoresis (DIGE) (Minden

et al., 2009). In traditional DIGE experiments, each of two protein

samples (e.g., from control versus stimulated cells) is covalently

labeled with a protein-nonspecific, cyanine 3 (Cy3)- or cyanine 5

(Cy5)-based fluorophore (Minden et al., 2009). Then, the samples

are mixed and analyzed by conventional 2D electrophoresis (iso-

electric focusing [IEF] followed by SDS-PAGE). When these 2D

gels are imaged for Cy3 and Cy5, proteins that are unchanged

between the two samples show perfect overlap of Cy3 and

Cy5 fluorescence, whereas the rare proteins that are different

between the two samples are visualized as Cy3-only or Cy5-

only signal. These sample-specific proteins of interest can be

excised from the gel and identified by mass spectrometry.

We envisioned that DIGE methods could be adapted to

analyze glycoproteins, including O-GlcNAcylated substrates

tagged via our GalNAz label and appropriate azide-reactive

Cy3 and Cy5 derivatives, permitting us to visualize and identify

sample-specific changes in O-GlcNAcylated proteins (Figures

1A and 1B). Furthermore, we hypothesized that this ‘‘glyco-

DIGE’’ platform would permit the visualization of rare, sample-

dependent changes in O-GlcNAcylated proteins, even in

experiments where abundant, unchanging background

O-GlcNAc is present elsewhere on the same 2D gel. Importantly,

such a glyco-DIGE approach could detect any alteration in an

O-GlcNAcylated protein that affected its mobility on a 2D gel,

including de novo (de)glycosylation and other changes (e.g.,

cleavage, ubiquitination), providing broad information on the

role of O-GlcNAcylated proteins in dynamic cell signaling.

To test the utility of a glyco-DIGE approach, we synthesized

alkyne-functionalized Cy3 (1) and Cy5 (2) (Figure 1C). As ex-

pected, 1 and 2 reacted specifically with O-GlcNAcylated pro-

teins from Jurkat cells metabolically labeled with GalNAz via

the well-characterized, bioorthogonal copper-catalyzed azide-

alkyne cycloaddition (CuAAC) reaction (Nwe and Brechbiel,

2009) (Figure 1D). Importantly, whereas hundreds of 1- and 2-

labeled protein spots could be separated and visualized effi-

ciently on the same glyco-DIGE gel, labeling by 1 or 2 did not

differentially affect the migration of proteins in a glyco-DIGE

experiment (Figure 1E). We concluded that glyco-DIGE can label

and compare large numbers of O-GlcNAcylated proteins across

different mammalian samples.

Glyco-DIGE Identifies VDAC2 as a Mitochondrial O-
GlcNAc Substrate
We next asked whether glyco-DIGE could detect sample-

specific differences in O-GlcNAcylated proteins. As a proof of
548 Cell Reports 5, 546–552, October 31, 2013 ª2013 The Authors
principle experiment, we examined differences in protein glyco-

sylation between mitochondria and cytosol. Although O-GlcNAc

is a well-known sentinel of cellular glucose levels (Hanover et al.,

2010; Hart et al., 2011) and regulates both metabolic (Dentin

et al., 2008; Yang et al., 2008) and mitochondrial (Hu et al.,

2009; Wang and Schwarz, 2009) pathways, the mitochondrial

glycoproteome has not been analyzed systematically. We used

glyco-DIGE to compare O-GlcNAcylated proteins from mito-

chondrial and cytosolic extracts (Figure S1) (Frezza et al.,

2007) of the same human cell line. As expected, we detected

numerous differences in the respective glycoproteomes of these

two compartments (Figure 2A). Across many experiments and

multiple cell types, we noticed one set of especially prominent

mitochondrial O-GlcNAcylated protein spots (Figure 2A, arrows).

Using fluorescence as a guide, we excised the corresponding

spots from preparative gels and identified the voltage-depen-

dent anion channel 2 (VDAC2) protein as the major component

(Figure S2).

VDAC2 is a member of a family of multipass channel proteins

residing in the mitochondrial outer membrane, with important

roles in organelle metabolite flux, nutrient metabolism, and

apoptotic signaling (Cheng et al., 2003; Ren et al., 2009;

Shoshan-Barmatz et al., 2010). Although some work has sug-

gested that VDAC family proteins might be glycosylated (Jones

et al., 2008), VDAC2 had not been described or validated as a

specific O-GlcNAc substrate. We performed two experiments

to confirm our glyco-DIGE results with VDAC2. First, we

compared mitochondrial extracts from wild-type and VDAC2�/�

mouse embryonic fibroblasts (MEFs) (Cheng et al., 2003) in a

glyco-DIGE experiment (Figure 2B). As expected, we found

that spots corresponding to the ones identified in human cells

were present in wild-type MEF mitochondrial samples but

absent from the VDAC2�/� samples, indicating that these spots

are VDAC2 (Figure 2B). Furthermore, these fluorescent spots

correlated with anti-VDAC2 immunoreactivity on a 2D immuno-

blot of wild-type mitochondrial extracts (Figure S3). Second,

we used an affinity approach (Boyce et al., 2011) to confirm

our glyco-DIGE results with VDAC2. We labeled wild-type or

VDAC2�/� MEFs with GalNAz, made mitochondrial extracts,

and reacted them with phosphine-biotin to tag azide-bearing

proteins. Then, we enriched for GalNAz-labeled proteins via anti-

biotin affinity chromatography. As expected, anti-VDAC2 immu-

noblotting showed that VDAC2 was affinity purified only from

wild-type mitochondrial samples from cells labeled with GalNAz

(Figure 2C), demonstrating the specificity of GalNAz labeling of

VDAC2. As further confirmation, we analyzed similar biotin affin-

ity-purified samples by mass spectrometry and detected enrich-

ment of VDAC2 in mitochondrial extracts from GalNAz-treated,

but not vehicle-treated, wild-type MEFs (Figure S4). Taken

together, these results indicate that VDAC2 is an O-GlcNAcy-

lated mitochondrial protein in human and mouse cells.

Loss of VDAC2 Protects Cells from Mitochondrial
Dysfunction and Apoptosis following Global
Perturbation of O-GlcNAcylation
Intriguingly, VDAC2 (Cheng et al., 2003; Ren et al., 2009;

Shoshan-Barmatz et al., 2010) and O-GlcNAc (Hu et al., 2009;

Wang and Schwarz, 2009) are both critical regulators of
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Figure 2. Glyco-DIGE Identifies VDAC2 as a Mitochondrial Glyco-

protein

(A) Jurkat cells were metabolically labeled with 100 mM Ac4GalNAz for 24 hr,

and mitochondrial and cytosolic extracts were prepared. Mitochondrial

extracts were reacted with 1 (green), and cytosolic extracts with 2 (red). Then,

the samples weremixed and analyzed by glyco-DIGE. 1+2 overlap is indicated

in yellow. Arrows point to VDAC2 spots. The characteristic ‘‘charge train’’

pattern of VDAC2 spots likely reflects the presence of multiple phosphorylated

forms of the protein.

(B) Wild-type and VDAC2�/� MEFs were metabolically labeled with 100 mM

Ac4GalNAz for 24 hr. Mitochondrial extracts were prepared and labeled with 1

(wild-type is in green) or 2 (VDAC2�/� is in red) and then analyzed by glyco-

DIGE. Arrows indicate VDAC2 spots.

(C) Wild-type (WT) and VDAC2�/� (ø) MEFs were metabolically labeled with

100 mM Ac4GalNAz or vehicle only for 24 hr, and mitochondrial extracts were

prepared and reacted with phosphine-biotin. Then, biotin-tagged proteins

were affinity purified essentially as described (Boyce et al., 2011) and analyzed

by immunoblot. Left view shows affinity-purified material. Right view presents

3% total input of material (loading control). MnSOD serves as a loading control

for total mitochondrial protein and demonstrates the removal of un-

glycosylated proteins during affinity purification.

See also Figures S1, S2, S3, and S4.

C

mitochondrial metabolism and cell death, but no experimental

evidence had established a functional connection between

them. Given our finding that VDAC2 is a glycoprotein, we asked

whether a phenotypic relationship existed between O-GlcNAc

signaling and VDAC2. We found that potentiating global

O-GlcNAc levels using a combination of glucosamine, to in-

crease levels of UDP-GlcNAc (Vosseller et al., 2002), and Thia-

met-G, a specific small molecule inhibitor of the glycoside

hydrolase O-GlcNAcase (OGA) (Yuzwa et al., 2008), resulted in

mitochondrial dysfunction and apoptosis in MEFs (Figure 3).

Consistent with previous reports by Gloster et al. (2011) and

Slawson et al. (2005), both wild-type and VDAC2�/� MEFs

altered OGA and OGT protein levels to compensate for the phar-

macological perturbation of O-GlcNAc, especially at later time

points (Figures 3B and S5). Nevertheless, we found that

VDAC2�/�MEFs were resistant to the mitochondrial dysfunction

(Figure 3A) and apoptosis (Figure 3B) caused by Thiamet-G and

glucosamine. Furthermore, this difference was caused by the

loss of VDAC2 per se, and not an adventitious or irreversible

downstream effect of gene deletion, because stable re-expres-

sion of VDAC2 in VDAC2�/� MEFs restored sensitivity to Thia-

met-G/glucosamine treatment (Figure S6). We concluded that

global O-GlcNAc perturbation induces mitochondrial dysfunc-

tion and apoptosis and that VDAC2 is required for these effects,

demonstrating a critical functional connection between VDAC2

and O-GlcNAc signaling in organelle physiology and cell death.

DISCUSSION

We have developed a proteomics platform, termed glyco-DIGE,

which can detect differences in O-GlcNAcylated proteins across

samples. Importantly, the combination of GalNAz labeling and

glyco-DIGE permits time-resolved examination of new cellular

O-GlcNAc and allows the detection of rare, substoichiometric,

sample-dependent changes in O-GlcNAcylated substrates,

without incurring the bias toward abundant, unchanging,

multiply glycosylated ‘‘background’’ substrates that is endemic

to affinity-based analysis of O-GlcNAc. Therefore, whereas
ell Reports 5, 546–552, October 31, 2013 ª2013 The Authors 549
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Figure 3. Loss of VDAC2 Protects Cells from Mitochondrial

Dysfunction and Cell Death Induced by Global O-GlcNAc Perturba-

tion

(A) Wild-type or VDAC2�/� cells were treated with 10 mMThiamet-G and 4mM

glucosamine or vehicle control for 26 or 50 hr and analyzed by MTS assay to

measure mitochondrially produced reducing equivalents (i.e., NADH and

NADPH). Treated samples were normalized to their corresponding vehicle-

only controls. Error bars represent SDs.

(B) Wild-type or VDAC2�/� cells were treated as in (A), and whole-cell lysates

were prepared and analyzed by immunoblot as indicated.

See also Figures S5 and S6.
affinity-based approaches will remain valuable for the bulk iden-

tification of O-GlcNAc substrates, we anticipate that GalNAz

labeling and glyco-DIGE will provide an important complemen-

tary method to examine subtle, functionally relevant changes in

O-GlcNAc. In a proof-of-principle experiment, we used glyco-

DIGE to perform an unbiased search for mitochondria-specific

O-GlcNAcylated proteins (Figure 2). We expect that our method

will also lend itself to numerous applications for examining

signal-dependent changes in O-GlcNAc. For example, in prelim-

inary experiments, we used glyco-DIGE to examine differences

in nuclear O-GlcNAcylated proteins in control versus DNA-
550 Cell Reports 5, 546–552, October 31, 2013 ª2013 The Authors
damaged cells and found genotoxic stress-specific changes

conserved across disparate human cell lines (Figure S7). The

identification of these and other signal-specific glyco-DIGE pro-

tein spots is ongoing. More generally, we note that conventional

DIGE methods can resolve �2,500 cyanine-labeled protein

spots from samples of 1,000–10,000 mammalian cells (Meyer

and Stühler, 2007; Minden et al., 2009), and we anticipate that

glyco-DIGE capabilities will be comparable. In addition, glyco-

DIGE experiments can be easily tailored to specific pI and

molecular weight (MW) ranges (narrow or broad, as appropriate)

using commercial reagents, and glyco-DIGE is compatible with a

wide variety of biochemical procedures for sample prefractiona-

tion. Therefore, glyco-DIGE will be useful in analyzing even more

complex biological samples in the future.

In the current work, we used glyco-DIGE to identify VDAC2 as

a mitochondrial O-GlcNAc substrate and showed that the mito-

chondrial dysfunction and cell death caused by global O-GlcNAc

perturbation depend on VDAC2. Interestingly, although VDAC2

has a previously described role in apoptosis, its loss was shown

to sensitize cells to such stimuli as protein kinase inhibition, gen-

otoxic stress (Cheng et al., 2003), and T cell receptor ligation

(Ren et al., 2009), whereas we find that the loss of VDAC2 pro-

tects cells from global O-GlcNAc perturbation. Given the well-

known roles of O-GlcNAc and VDAC2 in apoptotic signaling

and cell metabolism, it will be interesting to dissect themolecular

explanation for VDAC2’s various pro- and antiapoptotic effects

in response to distinct stimuli and determine whether these phe-

notypes are controlled directly by O-GlcNAcylation of VDAC2

itself and/or by other mechanisms. To this end, we are working

to identify the glycosylation site(s) on VDAC2 and will use ungly-

cosylatable mutants to address these questions in future work.

Beyond mitochondrial O-GlcNAc, we believe glyco-DIGE will

serve as a useful tool for analyzing rare, signal-dependent

changes in O-GlcNAcylated proteins, providing a powerful com-

plement to existing affinity-based approaches for studying

O-GlcNAc signaling in a wide range of experimental contexts.

EXPERIMENTAL PROCEDURES

Compound Synthesis and Small Molecule Reagents

Glyco-DIGE probes 1 and 2 were synthesized from propargyl amine and N-

hydroxysuccinamide esters of Cy3 and Cy5, respectively (GE Healthcare),

and purified by reversed-phase high-performance liquid chromatography.

See Extended Experimental Procedures for details. Syntheses and purification

of peracetylated GalNAz (Laughlin and Bertozzi, 2007), phosphine-biotin

(Saxon and Bertozzi, 2000), and Thiamet-G (Yuzwa et al., 2008) were per-

formed essentially as described. Other chemical reagents were obtained

from Sigma-Aldrich unless otherwise indicated.

Cell Culture, Treatment, and Protein Sample Preparation

Cells were maintained in a 5%CO2, humidified atmosphere at 37�C in medium

(Jurkat: RMPI 1640; MEFs, HT1080, 293T: Dulbecco’s modified Eagle’s me-

dium) plus 10% fetal bovine serum and penicillin/streptomycin (Invitrogen). A

total of 100 mM DMSO stock solution of peracetylated GalNAz was added

to achieve final treatment conditions.

For whole-cell lysates, cells were treated as indicated, washed in cold PBS,

and resuspended in Buffer L (1% Triton X-100, 150 mM NaCl, 20 mM Tris-HCl

[pH 7.4]) plus Protease Inhibitor Cocktail III (Calbiochem). Lysates were probe

sonicated (Misonix) on ice for 1 min and cleared by centrifugation.

For subcellular fractionation, mitochondria were prepared as described by

Frezza et al. (2007), and mitochondrial protein extracts were made from



purified organelles as outlined above. For cytosolic protein extracts, superna-

tant from the final spin of the mitochondrial preparation was cleared by high-

speed centrifugation and brought to Buffer L reagent concentrations. Highly

purified nuclear extracts were prepared as described (Boyce et al., 2011).

Where indicated (Figure S1), nuclear/cytoplasmic fractions were prepared

by recombining the nuclear and cytoplasmic material after isolation of mito-

chondria. The quality of subcellular fractionations was verified by immunoblot

for known organelle marker proteins (Figures 2C and S1).

For DNA damage experiments, cells were treated with 100 mM GalNAz and

either 1 mg/ml doxorubicin or vehicle control (DMSO) for 24 hr. Then, nuclear

extracts were made and analyzed pairwise (i.e., with versus without doxoru-

bicin) in glyco-DIGE experiments as described below.

In all cases, protein concentrations were quantified by bicinchoninic acid

assay (Thermo Fisher Scientific), and all samples were normalized with buffer

to the same total protein concentration.Where indicated, equal protein loading

was verified by control immunoblot (e.g., tubulin, MnSOD) or colloidal blue

stain (Invitrogen).

Bioorthogonal Reactions of Azides

For CuAAC reactions, protein extracts were mixed with 25 mM 1 or 2 as indi-

cated, 5 mM sodium ascorbate, 100 mM Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)

methyl]amine (TBTA), and 1 mM CuSO4 (final concentrations) from the

following stock solutions: 10 mM 1 or 2 (in water); 167 mM sodium ascorbate

(in water, prepared fresh); 30 mM TBTA (in DMSO); and 50 mM CuSO4 (in

water). Reactions were incubated in the dark with end-over-end inversion for

1 hr and then stopped by addition of 10 mM (final) EDTA.

For Staudinger ligation reactions, protein extracts were mixed with 500 mM

phosphine-biotin (final concentration, from 5mM stock in 30%dimethylforma-

mide in PBS) and incubated overnight with end-over-end inversion. NeutrAvi-

din antibiotin affinity chromatography was performed as described (Boyce

et al., 2011).

Glyco-DIGE Sample Analysis and Spot Picking

To perform a glyco-DIGE experiment, equal protein amounts of 1- and 2-

labeled samples were combined, and excess, unreacted alkyne probe was

removed by exchange into Buffer L plus 10 mM EDTA using Bio-Spin P-6 col-

umns (Bio-Rad). Labeled protein was precipitated and washed using the 2D

Clean-Up Kit (GE Healthcare) and dissolved in DeStreak Rehydration Solution

(GE Healthcare) with 20 mM dithiothreitol (DTT) and 0.5% IPG Buffer pH 3–10

NL (GE Healthcare).

For the IEF dimension, samples (200 mg to 1 mg of protein) were rehydra-

tion loaded onto 11 cm pH 3–11 NL Immobiline DryStrip IEF strips (GE

Healthcare) using an Ettan IPGphor 3 IEF unit according to the manufac-

turer’s instructions. For the second (i.e., SDS-PAGE) dimension, IEF strips

were equilibrated by incubation in SDS equilibration buffer (6 M urea,

75 mM Tris-HCl [pH 8.8], 29.3% glycerol, 2% SDS, bromophenol blue) with

10 mg/ml DTT for 15 min, followed by incubation in SDS equilibration buffer

with 25 mg/ml iodoacetamide for 15 min. Equilibrated strips were laid over

precast 10% or 4%–20% gradient Criterion IEF SDS-PAGE gels (Bio-Rad)

and sealed into place using 1% agarose and bromophenol blue in 13 MES

buffer (Bio-Rad). Standard SDS-PAGE was then performed using the Crite-

rion gel system (Bio-Rad).

Finished glyco-DIGE gels were washed briefly in ultrapure water and

immobilized by sealing with 1% agarose in water onto a custom-built low-

fluorescence glass stage marked with fluorescent stickers (GE Healthcare).

Immobilized gels were scanned on a Typhoon flatbed gel scanner (GE

Healthcare) using the factory preset excitation and emission settings for

Cy3 and Cy5 and DIGE data acquisition mode. Data were analyzed using

ImageQuant TL software (GE Healthcare). Fluorescent protein spots of

interest were identified by inspection and marked via the ImageQuant 2D

gel analysis tool to make a pick list, using the fluorescent guide stickers as

reference coordinates. Gel coordinates of spots on the pick list were

exported to Excel (Microsoft) and converted to a text file using an in-house

macro. Spots from the pick list were excised from the gel using an Ettan

Spot Picker robot (GE Healthcare) according to the manufacturer’s instruc-

tions into 96-well plates. Gel picks from the same spot were pooled by

hand for proteomic analysis.
C

Immunoblotting

Immunoblotting was performed essentially as described (Boyce et al., 2011).

See Extended Experimental Procedures for details.

Mass Spectrometric Analysis

Samples were subjected to reversed-phase chromatography with an Agilent

1200 liquid chromatography system connected in-line to either an LTQ XL

mass spectrometer or an LTQ Orbitrap XL hybrid mass spectrometer and pro-

cessed using customized data-dependent acquisition methods. Protein iden-

tities were obtained using the SEQUEST search algorithm within Proteome

Discoverer 1.3 (Thermo Fisher Scientific). See Extended Experimental Proce-

dures for details.

Assay of Mitochondrial Function

Wild-type and VDAC2�/� MEFs were plated in 96-well plates (5,000 cells/well)

in phenol red-free medium (Invitrogen). Cells were treated as indicated and

analyzed by CellTiter AQueous One Solution Cell Proliferation Assay (to mea-

sure reducing equivalents, NADH and NADPH) or Caspase-Glo 3/7 Assay (to

measure apoptotic protease activity) (Promega) according to the manufac-

turer’s instructions. Results were read using a Molecular Devices SpectraMax

automated plate reader using the appropriate factory preset parameters.
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