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New families of orthogonal polynomials
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Abstract

This paper provides with a generalization of the work by Wimp and Kiesel [Non-linear recurrence relations and
some derived orthogonal polynomials, Ann. Numer. Math. 2 (1995) 169–180] who generated some new orthogonal
polynomials from Chebyshev polynomials of second kind. We consider a class of polynomials P̃n(x) defined by:
P̃n(x) = (anx + bn)Pn−1(x) + (1 − an)Pn(x), n = 0, 1, 2, . . . , a0 �= 1, where the Pk(x) are monic classical
orthogonal polynomials satisfying the well-known three-term recurrence relation: Pn+1(x) = (x − �n)Pn(x) −
�nPn−1(x), n�1, P1(x) = x − �0; P0(x) = 1. We explicitly derive the sequences an and bn in general and
illustrate by some concrete relevant examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

RecentlyWimp and Kiesel [5,4] have derived non-linear recurrence relations generating new orthogonal
polynomials. This work generalizes the results of these authors and enlarges the classes of orthogonal
polynomials.The problem we solve states as follows.
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Let {Pn}n�0 be a family of monic orthogonal polynomials with respect to a weight w, satisfying the
three-term recurrence relations [1]

Pn+1(x) = (x − �n)Pn(x) − �nPn−1(x), n�1,
P0(x) = 1, P1(x) = x − �0. (1)

The coefficients �n and �n are complex numbers (with �n �= 0). By convention, we set �0 = 1. Let an and
bn be two given sequences of complex numbers such that a0 is different from one and consider the new
sequence {P̃n}n�0 defined by (2)

P̃n(x) = (anx + bn)Pn−1(x) + (1 − an)Pn(x), P−1(x) = 0, n = 0, 1, 2, . . . , a0 �= 1. (2)

Then, a question arises: how should one choose both sequences {an} and {bn} so that the new polynomials
P̃n are orthogonal too?

The paper is organized as follows: In Section 2, we develop the general formalism giving the recurrence
relation for the new polynomials. In Section 3, we point out some relevant particular cases. In Section 4,
we construct concrete examples of new orthogonal polynomials based on known classical ones. Finally
in Section 5, we derive the second order differential equation satisfied by the new families of orthogonal
polynomials.

2. Construction of the new non-linear recurrence relations

Let us prove the following statement.

Theorem 1. Let {Pn}n�0 be a family of monic orthogonal polynomials satisfying Eq. (1). Then the
sequence {P̃n}n�0, defined by (2), verifies the following recurrence relation:

P̃n+2(x) = �(2)
n (x)P̃n+1(x) − �(1)

n (x)P̃n(x), (3)

where

�(1)
n (x) = �n

an+1

an

+ k
(1)
n x + k

(2)
n

wn(x)
, an �= 0, n�0

�(2)
n (x) = An+2 − an+1�n − bn+1 + x + k

(3)
n x + k

(4)
n

wn(x)
,

wn(x) = (anx + bn)(x + An+1) + Bn+1, (4)

and

k(1)
n = �n

[
(an+1An+2 + bn+1) − an+1

an

(anAn+1 + bn)

]
, (5)

k(2)
n = �n

[
(An+2bn+1 + Bn+2) − an+1

an

(An+1bn + Bn+1)

]
, (6)

k(3)
n = an(an+2 − 1)�n+1 − an+1(an − 1)�n − an�nAn+2

− anAn+1(An+2 − an+1�n − bn+1),
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k(4)
n = �n(1 − an)An+2 + bn[(an+2 − 1)�n+1 − �nAn+2]

− (bnAn+1 + Bn+1)(An+2 − an+1�n − bn+1),

An+1 = (an+1 − 1)�n + bn+1, Bn+1 = �n(an − 1)(an+1 − 1). (7)

Proof. From (2) and taking into account (1) it follows that

P̃n+1(x) = (x + An+1)Pn(x) + (an+1 − 1)�nPn−1(x). (8)

Replacing n by n + 1 in (8) with the use of (1), we get:

P̃n+2(x) = [(x + An+2)(x − �n) + �n+1(an+2 − 1)]Pn(x) − �n(x + An+2)Pn−1(x). (9)

We thus form a set of three equations (2), (8), (9) with the two unknowns Pn, Pn−1. They will have a
solution if and only if the augmented determinant is equal to zero. The computation and the transformation
of this determinant give the required recurrence relation. �

We then deduce the following relations:

(An+2an+1 + bn+1) − an+1

an

(An+1an + bn) = 0, (10)

[
(An+2bn+1 + Bn+2) − an+1

an

(An+1bn + Bn+1)

]
= 0, (11)

an(an+2 − 1)�n+1 − an+1(an − 1)�n − an�nAn+2

− anAn+1(An+2 − an+1�n − bn+1) = 0, (12)

�n(1 − an)An+2 + bn[(an+2 − 1)�n+1 − �nAn+2]
− (bnAn+1 + Bn+1)(An+2 − an+1�n − bn+1) = 0, (13)

where a0, a1, b0 and b1 are given arbitrary numbers. Furthermore, the following holds:

Corollary 1. Let an �= 0, an �= 1 for all n. Then Eqs. (10) and (11) imply Eqs. (12) and (13).

Proof. One can follow step by step [5,4]. �

Corollary 2. Let {an}, {bn} be the sequences satisfying Eqs. (10) and (11). Then the following non-linear
recurrence relations hold:

bn+1 = C − bn

an

− (an+1 − 1)�n, n = 1, 2, 3, 4, . . . , (14)

an+1 = a2
nM − Canbn + b2

n

�nan(an − 1)
+ 1, n = 1, 2, 3, . . . , (15)

where

C = a0A1 + b0

a0
, M = b0A1 + B1

a0
. (16)
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Proof. Using Eq. (10) we deduce for n = 0, 1, 2 . . .

(An+2an+1 + bn+1)

an+1
= (An+1an + bn)

an

, (17)

which implies

(An+1an + bn)

an

= C, (18)

C being a constant (independent of n) so that (14) is achieved. Equivalently, k
(2)
n = 0 yields

(An+2bn+1 + Bn+2)

an

= (An+1bn + Bn+1), (19)

(An+1bn + Bn+1)

an

= M , (20)

where M is now a constant given by

M = [(a1 − 1)�0b0 + b0b1 + (a0 − 1)(a1 − 1)]
a0

.

Using (14) and (20), we obtain relation (15). �

Corollary 3. Let {Pn}n�0, {an} and {bn} be the sequences satisfying Eqs. (1), (10) and (11), respectively.
Then the sequence {P̃n}n�0 verifies the following recurrence relation:

P̃n+2(x) = [x + An+2 − bn+1 − an+1�n]P̃n+1(x)

− �n

an+1

an

P̃n(x), an �= 0, n = 0, 1, 2, . . . ,

P̃0(x) = 1 − a0, P̃1(x) = x + b1 + �0(a1 − 1). (21)

3. Particular case of bn ≡ 0

Let us summarize the results of the previous section when bn ≡ 0.

Theorem 2. Let bn ≡ 0, �n �= 0, a0 �= 1 and an �= 0. Then the sequences {P̃n}n�0 and {an} satisfy the
following recurrence relations:

P̃n+2(x) = (x − �n)P̃n+1(x) − �n

an+1

an

P̃n(x),

n = 0, 1, 2, . . . ; P̃0(x) = 1 − a0; P̃1(x) = x + �0(a1 − 1), (22)

an = �n

�n − �nK
, K = a0 − 1

�0a0
. (23)
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Proof. If bn ≡ 0, �n �= 0 Eqs. (10), (11) and (21) become, respectively,

(an+2 − 1)�n+1 = (an+1 − 1)�n (24)

and

�n+1(an+2 − 1)

an+1
= �n(an − 1)

an

, (25)

P̃n+2(x) = [x + (an+2 − 1)�n+1 − an+1�n]P̃n+1(x) − �n

an+1

an

P̃n(x),

n = 0, 1, 2, . . . , P̃0(x) = 1 − a0, P̃1(x) = x + �0(a1 − 1). (26)

Using (24), Eq. (26) rewrites

P̃n+2(x) = (x − �n)P̃n+1(x) − �n

an+1

an

P̃n(x),

n = 0, 1, 2, . . . ; P̃0(x) = 1 − a0; P̃1(x) = x + �0(a1 − 1).

Combining (24) and (25) with �n �= 0, we obtain a first order non-linear difference equation:

�n+1(an+1 − 1)

�n+1an+1
= �n(an − 1)

�nan

, (27)

which implies

�n(an − 1)

�nan

= K with K = a0 − 1

�0a0
. (28)

Using Eq. (28), we obtain (23). �

Theorem 3. Let bn ≡ 0, �n = 0, an �= 0, and an �= 1. Then the sequences {P̃n}n�0 and {an} satisfy the
following recurrence relations:

P̃n+2(x) = xP̃n+1(x) − �n

an+1

an

P̃n(x),

n = 0, 1, 2, . . . ; P̃0(x) = 1 − a0; P̃1(x) = x, (29)

an+1 = anL

�n(an − 1)
+ 1, L = (a1 − 1)(a0 − 1)

a0
. (30)

Proof. If bn ≡ 0, �n = 0, an �= 0, and an �= 1 Eqs. (10), (11) and (21) become, respectively,

�n+1(an+2 − 1)

an+1
= �n(an − 1)

an

, (31)

P̃n+2(x) = xP̃n+1(x) − �n

an+1

an

P̃n(x),

n = 0, 1, 2, . . . ; P̃0(x) = 1 − a0; P̃1(x) = x. (32)
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Multiplying Eq. (31) by (an+1 − 1), we obtain

�n+1(an+2 − 1)(an+1 − 1)

an+1
= �n(an+1 − 1)(an − 1)

an

, (33)

which implies

�n(an+1 − 1)(an − 1)

an

= L with L = (a1 − 1)(a0 − 1)

a0
. (34)

Using Eq. (34), we obtain (30). �

4. Examples of new families of orthogonal polynomials

In this section, let us provide data for some new families of orthogonal polynomials obtained from the
classical Hermite, Laguerre and Jacobi orthogonal polynomials.

(i) Data for the modified Laguerre polynomials P̃n(x)

C = (a1 − 1)(� + 1) + b1 + b0

a0
,

M = (a1 − 1)b0(� + 1) + b0b1 + (a0 − 1)(a1 − 1)

a0
,

bn+1 = C − (an+1 − 1)(2n + � + 1) − bn

an

,

an+1 = Ma2
n − Canbn + b2

n

n(n + �)an(an − 1)
+ 1.

(ii) Data for the modified Jacobi polynomials P̃n(x)

C = (a1 − 1)(� − �)

(� + � + 2)
+ b1 + b0

a0
,

M = (a1 − 1)(� − �)b0

(� + � + 2)a0
+ b0b1(a0 − 1)(a1 − 1)

a0
,

bn+1 = C − (an+1 − 1)(�2 − �2)

(� + � + 2n + 2)(� + � + 2n)
− bn

an

,

an+1 = (Ma2
n − Canbn + b2

n)(� + � + 2n)2(� + � + 2n − 1)(� + � + 2n + 1)

4nan(an − 1)(� + n)(� + n)(� + � + n)
+ 1.

(iii) Data for the modified Hermite polynomials P̃n(x)

C = b1 + b0

a0
, M = b0b1 + (a0 − 1)(a1 − 1)

a0
,

bn+1 = C − bn

an

, an+1 = 2(Ma2
n − Canbn + b2

n)

nan(an − 1)
+ 1.
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5. Second order differential equation

To derive the second order differential equation for the new orthogonal polynomials, we start with the
following lemma.

Lemma 1. Let � be a classical weight function satisfying the Pearson equation (�(x)�(x))′ = �(x)�(x),
where �(x)= �2x

2 + �1x + �0, �(x)= �1x + �0, (|�1|)(|�2|+ |�1|+ |�0|) �= 0. Then, the monic classical
orthogonal polynomial family {Pn}n�0 satisfies the following structure relations:

�(x)P ′
n(x) = InPn−1(x) + (n�2x + Jn)Pn(x), (35)

�(x)P ′
n−1(x) = (Cnx + Dn)Pn−1(x) + EnPn(x), n = 0, 1, 2, . . . , (36)

where

In = −((2n − 1)�2 + �1)�n, Jn = n�1 + �2

n−1∑
i=0

�i , (37)

Cn = − ((n − 2)�2 + �1), Dn = ((2n − 3)�2 + �1)�n−1

+ (n − 1)�1 + �2

n−2∑
i=0

�i , En = ((2n − 3)�2 + �1). (38)

Proof. The monic classical orthogonal polynomial family {Pn}n�0 satisfies the following structure re-
lation [2,3]:

�(x)P ′
n(x) = Cn,n+1Pn+1(x) + Cn,nPn(x) + Cn,n−1Pn−1(x), (39)

where the Ci,j are constants. Using the relation [3] Pn(x)= xn + (−∑n−1
i=0 �i)x

n−1 + · · · and the orthog-
onality property, we obtain the following:

Cn,n+1 = n�2, Cn,n−1 = −[�1 + (n − 1)�2]�n,

Cn,n = n�1 +
(

n�n +
n−1∑
i=0

�i

)
�2.

Using the recurrence relation (1), we get the structure relations (35) and (36). �
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Theorem 4. The monic orthogonal polynomial family {P̃ }n�0 satisfies the following second order linear
differential equation:

�2(x)[(anx + bn)k3(x; n) − (1 − an)k1(x; n)]P̃ ′′
n (x)

− �(x)[(anx + bn)((n�2x + Jn − �′(x))k3(x; n) + Enk1(x; n)

+ �(x)(anEn + n(1 − an)�2))

− (1 − an)((Cnx + Dn − �′(x))k1(x; n)

+ �(x)k2(x; n) + Ink3(x; n))]P̃ ′
n(x)

+ [(n�2x + Jn − Cnx − Dn)k1(x; n)k3(x; n) + Enk
2
1(x; n)

+ �(x)(anEn + n(1 − an)�2)k1(x; n)

− �(x)k2(x; n)k3(x; n) − Ink
2
3(x; n)]P̃n(x) = 0, (40)

where

k1(x; n) = an�(x) + (anx + bn)(Cnx + Dn) + (1 − an)In,
k2(x; n) = an�′(x) + an(Cnx + Dn) + Cn(anx + bn),
k3(x; n) = En(anx + bn) + (1 − an)(n�2x + Jn). (41)

Proof. If we first differentiate (2), then multiply it by �(x) and use the above structure relations (35) and
(36), we obtain:

�(x)P̃ ′
n(x) = k1(x; n)Pn−1(x) + k3(x; n)Pn(x), n = 0, 1, 2, . . . . (42)

In a similar way, we obtain:

�2(x)P̃ ′′
n (x) = [(Cnx + Dn − �′(x))k1(x; n) + �(x)k2(x; n)

+ Ink3(x; n)]Pn−1(x) + [(n�2x + Jn − �′(x))k3(x; n) + Enk1(x; n)

+ �(x)(anEn + n(1 − an)�2)]Pn(x), n = 0, 1, 2, . . . . (43)

Eqs. (2), (42) and (43) are three equations with two unknowns Pn−1(x) and Pn(x). A solution will exist
if and only if the augmented determinant is equal to zero.The expansion of this determinant gives the
required equation. �

For the Chebyshev polynomials of the second kind Un(x), (�(x)=1−x2, �(x)=−3x, �n = 1
4 , �n =0),

using Lemma 1, (41) and (40), we recover the results obtained in [5].
It is straightforward to apply the above formalism to derive new families of orthogonal polynomials

{P̃n} from (2) for any usual classical orthogonal polynomials Pn like Laguerre, Jacobi and Hermite
polynomials. For example, in the case of the modified Laguerre orthogonal polynomials, using (21), we
obtain the following recurrence relation:

P̃n+2(x) = [x + bn+2 − bn+1 + (an+2 − 1)(2n + � + 3) − an+1(2n + � + 1)]P̃n+1(x)

− n(n + �)
an+1

an

P̃n(x), n = 0, 1, 2, . . . , an �= 0,

P̃0(x) = 1 − a0, P̃1(x) = x + b1 + (� + 1)(a1 − 1). (44)
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The corresponding second order linear differential equation reads:

x2[d2x
2 + d1x + d0]P̃ ′′

n (x) − x[e3x
3 + e2x

2 + e1x + e0]P̃ ′
n(x)

[f3x
3 + f2x

2 + f1x + f0]P̃n(x) = 0, (45)

where

d2 = an, d1 = (2n + � − 1)(an − 1)an + (an + 1)bn,

d0 = (n2 + n�)(an − 1)2 + (2n + � − 2)(an + 1)bn + b2
n,

e3 = −an,

e2 = (1 − 2n − �)a2
n − (2 − 6n − 2� + bn)an − bn,

e1 = n2 + n� + (7n2 + 5n� − 8n + �2 − 3� + 2)(a2
n − an)

+ 2nanbn − (4 − 6n − 2�)bn − b2
n,

e0 = (−7n3 + 6n2 − 9n2� − n3� + 6n� − 2n�2)an

+ (3n3 − 3n2 + 4n2� + n3� − 3n� + n�2)a2
n

− (−4n3 + 3n2 − 5n2� − n�2 + 3n�) + (4n + � − 3)b2
n

+ (8n2 − 14n − 5� + 6n� + �2)(anbn − bn),

f2 = (6n2 + 3n� − n)an + (−2n2 + 3n + � − n� + 1)a2
n,

f1 = − n2(n + �) + (4n2 − 6n3 + n� − 6n2� − 2n�2 − n)an

+ (7n3 − 4n2 + n + 7n2� + 2n�2 − n�)a2
n + (1 − n)b2

n

+ (6n2 + 3n� − 3n)bn + (3n + n� + � − 3 + 2n2)anbn,

f0 = (n + �)(4n3 + 2n2� − 2n2) + (4n2 + 2n� − 2n)b2
n

+ (4n3 − 8n4 + 4n2� − 12n3� − 4n2�2)an

+ (4n4 − 2n3 − 2n2� + 2n2�2 + 6n3�)a2
n

+ (−8n3 + 12n2 − 4n − 8n2� + 6n� − 2n�2)bn

+ (12n3 − 12n2 + 4n + 12n2� + 2n�2 − 6n� + �)anbn.

To conclude this paper, let us note that the complete analysis of the new orthogonal polynomials
including their orthogonality measure, the location of the zeros with respect to the initial set of polynomials
requires further more cumbersome work and will be thoroughly discussed in a forthcoming paper.
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