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Counterexamples to the Hasse Principle are constructed for curves of genus 2 to 7.
These have the property that their Jacobian splits as a product of elliptic curves, all
of positive rational rank. � 1997 Academic Press

In a startling paper, Ekedahl and Serre [4] construct curves of genus g
whose Jacobian is isogenous to a product of elliptic curves, for values of g
in the set [1, 2, ..., 29, 31, 33, ..., 649, 1297]. These arise either as modular
curves or as coverings of curves of genus 2 or 3. We present here a rather
more modest range of examples concerned with the following related but
more delicate arithmetic question. Construct over Q curves C of a given
genus g such that (i) the Jacobian of C is (Q-isogenous to) a product of
elliptic cuves, (ii) each factor of the Jacobian has positive Mordell�Weil
rank over Q, (iii) the curve C possesses a point everywhere locally, that is,
in R, and in all p-adic fields Qp , and (iv) the curve C has no Q-point. It
is this latter condition that provides for interesting and non-trivial exam-
ples; a global rational point on C induces global points on the elliptic cur-
ves comprising the Jacobian, which will then in general all have positive
rank. A curve satisfying (iii) and (iv) by definition fails the Hasse Principle
and must accordingly have genus at least one. The first examples of such
curves, of genus one, appear to be the curve 2y2=x4&17 of Reichardt [5]
and 3x3+4y3+5z3=0 of Selmer [6]. Obviously a curve of genus one can-
not simultaneously satisfy (ii) and (iv), so the examples of this paper
necessarily have genus g�2. As an extra restriction, it was decided to
demand that the elliptic curves in the Jacobian of C be distinct, more par-
ticularly, non-isogenous, so that the positive ranks of the factors of the
Jacobian arise genuinely independently. In practice, it was surprising how
first attempts to construct examples often led to cases of multiple factors
(cf. Ekedahl and Serre).
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Condition (i), that the Jacobian of C be isogenous to a product of elliptic
curves, has its origins in the study of Abelian integrals during the 19th
century. For our purposes, it may be verified for a particular curve C by
exhibiting explicit rational maps from C to the appropriate number (g) of
distinct elliptic curves. Standard arguments then imply that these maps
induce an isogeny from the Jacobian of C to the product of the elliptic
curves.

In the case of genus 3, Bremner, Lewis, and Morton [2] give the follow-
ing example,

C:3x4+4y4=19z4

mapping to the three elliptic cuves

E1 : 3X 2+4y4=19z4

E2: 3x4+4Y 2=19z4

E3 : 3x4+4y4=19Z2

with respective points of infinite order (10, 1, 2), (1, 2, 1), (5, 8, 31). They
also show that C satisfies (iii) and (iv), as required.

In the case of genus 5, Bremner [1] exhibits the curve in projective
4-space

C : 4x2&11y2=r2

17x2+y2=s2

x2+y2=t2

with all the properties (i)�(iv); see [1] for details.
The purpose of this paper is to provide examples for instances of other

genus, and we shall restrict attention to the cases g=2, 4, 6, 7. We try to
motivate in each instance the relevant construction, though many relatively
tedious details have been suppressed. In practice, as many parameters as
possible were retained until a search by specialization proved the only sen-
sible step forward. Extensive use was made of PARI-gp, and the elliptic
curve programs ``mrank'' of Cremona, and ``Apecs'' of Connell.

For local sovability, frequent application is made of the Weil inequality,
that for a curve C of genus g, there exists a point on C over Qp for all
primes p satisfying p+1>2g - p, provided C is non-singular at p. For
global insolvability, we provide ad aequationem arguments in each case.
The hypothesis that each factor of the Jacobian of C has positive rank
implies that the rank of Jac(C ) is at least equal to g, so that Chabauty's
Theorem, for instance, and its attendant methods, is inapplicable. See
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Cassels and Flynn [3], Chapter 13, for a worked example of the deter-
mination of all rational points on a curve C of genus 2 where Jac(C) has
rank equal to 1.

Genus 2

Despite the recent burgeoning of interest and knowledge in the area of
curves of genus 2, I am not aware in the literature of an example of such
a curve satisfying the properties (i)�(iv). There are several lines of attack:
we choose naively to consider curves of type

y2=Ax6+B (1)

mapping to the two curves of genus 1 given by

Y 2
1=AX 3

1+B, Y 2
2=A+BX 3

2 ,

via the maps

(X1 , Y1)=(x2, y), (X2 , Y2)=\ 1
x2 ,

y
x3+ . (2)

Searching over the parameters A, B for curves of positive rank is not dif-
ficult. But one needs some method for establishing that (1) has no Q-point,
not obvious if it has to possess points everywhere locally. It was decided to
fix B=&29, chosen because the class-number of Q(- &29) equals 6.

Theorem. The curve C : y2=5x6&29 satisfies properties (i)�(iv).

Proof. C maps via (2) to the elliptic curves

Y 2
1=5X 3

1&29 and Y 2
2=5&29X 3

2 ,

with conductors 24 } 33 } 52 } 292 and 22 } 33 } 52 } 292, and respective points of
infinite order (9�5, 2�5), (&19, 446); so (i) and (ii) hold. The curve C is
singular only at the primes 2, 3, 5, 29, so the Weil inequality mandates a
p-adic point for p�17 ( p{29). To verify (iii) therefore it is only necessary
to exhibit a point on C over Qp for p=�, 2, 3, 5, 7, 11, 13, 29. But
(0, - &29) is a point for p=3, 5, 11, 13; ( 6

- 29�5, 0) for p=�, 2; and
(1, - &24) for p=7, 29. Finally, suppose a, b, c # Z satisfy

c2=5a6&29b6, (a, b)=1. (3)

Clearly a#b#1 (mod 2), c#0 (mod 2), and

(c+b3
- &29)(c&b3

- &29)=5a6.
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The two principal ideals (c\b3
- &29) in Z[- &29] are coprime, and it

follows that there exists an ideal a of Z[- &29] such that

(c+b3
- &29)=p5a6, (4)

where (5)=p5 p$5 in Z[- &29]; and p5=(5, 1+- &29) is non-principal.
But the class-number of Q(- &29) is 6, so that a6 is principal, and (4)

implies p5 is a principal ideal, which is a contradiction. Thus (3) has no
non-trivial solution, and C satisfies condition (iv). K

Genus 4

There are two relatively amenable families of curves of genus 4, namely,
intersections in affine 3-space of the type

r2=g(x), s2=h(x),

where g, h are cubics with no repeated root and with no common zero; and
hyperelliptic curves in affine 2-space of type

C : y2= f (x) (5)

with f a polynomial of degree 9 or 10 with distinct roots. We choose here
to illustrate only examples of the latter type. The method is to suppose that
f has no terms of odd degree in x, thereby giving two distinct maps
(X1 , Y1)=(x2, y) and (X2 , Y2)=(1�x2, y�x5) from C to curves 11 , 12 of
genus 2. We can ensure that the Jacobians of 11 and 12 are reducible by
demanding that there exist linear fractional transformations mapping the
equations of 11 , 12 into equations of type

y2=sextic in x,

where the sextic has no terms of odd degree in x. Then each Jac(1i) will
be (isogenous to) the product of two elliptic curves; and Jac(C ) the
product of four elliptic curves. To add to the interest of the example, we
actually make the demand that each 1i contain a rational point, so that C
is indeed trying hard to possess a global rational point!

Theorem. The curve

C : 146734y2=(5x2&586936)(5x2+1320606)(29x2+9537710)

_(125x4+35362894x2+1722469340480)

satisfies properties (i)�(iv).
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Proof. The Jacobian of C splits as the product of the two curves of
genus 2,

11 : 146734y2
1=(5x1&586936)(5x1+1320606)(29x1+9537710)

_(125x2
1+35362894x1+1722469340480)

12 : 146734y2
2=(5&586936x2)(5+1320606x2)(29+9537710x2)

_(125+35362894x2+1722469340480x2
2),

containing the respective points (&146734, 465066721926) and (1�146734, 2).
Under the maps

(x1 , y1)=\&146734(17X1+2512)
5(X1+464)

,
3798044895758400Y1)

125(X1+464)3 +
and

(x2 , y2)=\ &X2&1
146734(X2+9)

,
4Y2

73367(X2+9)3+
then 11 , 12 transform respectively into

Y 2
1=2(X 2

1&43264)(X 2
1&215296)(&X 2

1+10496)

and

Y 2
2=146734(X 2

2&81)(81X 2
2&2401)(&9X 2

2+2009).

These in turn map to

E1 : y2
1=2(x1&43264)(x1&215296)(&x1+10496)

E2 : y2
2=2(1&43264x2)(1&215296x2)(&1+10496x2)

E3 : y2
3=146734(x3&81)(81x3&2401)(&9x3+2009)

E4 : y2
4=146734(1&81x4)(81&2401x4)(&9+2009x4)

with respective conductors 840, 12983880, 335881521393600,
13771142377137600 and points of infinite order (256, 13762560), (1�256,
3360), (25, 2347744), (1�25, 2347744�125). C is singular at precisely p=2,
3, 5, 7, 13, 29, 41, 47, 223, and the Weil inequality mandates a point on
C over Qp for p�67, p{223. There is a point on C over Qp for x=0
at both p=223, and at primes less than 67 except p=2, 3, 5, 13, 23, 37,
41, 43. However, x=1 gives a Qp-point for p=3, 5, 41, 43; x=2 for p=2,
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13, 23; x=4 for p=37; and x=343 for p=�. So C is everywhere locally
solvable. It remains to show that C has no point in Q.

The resultant of (5x2&586936) and (5x2+1320606)(29x2+9537710)
(125x4+35362894x2+1722469340480) is &212 } 38 } 54 } 716 } 132 } 478 } 2238,
and it follows that a rational point (x, y) on C must satisfy the following,
for some u1 # Q:

5x2&586936=*1 u2
1 , *1 | 2.3.5.7.13.47.223. (6)

In the same way, there must exist u2 , u3 , u4 # Q such that

5x2+1320606=*2 u2
2 , *2 | 2.5.7.13.47.223 (7)

29x2+9537710=*3 u2
3 , *3 | 2.3.5.7.47.223 (8)

125x4+35362894x2+1722469340480=*4 u2
4 , *4 | 2.3.5.7.47.223 (9)

with

*1 *2 *3*4#146734=2.7.47.223 mod Q*2. (10)

Local solvability of each individual equation above reduces consideration
to

*1 # [5, 2.5.7, 5.47.223, 2.5.7.47.223, &1, &2.7, &47.223, &2.7.47.223]

*2 # [5, 2.223, 5.7.47, 2.7.47.223]

*3=2.7.47.223

*4=5

so that condition (10) forces *1*2#5 mod Q*2, whence

(*1 , *2)=(2.5.7.47.223, 2.7.47.223).

Writing X�Z for x and Ui�Z for ui with (X, Z )=1, then (6), (7) become

5X 2&586936Z 2=2.5.7.47.223U 2
1

5X 2+1320606Z 2=2.7.47.223U 2
2

whence 5 | Z, 5 | U2 , leading to 5 | X, contradicting (X, Z )=1. K

Remark. It proved less troublesome constructing examples without the
requirement that each 1i possess a global point. With the extra hypothesis,
the principal difficulty was to ensure local solvability at the primes dividing
the content of the defining polynomial f at (5).
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Genus 6

To supply curves of genus 6 with split Jacobian, we use the following
idea suggested by Jaap Top. Let 11 be a curve of genus 1 given by
u2= f3(x), f3 a polynomial of degree 3; and let 12 be a curve of genus 2
given by v2= f5(x), f5 a polynomial of degree 5. Provided f3 , f5 have no
common zero, then the Riemann�Hurwitz theorem implies that the genus
of the curve C of intersection

C : u2= f3(x), v2= f5(x)

equals 6. Denote by 13 the curve of genus 3 given by w2= f3(x) f5(x). Then
there exist maps from C to each curve 1i , which induce an isogeny of the
Jacobian of C with Jac(11)_Jac(12)_Jac(13) (of the correct dimension,
1+2+3). By appropriate choice of f3 , f5 , one can achieve complete split-
ting of Jac(12) and Jac(13), and hence of Jac(C ). Specifically, take
f3(x)=(x+*)(x2&(1�*2)), f5(x)=(x&*)(x4++x2+1) so that 13 : w2=
(x4&(*2+(1�*2)) x2+1)(x4++x2+1); then 13 contains the three distinct
involutions given by

(x, w) [ (&x, w); (x, w) [ \1
x

,
w
x4+ ; (x, w) [ \1

x
, &

w
x4+

and by computing the relevant fixed fields, we obtain three maps to elliptic
curves, and a split Jac(13). It remains to split Jac(12), and to that end we
demand that a Mo� bius transformation of type

(x, y)=\ pX+q
rX+s

,
Y

(rX+s)3+
transform 12 into an equation of type

Y 2=PX 6+QX 4+RX 2+S

whose Jacobian is then clearly split, with maps to

Y 2
1=PX 3

1+QX 2
1+RX1+S, Y 2

2=P+QX2+RX 2
2+SX 3

2 .

All that remains is a judicious choice of parameters *, + so that conditions
(iii), (iv) will hold. In the construction above, the curve C contains the
point at infinity x=1�02, and to avoid this, scalar multiples of f3 and f5

were chosen.
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Theorem. The curve

C : r2=&5(x+ 9
5)(x2& 25

81)

s2=19(x& 9
5)(x4& 82

9 x2+1)

satisfies conditions (i)�(iv)

Proof. The genus 1 component of Jac(C ) is

E1 : r2=&5(x+ 9
5)(x2& 25

81),

an elliptic curve of conductor 118720, rank 1, and generator (0, 5
3).

The genus 2 component of Jac(C ) is

s2=19(x& 9
5)(x4& 82

9 x2+1). (11)

Under the transformation

(x, s)=\ 7X+1
&X+1

,
16S

45(&X+1)3+ ,

(11) becomes

S2=855(1&147X 2+3171X 4&3025X 6),

which in turn maps to

E2 : _2
2=855(1&147{2+3171{2

2&3025{3
2)

and

E3 : _2
3=855({3

3&147{2
3+3171{3&3025),

elliptic curves of conductors 57182400, 5198400, rank 1, and points of
infinite order

({2 , _2)=( 2429
15125 , 3020544

15125 ), ({3 , _3)=( 882955
6859 , 1219458240

130321 ),

respectively.
The genus 3 component of Jac(C ) is

t2=&95(x2& 81
25)(x2& 25

81)(x2&9)(x2& 1
9).

First, put X=x2, fixed under the involution x � &x. This results in a map
to

E4 : t2
4=&95(X4& 81

25)(X4& 25
81)(X4&9)(X4& 1

9),
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an elliptic curve of conductor 110493075, rank 2, and independent points
of infinite order

(X4 , t4)=( 433
97 , 24812480

254043 ), ( 729
6161 , 72181760

37957921).

Second, put

u=x+
1
x

, v=t+
t

x4 ,

giving

v2=
t2

x4 \x4+
1
x4+2+=&95 \x2&

7186
2025

+
1
x2+\x2&

82
9

+
1
x2+\x2+

1
x2+

2

,

that is,

\ uv
u2&2+

2

=&95u2 \u2&
11236
2025 +\u2&

100
9 + ,

affording a map from C to

E5 : t2
5=&95X5(X5& 11236

2025 )(X5& 100
9 ),

an elliptic curve of conductor 31569450, rank 1, and point of infinite order
( 256

25 , 8512
135 ). Third, put

u=x+
1
x

, v=t&
t

x4

and, as above, there is a map from C to

E6 : t2
6=&95(X6&4)(X6& 11236

2025 )(X6& 100
9 ),

an elliptic curve of conductor 2084775, rank 2, and independent points of
infinite order

( 7636
1125 , 1906688

50625 ), (&60820
171 , 103548928

1539 ).

Consequently, Jac(13) is isogenous to E4_E5_E6 ; and Jac(C ) to the
product of E1 , ..., E6 . Thus C satisfies (i) and (ii). By writing x=
&(X+25)�45, the equations for C become

R2=X(X&56)(X+50) (12)

S2=&95(X&110)(X+10)(X+40)(X+106)(X+160). (13)
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Now C is singular only at the primes 2, 3, 5, 7, 11, 19, 53, so the Weil
inequality guarantees a point on C over Qp for p�149. Further, for
p<149 and p=�, there are Qp points on C for either X=0, 56 or &50,
except in the instances p=2, 5, 11, 19, 29, 37, 47, 53. When X=110, there
is a point over Q5 , Q19 , Q53 , and when X=&40, a point over Q29 , Q47 .
This leaves p=2, 11, 37 with Qp points provided by X=2, 2, 1 respec-
tively. Thus C satisfies (iii), and it remains to verify that C has no point
over Q. The curve (12) has rank 1 with generator (&25, 225), and torsion
group generated by the points of order 2. Consequently, a rational point
(X, R) satisfies X=$U 2�V 2 for $=\1, \2, \7, \14, and coprime
integers U, V. Mod 5, U�0, otherwise the numerator of the right-hand
side of (13) is exactly divisible by 55, impossible. Also V�0 mod 5, for
otherwise the denominator of the right-hand side of (13) is exactly divisible
by an odd power of 5, impossible. It now follows from (12), (13) that

$U 2&56V 2#g mod 5 (14)

$U 2+106V 2#0 mod 5. (15)

Adding, 2$U 2#g mod 5, so that ($�5)=&1, contradicting (15). Thus C
satisfies (iv). K

Remark. The genus 1, 2, and 3 components of Jac(C) each contain a
global rational point, with, respectively, r, s, t being 0.

Genus 7

The model chosen for the curve C is the following intersection of three
elliptic curves:

E1 : r2= f (x), E2 : s2=g(x), E3 : t2=h(x),

where f, g, h are rational cubics with no pairwise common zero. The
Riemann�Hurwitz formula implies that the genus of C is 7. Note that there
are already three obvious projections from C to the curves Ei .

To split the Jacobian of C, we shall demand that the curves of genus 2

11 : {2= f (x) g(x), 12 : _2= f (x) h(x)

both have split Jacobian. To achieve the former, take f (x), g(x) in the form

f (x)=(x+:)(x2+;x+$ ), g(x)=(:x+1)($x2+;x+1)

so that 11 is invariant under the involutions x � (1�x), y � (y�x3) and
x � (1�x), y � (&y�x3), and consequently has split Jacobian. To split the
Jacobian of 12 , we choose h(x)=x(x2+$x+=) and use the criterion of
Cassels and Flynn [3], Chapter 14, to make linearly dependent over Q the
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quadratics x(x+:), x2+;x+#, x2+$x+=. Care has to be taken to ensure
that the resuling factors of the Jacobian are defined over Q, but the details
are relatively technical, and are suppressed. As before, it is now necessary
to make an appropriate choice of parameter.

Theorem. The Curve

C : r2=(x+2)(x2+14x&3) (16)

s2=(2x+1)(&3x2+14x+1) (17)

t2=x(4x2+36x&7) (18)

satisfies conditions (i)�(iv).

Proof. The curve E1 : r2=(x+2)(x2+14x&3) has conductor 312,
rank 1, and generator (1, 6).

The curve E2 : s2=(2x+1)(&3x2+14x+1) has conductor 624, rank 1,
and generator (0, 1).

The curve E3 : t2=x(4x2+36x&7) has conductor 4928, rank 1, and
generator ( 1

4 , 3
4).

The curve 11 : {2=(x+2)(2x+1)(x2+14x&3)(&3x2+14x+1) maps
to the curve

E4 : w2
4=(u4+2)(&6u3

4&71u2
4+284u4+1060)

under

(u4 , w4)=\x+
1
x

,
{(x+1)

x2 +
and maps to the curve

E5 : w2
5=(u5&2)(&6u3

5&71u2
5+284u5+1060)

under

(u5 , w5)=\x+
1
x

,
{(x&1)

x2 + .

E4 has conductor 4056, rank 1, and generator (2�7, 2496�49).
E5 has conductor 8112, rank 1, and generator (98�31, 33696�961).
On the curve 12 : _2 = x(x + 2)(x2 + 14x & 3)(4x2 + 36x & 7) put x=

(2X+1)�2(X&1), _=3Y�4(X&1)3 to give

Y 2=3(4X 2&1)(11X 2&8)(16X 2&13),
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which in turn maps to

E6 : y2=3(4x&1)(11x&8)(16x&13),

of conductor 18480, rank 1, and generator (107�176, 189�44); and to

E7 : y2=3(4&x)(11&8x)(16&13x)

of conductor 2730, rank 1, and generator (31�13, 315�13).
We now have Jac(C ) is isogenous to the product of E1 , ..., E7 . For local

solutions, x=0 gives a point on C over Qp provided (&6�p)=+1; x=1,
provided (33�p)=+1; and x=1�4, provided (46�p)=+1. The curve C is
singular at precisely p=2, 3, 5, 7, 11, 13, 7229, so by the Weil inequality,
it is only necessary to consider primes p�199, together with p=7229. The
following table provides the x-coordinate for points in Qp for the remaining
primes.

p x p x

2 1 89 &1
13 8�5 113 3
19 &3 137 &1
23 2 7229 0
43 17 � 1
47 &5
71 5

To show that C has no global rational point, argue as follows. From the
known generator ( 1

4 , 3
4) of (18), it follows that

x#1, &7 mod Q*2.

(Alternatively, one can write x=$u2�w2, u, w # Z, (u, w)=1, $ squarefree,
so that from (18),

4$u4+36u2w2&
7
$

w4=g.

Then necessarily $ | 7, and simple congruence arguments imply $=1, &7
only.)

In the case x#1, then x=u2�w2, u, w # Z, (u, w)=1, and, say

(u2+2w2)(u4+14u2w2&3w4)=R2 (19)

(2u2+w2)(&3u4+14u2w2+w4)=S2 (20)

4u4+36u2w2&7w4=T 2. (21)
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Hence, from (19), (20)

u2+2w2=a2 or u2+2w2=3a2

(22, 22$)
u4+14u2w2&3w4=b2 u4+14u2w2&3w4=3b2

and

2u2+w2=c2 or 2u2+w2=3c2

(23, 23$)
&3u4+14u2w2+w4=d 2 &3u4+14u2w2+w4=3d 2.

Now the pairs of Eqs. (22, 23), (22, 23$), (22$, 23) lead easily to u#w#0
mod 3, impossible; so necessarily only (22$, 23$) can pertain. Then u2=
&a2+2c2, w2=2a2&c2, from which ac�0 mod 3. From (21),

&96a4+192a2c2&63c4=T 2,

giving T#0 (mod 3), 3a2(a2+c2)#0 mod 9, impossible.
In the case x#&7 mod Q*2, then x=&7u2�w2, u, w # Z, (u, w)=1, and,

say

(&7u2+2w2)(49u4&98u2w2&3w4)=R2 (24)

(&14u2+w2)(&147u4&98u2w2+w4)=S 2 (25)

&28u4+36u2w2+w4=T 2. (26)

Now 7 | w from (26) gives 7 | u, so 7 |% w; from (24), (25) it follows that

&7u2+2w2=*a2, &14u2+w2=+c2

with *, +=\1, \3. If 3 | *+, then immediately u#w#0 mod 3, impos-
sible. Further, (*�7)=+1=(+�7), so *, +=1. But then

3w2=2a2&c2,

forcing a#c#0 mod 3, implying w#0 mod 3 and then u#0 mod 3, a con-
tradiction. Consequently, the curve C satisfies criterion (iv).

Remark. C has the additional property that the three covering curves of
genus 4, given by the intersections of (16), (17); (16), (18); and (17), (18)
each possess a global rational point (x=1, 1

4 , 0, respectively).

289SOME INTERESTING CURVES



File: DISTIL 218914 . By:DS . Date:25:11:97 . Time:10:28 LOP8M. V8.0. Page 01:01
Codes: 2394 Signs: 814 . Length: 45 pic 0 pts, 190 mm

REFERENCES

1. A. Bremner, Some special curves of genus 5, Acta Arith. 79 (1997), 41�51.
2. A. Bremner, D. J. Lewis, and P. Morton, Some varieties with points only in a field exten-

sion, Arch. Math. 43 (1984), 344�350.
3. J. W. S. Cassels and V. Flynn, ``Prolegomena to a Middlebrow Arithmetic of Curves of

Genus 2,'' London Math. Soc. Lecture Notes, Vol. 230, Cambridge Univ. Press, Cambridge,
1996.

4. T. Ekedahl and J.-P. Serre, Exemples de courbes alge� briques a� jacobienne comple� tement
de� composable, C.R. Acad. Sci. Paris Se� r. I Math. 317 (1993), 509�513.

5. H. Reichardt, Einige im Kleinen u� berall lo� sbare, im Grossen unlo� sbare diophantische
Gleichungen, J. Reine Angew. Math. 184 (1942), 12�18.

6. E. S. Selmer, The diophantine equation ax3+by3+cz3=0, Acta Math. 85 (1951), 203�362.

290 ANDREW BREMNER


